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ABSTRACT  

This study examines the use of AI methods and deep learning (DL) for prescreening skin lesions 

and detecting the characteristic erythema migrans rash of acute Lyme disease. Accurate 

identification of erythema migrans allows for early diagnosis and treatment, which avoids the 

potential for later neurologic, rheumatologic, and cardiac complications of Lyme disease. We 

develop and test several deep learning models for detecting erythema migrans versus several 

other clinically relevant skin conditions, including cellulitis, tinea corporis, herpes zoster, 

erythema multiforme, lesions due to tick bites and insect bites, as well as non-pathogenic 

normal skin. We consider a set of clinically-relevant binary and multiclass classification 

problems of increasing complexity. We train the DL models on a combination of publicly 

available images and test on public as well as images obtained in the clinical setting. We report 

performance metrics that measure agreement with a gold standard, as well as a receiver 

operating characteristic curve and associated area under the curve. On public images, we find 

that the DL system has an accuracy ranging from 71.58% (and 95% error margin equal to 3.77%) 

for an 8-class problem of EM versus 7 other classes including other skin pathologies, insect bites 
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and normal skin, to 94.23% (3.66%) for a binary problem of EM vs. non-pathological skin. On 

clinical images of affected individuals, the DL system has a sensitivity of 88.55% (2.39%). These 

results suggest that a DL system can help in prescreening and referring individuals to physicians 

for earlier diagnosis and treatment, in the presence of clinically relevant confusers, thereby 

reducing further complications and morbidity. 

 

 

Introduction 

Lyme disease is the most common tick-borne disease in the northern hemisphere, with an 

estimated 300,000 new cases per year in the United States alone.1–3 Borrelia burgdorferi, the 

bacterial agent of Lyme disease in North America, is inoculated into the skin through the bite of 

an infected tick. Between 3 and 30 days later, a round or oval, red, centrifugally expanding skin 

lesion called erythema migrans (EM) appears in approximately 70-80% of cases.4,5 EM can 

present in acute Lyme disease with or without the presence of concomitant flu-like symptoms 

such as fever, fatigue, myalgia, and arthralgia. Without appropriate antibiotic treatment, EM 

can persist for several weeks before resolving spontaneously as the host immune response is 

elicited leaving no cutaneous evidence of the persistent infection.4 

In early, uncomplicated Lyme disease, treatment with the appropriate oral antibiotics is highly 

effective at both rapidly resolving the EM lesion and preventing potentially devastating long-

term complications.6,7 If not diagnosed and treated, Borrelia burgdorferi infection can persist, 

advancing from a skin-limited disease to dissemination of the bacteria into the nervous, cardiac, 

and rheumatologic systems.7 Consequently, accurate recognition of EM by both patients and 

clinicians is crucial to early diagnosis and prompt initiation of appropriate treatment. However, 

timely recognition of EM is often hampered by several factors. 
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First, although visual identification of EM, the presence of associated symptoms, a history of 

potential exposure to ticks, and epidemiologic risk remain the primary criteria for diagnosis of 

early Lyme disease, physicians often continue to rely on serologic test results.8,9 Antibody based 

blood tests which are currently available to clinicians are not recommended for diagnosis 

during the early phase of infection when EM is most likely to be present, due to their low 

sensitivity in this acute phase of the illness (less than or equal to 40%). Direct detection of 

Borrelia burgdorferi by culture or PCR of blood or skin biopsy samples can be performed, but 

such tests are generally available only in research settings. In addition, they are not always 

practical for use by diagnosing clinicians given the extended processing time for results.10 

Secondly, EM identification remains a challenge because it often takes on a variety of 

appearances.11 Notably, only 20% of patients with EM in the United States present with lesions 

that have the central clearing of a classic target lesion (“ring-within-a-ring” or “bull’s eye”).12 

The lack of a stereotypical appearance may lead clinicians to make diagnostic errors due to 

over-reliance on pattern recognition and the assumption that all EM look like the classic target 

lesion. While the efficiencies of medical practice require the use of heuristics to make efficient 

clinical diagnosis, such thinking is prone to cognitive biases and error13. In contrast to a bull’s 

eye rash, the majority of EM lesions appear uniformly red or bluish-red in color and lack central 

clearing.6,12 This may lead to misdiagnosis of cellulitis, another bacterial infection of the skin, 

that is treated with different types of antibiotics.14 Antibiotics typically used for cellulitis do not 

have optimal activity in Lyme disease.15 Additionally, approximately 4-8% of EM have central 

blistering, which may lead to a misdiagnosis of conditions such as herpes zoster (HZ).16  

Finally, approximately 20% of patients have multiple EM at the time of diagnosis, arising from 

hematogenous dissemination of the bacteria to other areas of the skin. This can be confused 

with erythema multiforme, urticaria, erythema annulare centrifugum, or other annular skin 

disorders, resulting in the potential for both over and under-diagnosis of early Lyme disease.17  
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The complexity of the presentations of single and multiple EMs is underappreciated by both 

patients and general practice clinicians. Among the general public, one internet-based survey 

found that respondents correctly identified a classic EM with central clearing 73% of the time. 

