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A B S T R A C T

With 6G flagship program launched by the University of Oulu, Finland, for full future adaptation of 6G by
2030, many institutes worldwide have started to explore various issues and challenges in 6G communication
networks. 6G offers ultra high-reliable and massive ultra-low latency while opening the doors for many
applications currently not viable by today’s 4G and 5G communication standards. The current 5G technology
has security and privacy issues which makes its usage in limited applications. In such an environment, we
believe that AI can offer efficient solutions for the aforementioned issues having low communication overhead
cost. Keeping focus on all these issues, in this paper, we presented a comprehensive survey on AI-enabled
6G communication technology, which can be used in wide range of future applications. In this article, we
explore how AI can be integrated into different applications such as object localization, UAV communication,
surveillance, security and privacy preservation etc. Finally, we discussed a use case that shows the adoption
of AI techniques in intelligent transport system.
. Introduction

From the past few decades, Artificial Intelligence (AI) becomes
he most powerful technology in solving many challenging problems
uch as route management, congestion control, topology management,
ecurity, and privacy of the communication network. Initially, it was
ccepted for network monitoring and diagnosis [1], but later, it is being
sed to optimize the network topology of large scale distributed systems
sing heuristic algorithms to produce an optimal solution. Non-optimal
olutions were otherwise considered impossible to solve due to the com-
inatorial explosion problem [2]. The aforementioned implementations
f AI were considered as its initial usages during the pre-2000 era.
ut, since its inception, affordable computing was made possible by a

arge number of Graphics Processing Units (GPUs) and Compute Unified
evice Architecture (CUDA) cores diversified the role of AI. Instead of

imply designing and optimizing the network topologies, AI can now be
sed to monitor and secure the network also. Hardcoded algorithms can
e used to monitor the network to determine whether any malicious
ctivity in the network occurs. It can also monitor the network load
nd traffic which helps to prevent the Denial-of-service (DoS) attacks.
ut, since the network-related algorithms are always predefined, so by
pplying the AI techniques to such algorithms, we can prevent many
ttacks on the network. This continuous updates in network algorithms
sing AI techniques can remove various vulnerabilities in the networks.
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The continuous advancements in AI techniques such as machine
learning and deep learning techniques make it possible to execute
those conventional tasks which were earlier considered as impossible.
These advanced techniques gain deep insights into the network and
predict various diverse parameters to perform various tasks with high
accuracy. They can perform various functionalities such as traffic clas-
sification, resource management, and information recognition. They
automatically optimize the adaptation of networks by performing net-
work rerouting, congestion control, and Quality of Experience (QoE)
optimization [3]. AI has also lead the development of novel network-
ing models such as Intent-based networking, which is an automation
process to generate network models according to the requirements of
the customers. It allows the teams to raise their needs or intents and
feed it to the network, which automatically configures all the devices.
Conventionally, it was a long and tedious process where the teams need
to submit their network requirements to the skilled network engineers
for the configuration of the entire network. Intent-based networking
leads to the improved agility, increased operational efficiency, and
improved user QoE.

In this direction, one of the most powerful technologies, Software
Defined Networking (SDN) provides flexibility and agility required by
the enterprises. Its objective is to offer dynamic network control to the
service operators where the requirements from the clients are dynamic
and ever-changing. SDN decouples the hardware network functions
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Nomenclature

