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A B S T R A C T

Artificial Intelligence (AI) is a broad term that combines computation with sophisticated mathematical models
and in turn allows the development of complex algorithms which are capable to simulate human intelligence
such as problem solving and learning. It is devised to promote a significant paradigm shift in the most diverse
areas of medical knowledge. On the other hand, Cardiology is a vast field dealing with diseases relating to the
heart, the circulatory system, and includes coronary heart disease, cerebrovascular disease, rheumatic heart
disease and other conditions. AI has emerged as a promising tool in cardiovascular medicine which is aimed in
augmenting the effectiveness of the cardiologist and to extend better quality to patients. It has the ability to
support decision‑making and improve diagnostic and prognostic performance. Attempt has also been made to
explore novel genotypes and phenotypes in existing cardiovascular diseases, improve the quality of patient care,
to enable cost-effectiveness with reduce readmission and mortality rates. Our review addresses the integration of
AI and laboratory medicine as an accelerator of personalization care associated with the precision and the need
of value creation services in cardiovascular medicine.

1. Setting the scene

Laboratory medicine as a medical discipline is supporting clinicians
to improve the diagnosis and treatment of patients across a wide variety
of diagnostic disciplines and patient-centered care for better outcomes.
Laboratory medicine is facing a rapidly changing health ecosystem,
inseparable of emerging technologies [1]. In this transforming health
ecosystem, the focus is place on predicting, preventing, and curing
disease precisely with a fundamental shift to more proactive and per-
sonalized care that empowers people to lead healthy lives.

The impact of emerging technologies can be felt at the pre-analy-
tical, analytical and post-analytical levels. As part of these emerging
technologies, data science and the digital transformation are important
drivers for the evolution of laboratory medicine [1].

Cardiovascular diseases (CVD) represent a leading cause of

mortality and morbidity all over the world [2]. The economic burden of
CVD is seriously impacting the healthcare budget and resources. The
annual total cost of CVD is estimated to more than $350 billion in the
United States [3] and €210 billion for the European Union [2,4]. La-
boratory medicine, through biomarker testing is a cornerstone for
physicians for the diagnosis and risk assessment of cardiovascular dis-
eases with keynote examples like myocardial infarction (MI) or heart
failure (HF) [5,6].

The hype about Artificial Intelligence (AI) is unavoidable and the
downstream applications behind AI are incredible. Its rapid develop-
ment in healthcare appears as a game changer for healthcare work-
forces [7–9]. The benefit of interconnecting AI and laboratory medicine
have already been documented and the example of sepsis prediction
through the integration of clinical features and laboratory data through
machine learning for real time assessment could be given [10]. There
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are optimistic prospects of the use of AI in cardiovascular medicine. AI
technologies have been applied in CVD including precision medicine,
clinical prediction, cardiac imaging analysis and intelligent robots.

The physicians may have the potential to reduce workload and to
gain time and experience. In the future, cognitive computers, devices
trained through machine learning or deep learning algorithms, will help
clinicians make accurate decisions and predict patient outcomes. They
will benefit of automating measurements and test ordering, making
predictions based on big data, and putting clinical findings into an
evidence-based context [8,9]. The integration of AI technology and
laboratory medicine into cardiovascular medicine could improve the
accuracy and speed of diagnosis, help clinical decision-making, and
lead to better health outcomes.

This mini-review is focusing on the expected value of the integration
of AI and laboratory medicine to improve the outcomes and services
related to cardiovascular diseases.