In contrast, non-classic skin lesions with vesicular, uniformly red, bluish-purple, or disseminated 

manifestations were identified less than 30% of the time.18 Even general practitioners have 

difficulty recognizing EM. In one study, general practitioners correctly identified non-target EM 

lesions 64% of the time and classic target lesions 80% of the time.19 

Across many disciplines within medicine, including dermatology, there has been increased 

interest in harnessing artificial intelligence and deep learning (DL) to assist doctors with 

individuals who may have to be routinely monitored (e.g., for skin cancer) and to possibly 

reduce errors in classification and diagnosis.20 In the 1990s and early 2000’s, image 

classification in medical image analysis had been largely based on the use of conventional 

classifiers combined with human-engineered image features.21,22 In the past years, progress has 

been made using DL techniques23–28, and deep convolutional neural networks (DCNNs, for 

example AlexNet25 or ResNet27). These studies have demonstrated significant increase in image 

classification performance for computer vision tasks such as classification. Unlike the classical 

approaches, image features computed via DL techniques are learned from data via an 

optimization process. This process requires a dataset of images labeled with ground-truth gold 

standard information.  

Applying DL has been successful in part because image features directly learned by neural 

networks provide a better representation than sub-optimal image features that are hand-

designed. Recently, DL approaches have been successfully used for many medical image 

diagnostic tasks, such as for example skin cancer identification,29 or diagnosing and estimating 

prognosis in ophthalmic diseases,30–33 and have largely replaced classical ML approaches.34,35  

Application of AI techniques to skin lesions and dermatology have now become an active area 

of research. Recent examples include work on using semantic segmentation of skin lesions36 
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where a fully convolutional network was coupled with the use of hand-crafted domain specific 

features. In another study37 a method for the challenging task of determining lesion borders 

was developed using a two-stage approach consisting of U-net and a fuzzy edge detection that 

uses fuzzy intensity features (bright, dark and medium). Much of the work in AI applied to 

dermatology involves analysis of dermoscopy images and the diagnosis of cancerous skin 

lesions and melanomas. As one example of this work, a multiclass classification of skin lesions 

was performed,38 including lesions such as Actinic Keratosis, Basal Cell Carcinoma, Melanocytic 

Nevus/Mole, Squamous Cell Carcinoma, Seborrheic Keratosis, Intraepithelial Carcinoma, 

Pyogenic Granuloma, Hemangioma, Dermatofibroma, and Malignant Melanoma, using pre-

trained universal deep features. In another related study,39 a two-stage method using a very 

deep residual net used as a fully convolutional network for performing segmentation, combined 

with other networks for performing classification and was applied to analyze melanomas. 

Another notable study analyzed melanoma in dermoscopic images using pre-trained networks 

as well as fine-tuning techniques.39  

The use of AI for the identification of early Lyme disease with EM – compared to the above 

cited studies that were mostly focused on skin melanoma and dermoscopic images using AI 

techniques -- has been relatively less researched. One such study  was done using classical 

machine learning (ML) approaches.40 By contrast, in a prior study by our group, initial results of 

AI-based classification were reported, but for simple cases of disease vs confuser detection41. 

The current study’s goal is to expand on our prior in work computer-aided EM classification by 

leveraging DCNNs for a more complex problem, entailing a wider array of confusers and 

subsequent number of images, and a larger number of clinically collected “gold standard” EM 

images collected over a wider geographic range which have been used in the analysis42. These 

additions should create a more robust and more generalizable AI-based EM detection 

algorithm. Machine-based screening of skin lesions for Lyme disease also has the potential to 

identify a high percentage of both typical and atypical EM. Our ultimate aims are the potential 
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application of these methods to the prescreening of skin lesions for more informed physician 

referral, clinical evaluation and early diagnosis of Lyme disease.   

 

Methods  

 

Data  

The sources of images available for use in this study consisted of images available online (in the 

public domain) as well as clinical images of well-documented patients with EM.  

Online images were obtained from scripted searches including Google as well as Bing.  These 

programmatic searches were performed using pre-determined search terms that acted as 

synonyms for a given condition or lesion. For example, “erythema migrans”, “Lyme”, and 

“bullseye rash” are synonyms for “EM”. These primary search terms were also combined with 

secondary search terms that were appended to indicate anatomical locations (e.g. “leg”, 

“face”), or promote diversity for protected factors, e.g. gender and race/ethnicity (e.g. using 

terms such as “African American” or “female”).   

Skin imaging conditions play an important role in classification success. Skin images in this study 

that were procured from online public sources were, by virtue of this collection, taken under 

many different acquisition conditions, including changing viewpoints and illumination. Such 

conditions are commonly referred to as “in the wild” situations, as opposed to more controlled 

acquisition situations.  