1G 1st Generation
2G 2nd Generation
3G 3rd Generation
4G 4th Generation
5G 5th Generation
6G 6th Generation
ACO Ant Colony Optimization
AI Artificial Intelligence
AMC Automated Modulation Classification
ANN Artificial neural network
AR Augmented Reality
ASR Automatic Speech Recognition
CNN Convolutional Neural Network
COCO Common Objects in Context
CSI Channel State Information
CSS Cooperative Spectrum Sensing
CUDA Compute Unified Device Architecture
DBM Deep Belief Network
DL Deep Learning
DNA Deep Network Analyzer
DNN Deep Neural Networks
DQN Deep Q-Network
DT Decision Trees
DVB Digital Video Broadcasting
EEG Electroencephalography
eMBB Enhanced Mobile Broadband
EMR Electronic Medical Report
GPU Graphical Processing Units
GRU Gated Recurrent Unit
GT-CNN Ground Truth Convolutional Neural Network
HOG Histogram of the Oriented Gradient
ICR Integrated Coherent Receiver
IoT Internet of Things
IRR Internet of Things Resource Registry
ISOMAP Isometric Mapping
ITS Intelligent Transport System
KNN k-nearest Neighbors
L-SVM Linear Support Vector Machine
LED Light Emission Diode
LSTM Long Short Term Memory
MAC Medium Access Control
MAP Maximal Aposteriori Probability
MDP Markov Decision Process
MEC Mobile Edge Computing
MIMO Multiple Input Multiple Output
ML Machine Learning
mMTC massive Machine-Type Communications
MRA Multi-radio Access
MRA Multi-radio Access
NFV Network Function Virtualization
NOMA Non-orthogonal Multiple Access
OFDM Orthogonal Frequency Division Multiplexing

(keep it at the control plane) from the data plane or forwarding plane to
make the network management easy and flexible. AI techniques can be
incorporated in the SDN controller to automate the task such as load
balancing, flow routing, and network security using algorithms such
280
OLSR Optimized link state routing protocol
OWC Optical Wireless Communications
PCA Principal Component Analysis
PHY Physical Layer
QOE Quality of Experience
QOS Quality Of Service
RAN Radio Access Network
RBM Restricted Boltzmann Machine
RF Radio Frequency
RIP routing information protocol
RNN Recurrent Neural Network
SCF Spectral Correlation Function
SCMA Sparse Code Multiple Access
SDN Software Defined Networks
SE Spectrum Efficiency
SSA stability based adaptive routing
SVM Support Vector Machines
TDD Time Division Duplex
TDD Time Division Duplex
THz Terahertz
UAV Unmanned Aerial Vehicles
URLLC Ultra-Reliable Low-Latency Communications
VLC Visible Light Communication
VR Virtual Reality
YOLO You Only Look Once

as Ant Colony Optimization (ACO), decision tree, and Artificial Neural
Networks (ANN) [4–6]. According to the latest report [7], around 53
percent of the service providers are expected to incorporate AI in their
networks.

In recent years, the potential applications of AI integration with
networking has been on the rise. SeDaTiVe framework was proposed
by Jindal et al. [8] which applied deep learning to SDN’s for smart
vehicles to control the network traffic. Another approach was proposed
to reduce the costs of data aggregations from IoT devices, using a fog
based framework called FESDA which was able to reduce the costs
by 50% [9]. Another, data aggregation framework for the healthcare
domain used fuzzy-based classifiers to ensure systematic decision mak-
ing from the collected data which had improved efficiency over the
traditional cloud computing-based platforms [10]. There are various
other technologies, apart from AI that have contributed to the field of
communication [11]. Due to Blockchain technology, there is a great
increase in the performance of the communication applications like
Internet of Vehicles (IoV), SDN-enabled vehicle-to-grid environment,
etc. [12,13].

Although 5G networks are sufficient for the current applications,
however, it has some limitations and cannot support future applica-
tions. For example, Hologram communications may require data rate
in TBps, while 5G supports a maximum rate of 10 Gbps. Also, the
integration of IoT is increasing day-by-day and has led to a huge spike
in the number of devices that need to communicate with each other and
to the host. So, 5G may not be able to provide network connectivity to
such a large number of devices/users in the future, resulting in network
congestion. The current methodology of configuring and optimizing the
networks is done manually, which cannot be scaled to the ultra-large-
scale wireless networks, which are dynamic and complicated. These
limitations are expected to be overcome by the upcoming 6G networks
which provide several functionalities integrating with AI techniques as

shown in Fig. 1.
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Fig. 1. 6G basic concepts and its services.
.1. Contribution of this survey

With respect to the aforementioned discussion, it has been observed
hat 6G communication is the most powerful and emerging technology
f the modern era. The integration of AI with 6G revolutionize the
ommunication aspects in terms of routing and decision making. Based
n the above, the following are the major contributions of this paper.