2. Emerging applications

2.1. New horizons for biomarker discovery and research

The integration of AI and cardiovascular medicine requires profes-
sional skills, advanced technologies and substantial investment before
applications to clinical practices. The power of AI and computational
modeling is opening new horizons for research [11]. Different examples
could illustrate it for different diseases like atrial fibrillation (AF),
coronary artery diseases (CAD) and heart failure (HF).For AF, deep
analysis of databases were performed to identify biomarkers associated
with the disease [12]. Chua and coworkers reported in their study that
two biomarkers identified after databases screening (increased Brain
Natriuretic Peptides (BNP) and increased Fibroblast Growth Factor 23
(FGF-23) and three simple clinical risk factors (age, sex, and body mass
index) provide a model able to identify patients with AF [12]. For CAD,
the combination of “omics” and bioinformatics was applied to discover
new biological mechanisms and biomarkers [13]. Machine learning and
lipidomics on serum samples of individuals with familial CAD and po-
pulation-based controls were employed to explore the relationship be-
tween serum sphingolipids and CAD [14]. This study validated serum
ceramides as candidate biomarkers of cardiovascular disease and sug-
gests that comprehensive sphingolipid panels be considered as mea-
sures of CVD. In heart failure (HF) with reduced left ventricular ejection
fraction (HFrEF), a combined approach of untargeted metabolomics
and machine learning was evaluated to create a simple and potentially
clinically useful diagnostic panel for HFrEF [15]. The accuracy of a
model based on a panel of metabolites was comparable to BNP and that
selected metabolites correlated with clinical, echocardiographic and
functional parameters. The combination of quantitative proteomics
(multiplexed targeted liquid chromatography-tandem/mass spectro-
metry-based assay) and machine learning was also efficient to uncover
multiplex biomarker panel for Hypertrophic Cardiomyopathy (HCM)
and to refine disease monitoring and improve patient risk stratification
[16]. Six potentially useful circulating biomarkers related to myo-
cardial substrate changes in HCM were identified and correlate with the
estimated sudden cardiac death risk [16].

The comprehensive molecular phenotyping through genomics, me-
tabolomics, proteomics and immunophenotyping combined with data
science and machine learning appear as a very attractive approach to
identify novel pathophysiological pathways and new biomarkers, to
have a better understanding of diseases and complex interplays among
them and to target novel treatment [17].

2.2. Engines for early risk estimation

Current approaches to predict cardiovascular risk fail to identify
many people who would benefit from preventive measures and treat-
ment, while others receive unnecessary intervention. AI offers

opportunity to improve accuracy by exploiting complex interactions
between multiple risk factors as well as to characterize cardiovascular
risk and predict outcomes [11].

AI can improve cardiovascular risk prediction using routine clinical
data. This approach was used in a prospective cohort study using rou-
tine clinical data of 378,256 patients from UK family practices, free
from cardiovascular disease at outset [18]. Four machine-learning al-
gorithms were compared to an established algorithm (American College
of Cardiology guidelines) to predict first cardiovascular event over 10-
years. Neural network was the highest achieving algorithm predicting
4998/7404 cases and 53,458/75,585 non-cases. The neural network
algorithm showed an added value by correctly predicting 355 (+7.6%)
more patients who developed cardiovascular disease compared to the
established algorithm. This study demonstrated that machine-learning
significantly improves accuracy of cardiovascular risk prediction; in-
creasing the number of patients identified who could benefit from
preventive treatment, while avoiding unnecessary treatment of others.
The results of the MESA (Multi-Ethnic Study of Atherosclerosis) invol-
ving 6814 participants initially asymptomatic population are also pro-
mising [19]. The baseline measurements were used to predict cardio-
vascular outcomes over 12 years of follow-up. Seven-hundred thirty-
five variables from imaging and noninvasive tests, questionnaires, and
biomarker panels were obtained. The study showed that creatinine, age,
and ankle-brachial index were among the top predictors of atrial fi-
brillation and that TNF-α, IL-2 soluble receptors and NT-proBNP levels
were important across all outcomes. The study showed also that the
random survival forests technique performed better than established
risk scores with increased prediction accuracy. Similarly, data science
approaches could be applied to develop panel for predicting incident
coronary heart disease [20]. A recent study demonstrated that en-
semble set of random forest models consisting of four genetic and four
epigenetic loci predicted risk of coronary heart disease better for both
genders and very well in the three-year risk prediction window. Lastly,
machine-learning algorithms could be helpful in population known for
their high risk of developing CVD such diabetes or kidney disease. The
use of data science and multiple biomarkers has been shown as a mean
for predicting diabetes mellitus development [21] and to predict is-
chemic heart disease in patients with end-stage kidney disease [22].