We used AI techniques we developed for machine-based removal of full or near duplicates of 

online images. This was done by encoding images using a deep neural net and computing 

proximity in the embedded coded domain representation of these images to find close 
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duplicates. We also did machine-based removal of unwanted images, including inappropriate, 

irrelevant, or facial images using deep neural net-based classification. 

This machine curation of online images was followed by clinician curation.  Clinician-based 

curation included further excluding images where the classification was uncertain based on 

visual inspection and further vetting by clinicians to remove duplicates. It also entailed carefully 

annotating the remaining images with moderate to high probability of accurate group 

classification based on visual appearance using the estimated size of the skin lesions. This 

annotation for the main pathologies also entailed a more granular annotation for single vs. 

multiple EM forms of the lesions. There was no use of additional clinical information attached 

to these images. 

Clinical images used in this study consisted of images acquired at Johns Hopkins University and 

the Lyme Disease Biobank under conditions where the diagnosis of EM and Lyme disease was 

confirmed using clinical information available at the time of diagnosis. All images were collected 

under protocols approved by the Johns Hopkins University or the Advarra Institutional Review 

Boards, and informed consent was obtained from all participants. Clinical images were cropped 

to exclude clinician markers on the skin and to exclude rulers that may have been placed in the 

photographs. Clinical images were then annotated by the study clinician to verify the diagnosis 

of EM. 

 

Types of classes and lesions considered  

 

The classes of lesions that we studied included: 1) erythema migrans (EM) as well as non-EM 

conditions: 2) normal skin (NO), and a host of other confuser skin pathologies or lesions 

induced by insect bites. These confusers included: 3) herpes zoster (or HZ), commonly known 

as shingles; 4) tinea corporis (TC), commonly known as ringworm; 5) insect bites in general (IB); 
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6) tick bites (including engorged or non-engorged) (IB-T);  7) cellulitis (CELL), a form of skin 

infection that is often due to a breakage in the skin barrier and may entail bacteria including 

staphylococcus or streptococcus, and 8) erythema multiforme (EMU). 

We chose these specific skin conditions and pathologies as confusers for three reasons: a) they 

represent skin lesions that could be confused with EM because of their circular pattern.  Some 

specific lesions were selected because they required different treatment modalities and could 

lead to erroneous and sometimes deleterious self-diagnosis and self-treatment. This may occur, 

for example, in the case of tinea corporis which would require an anti-fungal treatment vs. EM -

- that requires antibiotic treatment -- vs. cellulitis, that may necessitate types of antibiotic 

treatments different from those of Lyme disease.  b) some skin lesions could have been 

contracted in situations similar to those regarding Lyme, i.e. other insect bites, arguably 

resulting from outdoor activities, and tick bites, which may leave a small skin reaction that is 

often confused with EM, and c) some of the confounding lesions can manifest in a very short 

time period, as is the case for EM, such as shingles, and may require quick attention. Indeed, 

antivirals need to be used in the case of shingles, and these are believed to be effective only if 

initiated within a 48-hour window. This selection of alternate confuser classes opens the door 

to other uses of our pre-screener to give recommendations to users to have themselves 

checked by appropriate clinicians in the case of these alternate conditions. 

 

Classification problems considered  

 

In this study we considered several types of classification problems, including 2-class 

classification (i.e., binary) as well as M-class (i.e., multiclass) classifications.   

The binary classification involved NO vs EM, EM vs CELL, NO vs CELL, and EM vs ALL (all other 

classes). In addition to EM vs ALL, we ran a ternary (3-class) experiment of EM vs NO vs ALL (all 
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confusers). We also ran a 4-class experiment of EM vs NO vs HZ vs TC. To further investigate 

performance among confusers, we ran a large 8-class experiment with all classes versus one 

another.  

While our end goal was the binary classification problem for the pre-screening application for 

EM, the multiclass experiments open the door to other future uses of our system. Also, solving 

a more granular multiclass problem allows the machine to be “stressed tested” beyond the 

binary problem since multiclass classification is fundamentally harder. Finally, it has been found 

that solving a multiclass problem then fusing the results into a binary problem often confers 

advantages regarding performance, as opposed to directly solving a binary problem.29 

 

 Algorithmic methods 

 

The principal method of operation for AI-based approaches currently rests on the utilization of 

deep learning (DL) via DCNNs. DCNNs serve several purposes; to represent the image via 

features, and to implement the core of the classification logic. DCNNs generate image feature 

representations at various levels of abstraction, going from coarse to fine scale representational 

features. Features are computed from convolutions whose filter parameters are learned 

directly from data, in contrast to conventional medical imaging methods that were used in the 