• We discussed 6G concepts and services and presented a taxonomy
based on AI-enabled 6G applications.

• We proposed the AI integrated 6G architecture by highlighting
various application scenarios.

• We highlighted several future challenges and implementation
issues in 6G communication networks.

• At last, we described a use case of Intelligent Transportation
System (ITS) and then proposes its architecture integrated with
the above-proposed architecture of AI-enabled 6G.

.2. Scope of the survey

While the 5G network has just started to roll out commercially,
et its impacts on the economy, and society are still unknown. Many
esearchers across the globe have started exploring 6G communication
etworks and give their theories and architectures. Most of the papers
ocused on what 6G technology is and why it is necessary for the future.
uthors explored that what are the new features in 6G and analyzed
ervices and applications where it can play a vital role. But, there
xists no in-depth survey which explores all 6G concepts, services, AI
ntegration, architecture, a taxonomy for AI techniques in 6G networks,
eal-life use case, and future scenarios. So, in this paper, we address all
he aforementioned concepts and architecture in detail.

There is some literature [14,15], and [16], most of which explained
he concepts of 6G but not focused on how AI can be integrated to make
G network more robust and resilient. Some proposals such as [17–19],
nd [20] explained how 6G with combination of AI helps in reducing
he delay and increases the reliability of future data-intensive appli-
ations. However, they explained theoretically but not proposed any
rchitecture to analyze the application implementation. Zong et al. [21]
281
explained the evolution of wireless generations and then explained 6G
with architecture, but applications, where 6G can play a vital role, were
not discussed. In Table 1, we presented a summary of various surveys
related to 6G and their differences with the proposed survey.

1.3. Organization and reading map

The rest of the paper is organized as follows. Section 2 presented
the background of communication networks starting from 1G to 6G
and discussed its application scenarios. Then various AI techniques are
explained which can act on various 6G communication layers. Section 3
discusses the review methodology used to conduct this survey. In Sec-
tion 4, we discussed the traditional 6G architecture and proposed a new
AI-enabled 6G architecture. Section 5 highlights various AI techniques
that can be implemented in 6G. In Section 6, we discussed various
shortcomings of 6G, and then in Section 7, we presented a use case
of an intelligent transportation system. Finally, Section 8 concludes the
paper.

2. Background

This section discusses about the background knowledge of various
concepts used in the proposed survey such as

2.1. Communication evaluation

With an increased communication requirement of end-users and
network operators, the QoS, QoE, and to achieve more reliable wire-
less communication network which is the main reason behind evo-
lution in the communication channel from first-generation (1G) to
fifth-generation (5G) and is now switching towards the sixth-generation
(6G) networks as shown in Fig. 2. In the 1980s, the first analogous
communication system was introduced with limited connectivity and
only restricted to voice transmission. the different wireless generations
were introduced with the new aspects of services, regulations, and
innovations [26]. The 1G communication network was introduced in
the late 1980s, which was used to transmit analog signals, i.e., voice
only. This network architecture provided maximum data rate up to
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Table 1
Comparison of our proposed survey with the existing surveys.

Authors Year Objective Merits Demerits 1 2 3 4

Yastrebova
et al. [15]

2018 To present future
challenges and
application which
can be resolved by
6G network

They showed how future
network architecture for 6G
should be

Role of AI in 6G is not mentioned Y N N N

Huang et al.
[14]

2019 To provide detailed
survey on Green 6G

Explained how 6G can be
better than previous
generation networks

AI integrated approaches to develop 6G
were not discussed

Y N N N

Strinati et al.
[16]

2019 To provide an
introduction of 6G
networks

Discussed various limitations
of 5G and importance of 6G
in detail.