AI could therefore participate to a more personalized risk estimation
of CVD and identify actionable risk factors that may be leveraged to
guide risk modification efforts.

2.3. Improving diagnosis of cardiovascular diseases.

The differential diagnosis of chest pain in the emergency depart-
ment (ED) is highly subjective and variable and the diagnosis of acute
coronary syndrome (ACS) is important and helps physician with his
decision to discharge or to hospitalize. In patients presenting to ED with
chest pain and compatible with the diagnosis of ACS, machine learning
techniques using patient data including age, sex, risk factors, and car-
diac biomarkers could improve the diagnosis and then their triage [23].
A study evaluated the performance of four different methods (Support
vector machine (SVM), Artificial neural network, Naïve Bayes and Lo-
gistic Regression) employing clinical, laboratory, and imaging data of
228 patients presenting to emergency department with chest pain [23].
SVM has the highest accuracy and attained a 99.13% classification
success. Data science approaches were also evaluated to reduce mis-
diagnosis and enhance triage procedures of non ST elevation myo-
cardial infarction (NSTEMI) [24]. An artificial neural network model
was built and showed an area under the receiver operating character-
istic and an accuracy of 98.4, and 92.86, respectively. Additionally, the
sensitivity, specificity, positive predictive value, and negative pre-
dictive value of the model were 90.91, 93.33, 76.92, and 97.67 re-
spectively. The appropriate use of troponin testing for the diagnosis of
acute myocardial infarction (AMI) is another important feature.

In the efficient triage of AMI, the variations in cardiac troponin
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concentrations by age, sex and time between samples should be in-
tegrated for more accurate and personalized workup. A study aimed to
combine these variables through machine learning [25]. The machine
learning algorithm incorporating age, sex, and paired high-sensitivity
cardiac troponin I concentrations, was trained on 3013 patients and
tested on 7998 patients with suspected myocardial infarction. Using
these thresholds, the model performed better than the ESC 0/3-hour
pathway and the 99th percentile at any time-point and allowed an in-
dividualized and objective assessment of the likelihood of AMI.

Dyspnea and the differential diagnosis of HF are also challenging in
ED and AI can help to improve it by integrating multiple factors. Such
as the need for personalized prognostication becomes important due to
high risk related to HF. As the risk related to HF is also high the need for
personalized prognostication is also important. Heart failure with pre-
served ejection fraction (HFpEF) is a heterogeneous syndrome related
to high morbidity and mortality. Research was performed to derive
HFpEF phenotype-based groups (phenogroups) based on clinical and
echocardiogram data using machine learning, and to compare clinical
characteristics, proteomics and outcomes across the phenogroups [26].
The authors applied model-based clustering to 32 echocardiogram and
11 clinical and laboratory variables collected in stable condition from
320 HFpEF outpatients. They identified six phenogroups with sig-
nificant differences in the prevalence of concomitant atrial fibrillation,
anemia and kidney disease were observed. These HFpEF phenogroups
were related to differential characteristics and outcomes, as well as
differential levels of inflammatory and cardiovascular proteins [26].

2.4. Enhanced precision care and outcomes monitoring

The potential of AI in cardiovascular medicine is tremendous. The
use of AI appears also as a way to implement precision care and
treatment. By using a machine learning-based algorithm, AI can care-
fully examine the clinician's diagnosis and treatment plan. The
Multicenter Automatic Defibrillator Implantation Trial with Cardiac
Resynchronization Therapy (MADIT-CRT) study tested the hypothesis
that a machine learning algorithm utilizing both complex echocardio-
graphic data and clinical parameters could be used to phenogroup a HF
cohort and identify patients with beneficial response to cardiac re-
synchronization therapy [27]. In more than a thousand of patients,
their analysis identified four phenogroups, significantly different in the
majority of baseline clinical characteristics, biomarker values, measures
of left and right ventricular structure and function and the primary
outcome occurrence. Two phenogroups included a higher proportion of
known clinical characteristics predictive of CRT response and were
associated with a substantially better treatment effect of CRT-D on the
primary outcome than observed in the other groups.