1990s and early 2000s that relied on human-designed features.21,22 Features computed via the 

convolutional steps of DCNNs are then processed via fully connected layers that make up the 

classification logic. A value in a [0,1] interval often interpreted as a probability (but strictly 

speaking is not a probability) is computed via SoftMax computations for each class label, in the 

final layer of the network. This value is taken to be the likelihood for the given lesion class. All 

network weights in the DCNN network are optimized (learned) from the training data. Training 

data includes images equipped with gold standard clinician curation. Training is done via a 

backpropagation process making this approach fully data driven.  
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In this study we used and compared several state-of-the-art (SOTA) DCNNs, including: variants 

of ResNet including ResNet50 (Figure 10), and ResNet15227, InceptionV3 and 

InceptionResNetV243, and finally, DenseNet12144. ResNet50 was used as the reference SOTA 

algorithm and was employed across all problems, and comparisons with the other networks 

was done on a subset of problems exploring the two following extreme cases: 1) for the two 

class EM vs ALL and 2) for the 8-class classification problem. ResNet is a state-of-the-art deep 

network that has so called “bottleneck” and “skip” connections that make the upstream layer 

activations available to a down-stream layers, conferring important benefits for good 

representation as well as backpropagation. We used our own custom framework to train and 

test our models; this framework itself relies on a full software stack that includes Keras as a 

front end with TensorFlow as a back end. This framework has various functionalities for 

efficiently partitioning the data and evaluating results at test time. Transfer learning and fine-

tuning is a standard practice in DL and was also used in our study. We used weights initially 

trained on the ImageNet dataset to classify 1,000 different general object classes, and then 

modified the network to assume the desired number of class outputs for our skin classification 

problems. SGD (stochastic gradient descent) with Nesterov momentum=0.9 was used, and the 

initial learning rate was set to 1E-3.The number of epochs was dictated by patience-based early 

stopping, in concert with early stopping, to stop training by which training was stopped after 5 

epochs of no improvement evaluated on the validation set performance. For the two class EM 

normal versus EM classification this resulted for example in stopping after 8 epochs and for the 

8-class classification training stopped after 9 epochs. After training completion, the model 

weights yielding the highest performance on the validation set were then used for further 

testing. 

The loss function was a cross entropy loss. Dynamic learning rate scheduling was used, i.e. we 

multiplied the learning rate by 0.5 when the training loss did not improve for 5 epochs. A batch 

size of 32 was used. Image preprocessing included rescaling and mean (ImageNet image) 
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subtraction. Images were resized to conform to ResNet50 input size I.e. 224x224. Data 

augmentation for the images was also applied and consisted of horizontal flipping, changes to 

saturation, brightness, contrast, and color balance, as well as random noise and image 

compression to further expand and generalize the dataset. 

 

Experiments and performance evaluation  

 

Machine performance was done by comparing against the gold standard annotations that were 

obtained from clinicians in this study and were reported in earlier sections. The experiments we 

report are for the binary and multiclass test cases described earlier. 

For each experiment, in this study, we trained, tested, and reported results on the online data 

described earlier. We also tested with clinical EM-only data. The online extraction of public 

domain images generated an initial set of images which were then curated by machine and 

clinician and split into train/validation/testing subsets (70%, 10%, and 20%, respectively, of the 

full data). The training/validation/testing datasets were identical for all like-kind classification 

problems. We also reported results on the clinical set of EM images. 

 

Performance metrics are reported in Table 1 for ResNet50 and for all problems. The table 

includes Accuracy, Sensitivity/Recall, Specificity, Positive Predictive Value (PPV/Precision), 

Negative Predictive Value (NPV), Unweighted Kappa score, F1 Score, Average Precision, and 

Area under the ROC Curve (AUC). Figure 1 shows example images of the different conditions we 

considered. Figures 2 through 8 also report confusion matrices for all the different problems. 

ROC curves are reported for all the 2-class classification problems for ResNet50 in Figures 9 

through 12.  
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We compared ResNet50 to other DCNNs for two boundary problems including the two class EM 

vs ALL in Table 2 and for the 8-class problem in Table 3. Table 4 is a characteristic table showing 

the number of image used for training and testing for each class and shows a comparison of our 

dataset with the SD-19845 dataset. 

 

In aggregate, results show promising performance: when testing on public images, we found an 

accuracy ranging from 71.58% (and 95% error margin equal to 3.77%) for an 8-class problem of 

EM versus 7 other classes including pathologies, insect bites and normal skin, to 94.23% (3.66%) 

for a binary problem of EM vs. non-pathological skin. On clinical images of affected individuals, 

we found a sensitivity of 88.55% (2.39%). Results from Table 2 and Table 3 also show that the 

results comparing different SOTA networks are – in aggregate -- proving to be within 

confidence bounds of each other, with the exception of MobileNetV2 which performs much 

worse for the 8 class problem. More analysis is done in the next section. 