Detailed survey of AI approaches in 6G
were not discussed

Y N N N

Zhao et al. [22] 2019 To present a survey
on Intelligent
reflecting surfaces
for 6G

Surveyed recent reviews and
identified future challenges in
IRS field for 6G

Lack of proper 6G architecture based on
IRS and involvement of AI in their work

Y Y N N

Zhang et al. [17] 2019 To explain key
technologies for 6G
and explore
potential application
of 6G networks

Explained how mobile ultra
broadband, super IoT and AI
could help 6G networks to
achieve its goal

Architecture and hardware design not
discussed

Y Y N N

Tang et al. [19] 2019 To show how 6G
can revolutionize
vehicular network

They discussed how Machine
learning can help to make
vehicular network better in
6G architecture

Does not focus on 6G technologies and its
application in diversified field

Y Y N Y

Saad et al. [23] 2019 To encourage more
ingenious research
ideas around 6G

Focused on future applications
for 6g and their enabling
technology

6G architecture, working and structure not
emphasized

Y Y N Y

Loven et al. [18] 2019 Presented a new
model for 5G which
will then be applied
to 6G

Discussed the merits and the
demerits of AI at edge
computing

Discussed architecture based on edge
computing only and did not discuss 6G
architecture not its workings

Y Y N N

Zong et al. [21] 2019 To present new
system architecture
for 6G

Discussed limitations of 5G
and presented new use-cases
for 6G

Architecture based only upon photonics and
AI are discussed

Y Y Y N

Yang et al. [24] 2019 To present the AI
enabled intelligent
6G architecture and
its applications

Discussed AI enabled 6G
architecture and its usefulness
in 6G applications in detail

Taxonomy is not presented and role of AI
in ITS and Dynamic Spectrum Allocation
not presented

Y Y Y N

Giordani et al.
[25]

2020 To explain
technologies that
will bring change in
future generation
6G networks

It discussed various
applications where 6G can a
play a vital role

AI approaches to make 6G network more
robust not discussed

Y N Y N

Murshed et al.
[20]

2020 To survey various
machine learning
techniques applied
in Mobile Edge
Computing

Explained ML techniques used
in Edge Computing
applications and future
challenges in detail

Only one application of 6G networks based
on ML was discussed i.e. Mobile Edge
Computing

Y Y N Y

The proposed
survey

2020 To provide detailed
survey of AI
techniques used for
6G networks

Discussed AI integrated 6G
architecture and surveyed
various AI techniques used for
various applications of 6G

– Y Y Y Y

1 - 6G focused, 2 - AI focused, 3 - AI proposed 6G Architecture, 4 - Taxonomy available.
2.4 Kbps [14]. The major drawback for the first generation of wireless
communication was low transmission efficiency, lack of security and
privacy, and problematic hand-off mechanism.

Later, 2G was introduced to improve the transmission and spectral
efficiency, which was entirely based on a digital modulation approach
such as Code Division Multiple Access (CDMA) and Time Division
Multiple Access (TDMA). Global System for Mobile Communication
(GSM), General Packet Radio Services (GPRS), and Enhanced Data rates
for GSM Evolution (EDGE) standards were developed for 2G digital
cellular networks. It achieved the data rate up to 384 (downlink) and
60 (uplink) Kbps and also supported services like Short Message Service
(SMS), Multimedia Messaging Service (MMS), voice, and peer-to-peer
282
networking (P2P) [14,26]. Powerful digital signals were required for
mobile phones to work, and also 2G had difficulty in processing video
steamings. Due to these reasons, the next-generation 3G has evolved
with high data transmission rate of maximum 64 (downlink) and 25
(uplink) Mbps [27]. It supported various advanced services, which
include high-speed Internet access, web browsing, GPS navigation, and
UHD video access [14]. 3rd Generation Partnership Project (3GPP)
was established to develop the protocols for mobile telecommunication
system which further lead to achieving global roaming [28].