Another study evaluated the performance of machine learning
models compared to traditional risk stratification methods for the
prediction of major adverse cardiovascular events and bleeding in pa-
tients with ACS treated with antithrombotic therapy [31]. Data on
24,178 ACS patients were pooled from four randomized controlled
trials and used to compare the efficiency of a super learner ensemble
algorithm selected weights for 23 machine learning models in com-
parison to traditional models. The efficacy endpoint was a composite of
cardiovascular death, myocardial infarction, or stroke. The safety
endpoint was a composite of TIMI major and minor bleeding or
bleeding requiring medical attention. For the major adverse cardio-
vascular event (MACE) outcome, the super learner model produced a
higher c-statistic than logistic regression, the thrombolysis in myo-
cardial infarction (TIMI) risk score, and a new cardiovascular risk score
developed in the dataset. For the bleeding outcome, the super learner
demonstrated a similar c-statistic as the logistic regression model. This
analysis demonstrates the valuable application of machine learning to
guide antithrombotic therapy treatment decisions.

Improvement of health outcomes could also be a short-term per-
spective of the application of AI to laboratory medicine and

cardiovascular diseases. Outcomes are consistently improving when
they are routinely measured, monitored and when the feedback is
provided back to physicians and healthcare teams. The nonprofit
International Consortium for Health Outcomes Measurement (ICHOM)
recommends a set of outcomes and other patient information to be
measured for all patients with CAD [28] and HF [29].

Reduction of preventable hospital readmissions, that result from
chronic or acute conditions like stroke, HF or AMI, remains a significant
challenge improving the readmission rate outcome and decreasing the
cost of healthcare delivery [30,31]. Compared to existing predictive
models for HF readmission rates, results from data driven machine
learning applied to electronic medical record predictive model are en-
couraging and could help to improve this important contemporary
outcome [30].

3. Translating value based cardiovascular medicine to practice

Big data are providing new insights and opportunities to personalize
therapy. AI, used to predict likely outcomes, automatic generation of
management decisions in addition of the “human neural network”
which integrates the clinical, personal, environmental, and social as-
pects of each individual patient.

The application of AI and the precision biology in imagery is going
to reduce cost and improve medical value at the stage’s interpretation,
and decision-making. In addition, Artificial intelligence is attracting
growing amounts of investment, as the technologies develop; its po-
tential value in health is likely to grow.

Therefore, some policy innovations are needed to cope with these
rapidly evolving technologies. But given the scale of the beneficial
impact on health, the economy and society, the goal should not be to
constrain the adoption and application of AI, but rather to encourage its
beneficial and safe use. It becomes essential to switch resources from
lower value to higher value healthcare [32]. Data science and AI appear
as potential accelerators for value based laboratory medicine.

3.1. Data aggregation and integration of omics

The analysis of genome, transcriptome, proteome and metabolome
are instrumental in identifying biomarkers of disease, to gain insight
into mechanisms underlying the development of cardiovascular disease
and for the sub-phenotyping of patients [33]. AI can clearly improve the
comprehensive analyses of such large volumes of data from multi-omics
and trigger the identification of relationships between complex features
in the data and sub-classification of diseases [33]. In our multi-omics
era, such a use of AI for integrative approaches is mandatory in order to
gain further insights on oncological phenomena, and to move forward
toward the precision medicine paradigm [34].