 

Discussion  

 

DL has proven to be very effective for medical imaging and diagnostics and has often achieved 

performance on par with humans when large datasets are available along with the presence of 

“gold standard” ground truth annotations. Factors which have made DL effective 

computationally include the use of graphics processing units during DCNN training time, along 

with various algorithmic improvements. Inference time computations can be achieved on more 

modest low power and small form factor devices such as smartphones, which was one of the 

motivations of our study. Several studies have demonstrated the utility of using DL for medical 
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diagnostics including for skin. In a prior study we also demonstrated an initial application of DL 

for Erythema MIgrans analysis, and showed that it could be performed with acceptable 

sensitivity and specificity41. In this study, we significantly expanded the analysis to include more 

complex use cases entailing EM and 7 other targeted and clinically relevant types of commonly 

encountered skin conditions that may be confused with EM, resulting in 7 types of classification 

problems ranging from binary to 8-class classification. In addition, we increased the size of our 

clinically obtained “gold standard” EM skin lesions of Lyme disease. A very recent paper by Liu 

et al showed the potential for DL in the general diagnosis of dermatologic conditions46. In 

comparison, our paper remains novel, as it examines primarily acute dermatologic conditions, 

including manifestations of several acute infectious diseases such as EM, cellulitis, and herpes 

zoster, which are not the most commonly seen skin lesions in a general dermatology practice 

setting. Furthermore, our work included the use of images obtained with cell phones or other 

devices ‘in the wild’, which are more representative of images that patients would be more 

likely to generate themselves. 

 Regarding reliability of the annotations, we did not use the labels obtained online, and all 

images were re-annotated by a single clinician (JA). We also assessed inter-operator error using 

another clinician. We had a second clinician perform annotations to compute inter-operator 

error for EM, tinea corporis, tick bites, cellulitis, and erythema multiforme. We reported these 

results in Table 3. The error rates ranged from 18.22% (with a 95% confidence interval of 

4.61%) for IB-T, to 32.96% (5.61%) for EM. Interpreting those results, the discrepancy between 

the two clinicians, especially regarding EM, suggests that the high degree of variability in the 

appearance of skin lesions and additional supporting clinical information may play a significant 

role in accurate identification of EM by practitioners. 

The applications to these problems suggest promising performance. In particular, we observe 

several interesting findings from these results (looking here at the prototypical performance of 

the SOTA network ResNet50): Our model performance is very strong in differentiating normal 
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skin images from either erythema migrans or cellulitis images, and performance remains good 

when adding in confusers to the mix. Results for the 2-class problem show promising 

performance. Specifically, we found an accuracy for the problem of normal skin vs. erythema 

migrans of 94.23 (and 95% confidence interval of 3.66%) for testing on online images, and a 

sensitivity of 88.55% (2.39%) when testing on erythema migrans-only clinical images.  There 

was a small decrease in performance when training on online and testing on clinical images 

which is to be expected but it was a graceful degradation considering that this case tested a 

more difficult situation of domain shift which we also intend to address in a more specific study 

in the future. Considering this, the performance on clinical images is promising and would be 

enhanced by training on a mix of online and clinical images when more clinical images become 

available in the future. For other 2-class problems, we found an accuracy for erythema migrans 

vs all of 81.51% (6.30%), and for erythema migrans vs cellulitis an accuracy of 79.72% (6.59%). 

For erythema migrans vs. all we provide in Fig. 9 examples chosen randomly of correct and 

incorrect prediction, and in that figure, we explain the likely causes of misclassifications. The 2-

class normal vs cellulitis gave an accuracy of 95.57% (3.21%). Those results are encouraging 

considering that erythema migrans and cellulitis could be confused in some circumstances, for 

instance if image resolution was low, because of the common features of erythema and 

regional vs. generalized skin involvement . For the 3-class problem of erythema migrans vs 

normal vs all other classes, we found an accuracy of 83.11% (4.96%). 

In addition, when observing the confusion matrix for the 4-class problem, we notice erythema 

migrans is most likely to be confused with tinea corporis (16% of cases), perhaps because the 

two skin conditions have a similar round appearance, often with an area of central clearing. 

Similarly, tinea corporis is most likely to be confused with erythema migrans in 12% of cases. 

The ‘scaly’ appearance of the advancing border that distinguishes tine corporis may not always 

be captured in images collected by patients in the wild. In addition, the DL algorithms that we 

have utilized do not include supporting clinical information in the training or analysis phase, 
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which would be expected to decrease the performance.46  Finally, for the 8-class experiment’s 

confusion matrix, it appears insect bites can be confounded with erythema migrans as well 

(13% of the cases), which should also be expected given the circular nature of the erythema in 

both conditions. The distinguishing feature of erythema migrans and insect bites in the clinical 

setting is the ability to observe the expanding size of erythema migrans skin lesion over time 

which was not possible in the single images that we analyzed. We believe that the loss of 

specificity in this situation is not clinically harmful however, as the false positive identification 

of IB as EM would only result in referral for further evaluation and confirmation of the correct 

diagnosis. This is preferable to the false negative result of calling erythema migrans an insect 

bite, a scenario which occurred 12% of the time, and could lead to a lost opportunity for further 

evaluation and treatment. This concern may justify a need to use our detection algorithm at an 

operating point in the ROC curve with higher sensitivity.  