The existing network technologies further evolved with the intro-
duction of an Internet Protocol (IP) based 4th generation network [30].
This technology provided an high-quality of services and security that
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Fig. 2. Timeline of communication networks [29].
I

can provide high speed from 100 Mbps to up to 1 Gbps. 4𝐺 has solved
the drawbacks of previous networks by reducing latency and increasing
the network reliability and data transmission rate. It further provided
services like Digital Video Broadcasting (DVB), High Definition TV
content, virtual navigation, and video chat. The key technologies that
4G facilitates include Multiple Input Multiple Output (MIMO) and
Orthogonal Frequency Division Multiplexing (OFDM) [31].

To satisfy the diversified requirements and to amplify service pro-
visioning. It is important to transform the current cellular networks
to 5th generation networks with cutting-edge technologies [30]. Since
the introduction of 5G in networking technology, it was believed to be
a key enabler by providing noteworthy services consisting mainly of
three frameworks- (i) massive Machine-Type Communications (mMTC)
which can support a large number of connected devices, i.e., up to
10 lakh devices per km2, (ii) Enhanced Mobile Broadband (eMBB)
hat operates at spectrum bands of large bandwidth above 6 GHz
o provide high data rates up to 1 Gbps [32] for smartphone users
nd (iii) Ultra-Reliable Low-Latency Communications (URLLC) that
ocuses on real-time critical-application such as telesurgery, industrial
utomation, and vehicular network providing reliability of 99.999%
nd latency in the order of milliseconds, i.e., <1 ms [17,33]. Rather, 5G
ainly worked by welcoming the intelligence to moderately enhance

oth Spectrum Efficiency (SE) and Energy-Efficiency (EE). Though this
etwork had provided mechanisms for different existing services and
ave enabled the full integration of complete intelligence, it is still a de-
anding work for network operators to resolve complex configuration

ssues and to fulfill the service requirements [30,34].
Still, before the implementation of 5G network, a new discussion

as already started about what services and applications of a new
eneration of mobile systems should provide.

.2. 6G concepts and services

After the four decades of networking and development of five

enerations of communication networks, the availability of wireless
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portable devices has increased exponentially. Now, this is the era where
vehicular connectivity and the Internet of Things (IoT) are growing at
an exponential rate. This has motivated the network provider to fulfill
the ever-growing demands of the connected world by introducing the
next wave of communication networks called 6G networks by the year
2030. However, the 5G network is operating at high frequency in mm
Wave band [35]. 6G could become more advance by using spectrum
technologies through terahertz (THz) and optical communication [25].

The electromagnetic spectrum for the THz band is least studied
due to the lack of THz transceivers. The problem with THz frequency
generation is that its value is quite low for photonics-based devices,
which are used to generate optical signals and are extremely high for
electronics-based devices used to generate microwave signals. But with
the emergence of new graphene-based technology, the generation of
THz frequency signal seems to be possible due to the electrical and
optical properties of graphene. One problem with the signal is that it
suffers from spreading loss due to the expansion of electromagnetic
waves. This loss increases quadratically with operating frequency and
the distance between two communication nodes. In THz signals, molec-
ular absorption loss is also caused due to conversion of partial energy
of THz signal to the internal kinetic energy of molecules in air [36].
f we take 𝐿𝑠 as spreading loss and denote 𝐿𝑎 as molecular absorption

then free-space path loss is calculated as Lp = 𝐿𝑠𝐿𝑎.
As pe the interpretation form the paper [37], it can be clearly seen

that THz band support only short-distance wireless communication
as the path loss exceeds 80 dB even when distance is as small as
1 m [37]. To overcome this limitation, various techniques such as ultra-
massive MIMO communication, distance-aware physical layer design,
reflectarrays, and intelligent surfaces were introduced [38].