3.2. Resources stewardship and demand management

The need for value based care has led to assess laboratory test re-
ordering and to develop models to reduce unnecessary testing [35]. A
recent study performed data analysis of laboratory test ordering in one
major teaching hospital and one rural hospital in the same health dis-
trict. The investigators showed that computerized physician ordering of
urea, creatinine and full blood count could save approximately AU
$400/inpatient bed per year. Another study investigated specific in-
terventions including reduction of obsolete or misused testing, dupli-
cate orders, and daily routine lab testing [36]. The authors observed
that hard stops significantly decreased duplicate testing and educa-
tional sessions significantly decreased and rationalized daily orders of
routine labs. They also estimated a related saving of about $100 000
during the study period. AI will also allow translating a real time in-
tegration of guidelines and recommendations into demand manage-
ment and daily practices.

The efficient integration of AI and laboratory medicine to support
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cardiovascular medicine will contribute to value-based care. Beside
substantial improvements in cardiovascular health, and according to a
1% hypothesis of efficiency of the integration, €2 billion a year could be
saved at the EU level.

3.3. Future perspectives

The usage of AI in cardiovascular medicine requires absolute pro-
fessional skills, advanced technologies and importantly with appro-
priate considerable investment. It would necessitate the easy access and
monitoring of AI technology with real-time updates and evaluation.
Future AI projects may draw attention of giant technology firms to
develop potential interest in developing sensor technology to risk
stratification algorithms. The latest Apple watch series 4 has a new
transducer that measure ECG. Recently, Microsoft announced that they
are going to help clinicians in writing algorithms for predicting the risk
factors for CVD in cooperation with Apollo Hospital, India. Thus, AI
technology will help to detect the early warning signals and associated
health risks with the help of machine-learning based solutions in high
burden diseases [9,37].

4. Overcoming challenges

Multiple challenges are still paving the way for a fast and efficient
integration of AI and laboratory medicine to improve cardiovascular
medicine [38–40]:

– Regulatory and ethical challenges need to be addressed [7–9].
Fortunately, ethical principles and legal framework have been pro-
posed for a trustworthy AI [41].

– The need of liability of the AI community, from developers to users
[42].

– The need to guarantee data privacy and patient safety [7].
– The need to improve the education and awareness of healthcare
workforces about the strengths and weaknesses of data science and
AI. This will be parallel to the development of digital skills and
competences.

– The need of inter-operability and scalability of AI solutions. This is
associated to use of structured data. A specific challenge will be the
exchanges of data between public and private sectors.

– The need for state supported health data space to aggregate and
exchange data for building dynamic care pathways relying on AI.

– The need to define the value and business models around AI tools
and carefully assess the benefits in terms of clinical outcomes, pa-
tient experience, and costs.

– The need to support scientific research and development in the field.
– The need to consider medico-legal aspects [7]. The active involve-
ment of healthcare workforces will be mandatory for the construc-
tion and validation of AI solutions and decision support systems. The
input of healthcare workforces will also be critical for the building
of care pathways and for the integration the most recent clinical
decision standards as well as to avoid biases in the delivery of
healthcare or tampering with the allocation of scarce resources.

5. Concluding remarks

AI has already been adapted for health care in areas such as pre-
dictive analysis, in health management, clinical decision-making, and
many other trend or analytics-based solutions. Managing population
health is a critical component of value-based care—but it’s no easy task.
Understanding broader patient health needs within a target population,
defining care gaps that impact patient health, mining social determi-
nants data to tailor care plans, is still challenging. CVD remain a major
killer and burden for healthcare economies. The rising prevalence of
cardiovascular diseases is putting pressure and additional costs on
healthcare systems worldwide. Expanded CVD surveillance, advances in
evaluation and economic modeling of primary prevention, and use of
behavioral economics to identify new prevention strategies is vital. The
combination of AI techniques and laboratory medicine can be used to
address some of these challenges with due focus on improving the
quality of research (Table 1).

AI is providing new tools to improve research but also to enhance
early risk estimation of diseases and diagnostic performances. The
combination of AI and laboratory medicine appears also as an accel-
erator for value-based care and a contributor to more dynamic care
pathways, better processes, and better integration of evidence to
practices. Several challenges are there and it is fundamental to support
the training and development of a laboratory workforce with expertise
in AI, data science.
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