The study also does a sensitivity analysis with regard to network used. For the two classes all 

performance metrics show results that are generally within confidence bounds suggesting that 

all SOTA networks perform with similar level of performance on this problem. MobileNetV2 

performance is not as good as the other networks for the 8-class problem, likely because it is a 

shallower network. This is interesting to note since one of the applications of our study is the 

deployment to a smart phone application and this would guide us to steer away from that 

network choice for an embedded AI application. In aggregate, our findings echo other studies 

that found that there is often not a statistically significant difference between these various 

SOTA networks in terms of performance, when tested on large datasets such as ImageNet47,48. 

Additionally, this difference becomes marginal and not statistically significant most of the time 

when working with relatively smaller datasets. Also, it is often the case that an ensemble of 

classifiers can yield a few percentage points improvements, which was not done in our study, 

but it is notable that ResNet, being a skip connection network, has already some ensembling 

properties as was shown in this study49. 
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One interesting question regards the sensitivity to image resolution and network size. A first 

order answer is provided by the current experiments as the SOTA networks used offer an 

insight into the potential sensitivity to input size. Specifically, the input sizes for each network 

were: For ResNet50:224 X 224 X 3, ResNet152:224 X 224, InceptionV3: 299 X 299, 

DenseNet121: 224 X 224, InceptionResNetV2: 299 X 299, and MobileNetV2 224 X 224. There 

does not seem to be a significant benefit in using the larger input size of InceptionResNetV2 

(with accuracy of 76.71% for the two class erythema migrans vs. all problem) and InceptionV3 

(accuracy of 80.82%) or DenseNet121 (accuracy of 84.25%) when compared to networks with 

an input size 46% smaller (computed area-wise),  e.g. for which ResNet50 had accuracy of 

81.51%. Likewise, performance does not seem to depend on size for the 8-class problem 

comparisons. The likely explanation is given that the lesions – in most cases -- occupy a 

significant portion of the image as is seen in examples shown in Figure 1 and Figure 9. This 

should also be our expectation for clinical images as well as images taken from smart phones. 

Additional work can be directed towards conducting more experiments in the future by altering 

the architecture of those networks to accept other input sizes. 

 

Our study has the following limitations. The images obtained online for training are highly 

variable in resolutions and camera viewpoint, which could make the use of semantic 

segmentation of the location of the lesion or insect bite highly beneficial. This was not done in 

this study and is left for future work.  

Additional datasets of skin lesions exist online and could be considered for mixing with our 

dataset. One possibility would be to use the ISIC201845, however those images only contain 

dermoscopic imagery of skin cancer lesions. As we explicitly focused on the use case of EM 

against confuser lesions, this dataset is therefore of no use for the current work.  Another 

possible dataset is SD-19845, but unfortunately that dataset is also not adequate for our study, 

as it contains images of various diseases and various erythema but not erythema migrans. That 

Jo
urn

al 
Pre-

pro
of



  
 

  
 

dataset does contain some classes that may be of interest as direct confusers of erythema 

migrans, but those classes are minimally represented in numbers which would be of little 

additional benefit for training as well as for evaluation. For perspective characteristic table 3 

showed the number of examples of images for all conditions considered in our study and as can 

be seen our dataset exceeds by one or two factors of magnitude the number of exemplars 

found in SD-198 dataset. The characteristic Table also shows that for SD-198 dataset there is a 

strong paucity of examples for all classes that this study is focused on (i.e. EM and strong 

confusers), it contains no examples of erythema migrans or insect or tick bites which are an 

important confuser use case for our study. Also, a close inspection of SD-198 images shows that 

some images are near replica or cropped versions of each other (by contrast in our curate 

images replica were removed via manual and machine learning methods) which would put the 

estimate of hthe number of images available even lower. Another larger variation of SD-260 is 

available but at the time this study was conducted this dataset was no longer available for 

public download and we were not able to evaluate it. 

 

 Lastly, one important limitation of our study re. bias in AI: our dataset did not include a 

significant number of individuals with dark skin, and we could not ascertain that our dataset 

was diverse with regard to other protected factors such as gender and age, despite the fact that 

we attempted to target racial, ethnic, and gender diversity in our search terms. Recently the 

important issue of bias in AI and fairness regarding protected factors has gained much 

scrutiny45 and this is an issue we intend to address in future studies with regard to skin lesions. 

We also will address issues related to having other types of imbalance in the data, such as 

paucity of data (so-called low shot learning) and domain shift and domain generalization.  