Optical Wireless Communications (OWC) has been introduced as
a supportive technology for RF-based mobile communications, which
includes different frequency bands such as infrared, visible light, and
ultraviolet spectrum [25]. It is commonly referred to as Visible Light
Communication (VLC) technology. The visible light spectrum band has
the maximum efficiency and is also the most favorable spectrum of
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OWC due to its adoption of Light Emission Diode (LED). The most
important and useful characteristic of LED is its ability to quickly
change its light output intensity, which allows the data to be encoded
in the output light in various ways, VLC has taken complete benefit
of it to attain the two-fold purpose of lightening and high-speed data
communication [39]. The responsibility of VLC is to complement RF
communication with the help of piggybacking.

VLC is more developed as compared to THz communication because
of cost-effective experimental platforms. For shorter ranges of less than
a few meters, VLC is preferred over the classical radio communication
networks [40]. The advantages of VLC are listed as follows:

• Provides an ultra-high bandwidth in the order of THz and the
other advantage is that the spectrum is unlicensed and free.

• Consumes low-cost illumination sources as base centers, which
hardly require construction and maintenance costs, which was
mandatory for classical RF communication.

• The major advantage of VLC is that it uses visible light that
cannot pass through opaque objects, which means the data in
the network is confined to one closed room and guarantees the
transmission privacy and security, and reduces the significant
inter-cell interference.

• Finally, as VLC does not produce electromagnetic radiation of
its own and is shielded against external electromagnetic inter-
ference as well, which makes it appropriate for extraordinary
conditions sensitive to electromagnetic radiation like aircraft and
hospitals [41].

Due to its working, data rates in VLC rely heavily on lighting technol-
ogy [42]. Micro-LED is the best LED Technology, having a data rate of
at least 10 Gbps. It is expected that VLC data rate can reach to even
Tbps in the future [43]. There are few advanced utilities that cannot
be realized with the current communication network technology but
are expected to be implemented for the next-generation 6G networks
as follows.

• Holographic Communication: Services and Communication in 5D
consisting of all human senses information (Touch, Smell, Sight,
Taste, Hearing) are predicted to rise with new holographic com-
munication (HC). The applications with holographic communi-
cation are expected to provide high-precision, deterministic and
best-guaranteed services with 6G communication [15]. In HC,
we can watch cricket matches not only as video on TV but as
a holographic model, which enables the viewing angle of our
choice. It demands extremely high data rates, i.e., in terabits per
second [16].

• High-Precision Manufacturing : The main aim of manufacturing
industries is to automate the tasks with high-precision commu-
nication and automation technologies compared to the humans
generally do [16]. 6G offers extremely high reliability and mas-
sive ultra-low latency to the manufacturing tasks. Real-time in-
formation transmission is needed in industrial networks, which
converts into an extremely low delay jitters [44].

• Sustainable Development and Smart Environments: With the im-
portance of data security, the technologies such as IoT, cloud
computing, fog computing, and wireless communication plays a
vital role in improving the quality of life and achieving the global
sustainability. 6G network envisions 3D communications, which
significantly contribute to the development of smart cities, im-
prove healthcare services, and smart transportation. For example,
in autonomous driving vehicles, the communication parameters
such as reliability (above 99.999%) and latency (below 1 ms) are
essential to prevent accidents and help to take dynamic decisions
efficiently [16]. High data rates in terahertz are essential to
provide intercommunication between the cars that can help to
reduce accidental risk. On the whole, this can be achieved with a

6G communication network.
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• Enhanced Energy Efficiency : It is the most important service pro-
vided by the 6G network. Energy consumption plays a vital
role in sustainable development. 6G also have productive com-
munication strategies for enhancing energy efficiency [45]. The
vision is to accomplish without battery communication wherever
conceivable, focusing on communication efficiency on the request
of 1 pJ/b [46].