Normal Skin (NO) Erythema Migrans (EM)
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Herpes Zoster (HZ)

 

Tinea Corporis (TC)

 
Insect Bite (IB)

 

Tick Bite (IB-T)

 
Cellulitis (CELL)

 

Erythema Multiforme (EMU)
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Figure 1 examples of the type of skin conditions investigated in this study in addition to EM 
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Sensitivity/R

ecall 
Specifi

city 
PPV/Preci

sion 
NP

V 
Unweigh

ted 

Kappa 

F1 

Scor

e 

Avera

ge 

Precisi

on 

AUC Epoc

hs 

Ran 

NO 

vs 

EM 

94.23 
(3.66) 

98.72 (2.50) 89.74 
(6.73) 

90.59 
(6.21) 

98.
59 
(2.7
4) 

0.8846 0.94
48 

0.9850 
(0.019
1) 

0.985
4 
(0.01
88) 

8 

EM 

vs 

All 

81.51 
(6.30) 

84.93 (8.21) 78.08 
(9.49) 

79.49 
(8.96) 

83.
82 
(8.7
5) 

0.6301 0.82
12 

0.9022 
(0.048
2) 

0.888
7 
(0.05
1) 

14 

EM 

vs 

NO 

vs 

All 

83.11 
(4.96) 

83.11 (4.96) 91.55 
(3.68) 

83.08 
(4.97) 

91.
57 
(3.6
8) 

0.7466 0.83
11 
  

0.8955 
(0.040
5) 

0.938
3 
(0.03
19) 

13 

EM 

vs 

CELL 

79.72 
(6.59) 

81.82 (9.31) 77.92 
(9.26) 

76.06 
(9.93) 

83.
33 
(8.6
1) 

0.5942 0.78
83 

0.8744 
(0.054
3) 

0.894
1 
(0.05
04) 

6 

NO 

vs 

CELL 

95.57 
(3.21) 

94.59 (5.15) 96.43 
(3.97) 
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(4.55) 

95.
29 
(4.5
0) 

0.9110 0.95
24 

0.9951 
(0.010
9) 
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5 
(0.01
04) 

9 

NO 

vs 

EM 

vs 

HZ 

vs TC 

81.58 
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(4.38) 
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02 
(2.6
6) 

0.7522 0.81
58 

0.8990 
(0.033
9) 
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1 
(0.02
38) 

10 

NO 

vs 

71.58 
(3.77) 

70.18 (3.83) 95.88 
(1.66) 

71.48 
(3.78) 

95.
91 

0.6709 0.71
58 

0.7973 
(0.033

0.938
5 
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EM 

vs 

HZ 

vs TC 

vs IB 

vs 

IB-T 

vs 

CELL 

vs 

EMU 

(1.6
6) 
  

6) (0.02
01) 

Clini

cal 

(EM 

Only

) 

N/A 88.55 (2.39) N/A N/A N/A N/A 0.93
93 

N/A N/A N/A 

Table 1:  performance results for various test cases of binary and multiclass classification. 

Reported values include the metric and the 95% error margin in parenthesis. See table 2 for 

acronym translation. Termination epochs are reported in the last column. 
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F1 
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AUC 
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ResNet50 

81.51 
(6.30) 

84.93 
(8.21) 

78.08 
(9.49) 
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InceptionV
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(9.02) 
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0.8
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0.85
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(0.05
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74) 544) 

MobileNet
V2 

80.82 
(6.39) 

86.3 
(7.89) 

75.34 
(9.89) 

77.78 
(9.05) 

84.62 
(8.77) 

0.6164 
0.8
182 

0.88
53 
(0.05
17) 

0.88
98 
(0.0
508) 

10 

DenseNet1
21 

84.25 
(5.91) 

84.93 
(8.21) 

83.56 
(8.5) 

83.78 
(8.4) 

84.72 
(8.31) 

0.6849 
0.8
435 

0.88
95 
(0.05
09) 

0.89
94 
(0.0
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9 
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(6.86) 
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(9.49) 
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13 
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ResNet152 
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79.45 
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(8.75) 
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(8.42) 

0.6575 
0.8
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0.88
09 
(0.05
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0.88
4 
(0.0
519) 

15 

Table 2 EM vs ALL performance comparison for all other DCNNs 
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ResNet50 
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(3.77) 
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(3.78) 
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(1.66) 
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6) 
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MobileNetV2 
59.38 
(4.11) 

58.07 (4.13) 
94.07 
(1.98) 

64.34 
(4.01) 

94.15 
(1.96) 

0.5280 
0.59
38 

0.663
7 
(0.039
5) 

0.895
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DenseNet121 
71.58 
(3.77) 
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(1.66) 

0.6704 
0.71
58 
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94 
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5) 
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2) 

10 

InceptionV3 
67.94 
(3.9) 
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94 
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(0.02
23) 

10 

ResNet152 
70.86 
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71.04 (3.79) 
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70.08 
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(1.68) 
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0.70
86 

0.780
9 
(0.034
6) 

0.939
6 
(0.01
99) 

8 

 

Table 3 For the problem NO vs EM vs HZ vs TC vs IB vs IB-T vs CELL vs EMU performance 

comparison is reported. 

 

 

class Normal 

Skin 

(NO) 

Erythe

ma 

Migrans 

(EM) 

Herpes 

Zoster 

(HZ) 

Tinea 

Corpori

s (TC) 

Insect 

Bite (IB) 

Tick 

Bite (IB-

T) 

Cellulit 

is (CELL) 

Erythe

ma 

Multifo

rme 

(EMU) 

Train 777 723 594 612 708 261 599 400 

Validati

on 

42 40 36 35 41 16 30 34 

Test 

(online) 

72 91 83 73 87 31 67 45 

Test 

(clinical

) 

N/A 681 N/A N/A N/A N/A N/A N/A 

Total 

for this 

study 

dataset  

891 1535 713 720 836 308 696 479 

Compar
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SD-198 

 0 0  25  61  0  0  36  25 
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dataset 

Table 4: characteristic table showing the number of images per class among training, validation, 

and test sets (for the 8-class experiment) 

 

Figure 2: confusion matrix and ROC curve for the 2-class problem normal skin (NO) vs. EM 
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Figure 3: confusion matrix and ROC curve for the 2-class EM vs. all other (ALL) problem 

 

 

Figure 4: confusion matrix for the 3-class EM vs. normal skin (NO) vs. all (ALL) other classes 
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problem 

 

 

 

 

 

 

Figure 5: confusion matrix and ROC curve for the 2-class EM vs. Cellulitis (CELL) problem  
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Figure 6: confusion matrix and ROC curve for the 2-class normal vs. Cellulitis problem  
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Figure 7: confusion matrix for the 4-class normal vs. EM vs. HZ vs TC problem 
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Figure 8: confusion matrix for the full 8 class problem 

 

class Erythema 

Migrans (EM) 

Tinea 

Corporis (TC) 

Tick Bite 

(IB-T) 

Cellulitis 

(CELL) 

Erythema 

Multiforme (EMU) 

Error % (95% 

CI) 

32.96 (5.61) 30.77 (5.47) 18.71 
(4.71) 

25.62 
(5.10) 

18.22 (4.61) 

Number of 

Images 

270 273 274 281 269 

 

Table 3: Results of inter-operator error between two graders (JA & CN for several skin conditions 

 

 

Conclusion 
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We used AI and DL approaches for erythema migrans classification and Lyme disease 

diagnostics , looking at several complex training/testing use cases that focused on the problem 

of EM classification against clinically relevant confusers. Based on the performance results we 

reported for both public domain and the generalization to clinical image testing, this study 

appears to show substantial potential for possible future applications of pre-screening for 

clinician referral. These applications would have the benefit of increasing the likelihood that 

patients who need further medical assessment see a physician for further examination. This 

would help address morbidity by avoiding unevaluated and undiagnosed patients which could 

evolve into more serious long-term complications resulting from late-stage Lyme disease, 

should these patients turn out to be affected by the disease.   
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Figure 9: examples selected randomly of correct and incorrect predictions for the Erythema 

Migrans vs All classification, displayed as a 2X2 confusion matrix. Top left quadrant show 

examples of true positives and lower right quadrant, of true negatives. Examples in the upper 

right quadrant are of false negatives: a1 is a typical difficult example of EM on a neck area; a2 

has very faint and small erythema that could be confused for an insect bite; a3 shows an 

example on a darker skin individual for which there are few training examples in the dataset, a 

challenge which is discussed in the discussion section and should be addressed in future work 

via AI debiasing methods; a4 has a triangular-shaped erythema which is atypical for EM. Lower 

left quadrant shows examples of false positives: c1 is ambiguous, c2 and c3 are cases of 

erythema multiforme which are easily confused with EM because of the circular shape and 

central clearing; c4 is likely herpes zoster but the patch of erythema areas on the right hip likely 

confused the prediction. 
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Fig 10: Diagram for ResNet50 deep neural net, one of the several deep convolutional networks used in 

this study. 
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Highlights 

 

• This study examines the use AI methods for detecting erythema migrans (EM) 

against the most clinically relevant skin conditions that may be “confusers.” 

• Accurate identification of erythema migrans allows for early diagnosis and 

treatment of Lyme disease, which avoids the potential for later neurologic, 

rheumatologic, and cardiac complications. 

• We develop the most extensively curated dataset thus far for this 

challenging problem. 

• We develop and test several deep learning models against various problems of 

growing complexity and test on a combination of public domain and clinical images. 

• The DL system has accuracy ranging from 71.58% (and 95% error margin equal to 

3.77%) for an 8-class problem of EM versus 7 other confusers, to 94.23% (3.66%) 

for a binary problem of EM vs. non-pathological skin. 

• We test generalization on clinical images of affected individuals and obtain a 

sensitivity of 88.55% (2.39%). 

• These results suggest that AI can help in prescreening and referring individuals to 

physicians for earlier diagnosis and treatment, in the presence of clinically relevant 

confusers, thereby reducing further complications and morbidity of Lyme disease. 
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