2.3. AI techniques

AI is a branch of computer science that empowers machines to
think and act like humans. It incorporates techniques like machine
learning, deep learning, optimization theory, game theory, and evolu-
tionary algorithms. When it comes to machine learning, it is based on
the principle that machine can learn by identifying patterns from the
given data (training data) and then make decisions accordingly with
minimal human intervention [47,48]. Machine learning techniques like
supervised learning, unsupervised learning, and reinforcement learning
are being used in solving current problems and increase its efficiency
in communication systems through 6G networks.

2.3.1. Supervised learning
In supervised learning, the machine learns from training data where

each input is mapped with a fixed target. It required a predefined
data set to learn and increase the performance of the system. It is
broadly categorized into regression and classification algorithms. The
regression algorithm predicts the real or continuous values based on
available input features, whereas the classification algorithm categor-
ically labels each input data, which mainly includes Support Vector
Machines (SVM), logistic regression, k-nearest neighbors (KNN) and
Decision Trees (DT) [49].

2.3.2. Unsupervised learning
In unsupervised learning, the training data is unlabeled, which

means the values that are not assigned to a class [47]. In this type
of learning, no prior information of the desired system is available.
For instance, the input noisy data symbols can be utilized to train the
model by clustering the points for generating the nonlinear decision
boundaries for mapping of the symbols according to the constellation
maps [50]. This method is typically used to classify the systems by
detecting useful clusters in the input data [49,51,52]. The learning
methods used for unsupervised learning are k-Means Clustering, Princi-
pal Component Analysis (PCA), and maximum likelihood learning [29].
It has the potential to perform a large range of operational tasks
associated with features extraction, features classification, distribution
estimation, and distribution-specific samples generation.

2.3.3. Reinforcement learning
It works on the goal to maximize the reward, i.e., it converges to the

best possible path by making the best-suited decisions on what actions
to take through interacting with the surrounding environment [53,54].
In other words, it takes feedback from the system and produces better
results. A model-free distributed reinforcement learning method for
power allocation is proposed [55], in which Channel State Information
(CSI) and QoS indicators are exploited to transmit power [56]. Classic
reinforcement learning algorithms include Q-learning, Markov Deci-
sion Process (MDP), actor–critic (AC), policy learning, and value-based
reinforcement learning.

2.4. Integration of AI for 6G networks

The advancements that 6G networks bring in the field of net-

working and communication will revolutionize the field by making it
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multi-layered, highly unpredictable, heterogeneous, and available at
large scale. The challenges that 6G networks have to face are seam-
less connectivity, 100% uptime, and assured Quality of Service (QoS)
requirements of the large number of devices which also include the
always increasing IoT devices [57], and the large amount of data
produced from such devices which need to be processed and analyzed.

All these challenges and issues in the growth of the 6G networks
can be solved with the integration of AI with 6G networks. AI has
extremely high learning, analysis, classifying, and recognizing ability
that will aid 6G networks to implement performance optimization,
knowledge discovery, sophisticated learning, structure organization,
and complicated decision making. Adding AI with 6G has many benefits
and some of them are mentioned below.

2.4.1. Role of AI in sensing
The IoT devices are projected to above 125 billion by the year 2030.

Interconnecting everything ranging from traffic lights, satellites, and
home appliances such as televisions, refrigerators, air conditioners, and
door locks generates an ample amount of data that the current network
infrastructure is not able to cope with it. AI techniques can be used in
such situations. It can classify the data as trivial or as important and
send only the important information. AI can also detect anomalies such
as intruders in case of a security system and send that information over
the network.

6G offers high-reliability and low-latency and meanwhile, sensors
need to be accurate in a real-time environment. It is difficult to manage
since 6G networks are dynamic in nature. Several techniques can be
incorporated as

• Local Intelligence: Currently, raw data is collected from a group of
sensors and transferred over a network to a high-computational
device where the processing of data is performed. This puts an
enormous load on the network and also increases its power con-
sumption. Thus, a system is designed whose goal is to minimize
the amount of data send over the network without any loss of
important data and also saves the power consumption. This can
be done with pre-processing at the sensor site with the help of
an Artificial Neural Network (ANN). However, for the maximum
benefit, the appropriate architecture, as well as the network
topology, must be selected.

• Deep Corporate Sensing (DCS): Spectrum sensing can be used to
protect the primary user from an interference. The primary user
has the main task of relaying all the information collected from
various secondary users to the next layer. Cooperative Spectrum
Sensing (CSS) can be used for this with more power consump-
tion. It is due to the sensing of a spectrum and reports the
findings to the centralized location. CSS uses a mathematical
model to combine the results of secondary users, whereas, in
DCS, a Convolutional Neural Network (CNN) can be used for the
same [58].

• Data Fusion from Multiple Heterogeneous Sources: Number of differ-
ent sources of data leads to data heterogeneity with data coming
in various different forms (text, numbers, and floating-point num-
bers) each with a different mode of representation. Fusing all the
data from different sources and getting meaningful information
might be a difficult task. Bayesian learning and advance neural
networks such as RBM, DBM, and CNN can be used to perform
the fusion [59,60].

2.4.2. Role of AI in data mining and analytics layer
This layer is tasked with summarizing the massive amount of data

collected by the various devices and sensors. PCA and Isometric Map-
ping (ISOMAP) algorithms can be used to reduce the dimensionality
of the data and convert it to a more compact dataset as a task of this
layer. It reduces the computational time by a substantial amount. The
said algorithms can also filter out the interference and the abnormal

data values from the raw data. Analytics is used to extract valuable i
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and important information from the raw data [61]. It discovers new
patterns in the data, which then can be used to select the most suitable
model for a given task. It can also help to select the suitable proto-
col, network architecture, resource allocation, routing protocol, and
discover the constant noise in signals.

2.4.3. Role of AI in control network layer
The AI-enabled control network layer in 6G means a layer which

consists of learning, optimization, and decision-making properties. By
gathering appropriate information and data from the preceding layers.
The control layer enables devices to learn, choose convenient power
control, routing management, and other vital actions to give assistance
to diversified services for the network communication systems [62].
The biggest advantage of integrating AI with these functions in 6G net-
works is that each agent would get issued with an intelligent learning
model to spontaneously gain knowledge to make decisions on their
own. By integrating AI with the control network layer, now 6G has the
ability to occupy end-to-end design of the network, resource manage-
ment, network slicing, and other characteristics by discovering different
requirements of the application. This characteristic has combined 6G
and AI to achieve self-configuration, self-organization, self-healing, and
self-optimization [62].

There are various examples where AI assist 6G networks to work ef-
ficiently with the least possible issues and challenges. Supervised deep
learning-based Recurrent Neural Network (RNN) approach has shown
the capability to capture the irregularity in RF components. Here, RNN
learns the irregularities in the power amplifier arrays and tries to
optimize the minimal transmitted power level at transmitters [63]. By
this, the task of achieving the optimal energy-efficient variables and
RF irregularities have been interpreted [64]. Conventional optimization
algorithms might not be applicable for 6G networks because of the
complexity in 6G networks, due to this optimization task of QoS, Q0E,
and connectivity is a challenge for these networks. But, when AI was
introduced, network parameters and architectures can be easily opti-
mized as AI provided auto-learning models for network optimization
by permitting operators for optimizing necessary parameters to adopt
better services for its components and devices.

Another deep learning-based approach has introduced Software-
defined networking (SDN) and Network Function Virtualization (NFV)
into the model of 6G networks for better enhancement, which has the
capability of quickly optimize network parameters to achieve intelli-
gent specifications like virtualization and softwarization [65]. For 6G
networks, decision making is also an important and challenging task
that makes the agents to make decisions wisely. The main objective
of decision making in 6G networking is to select the global actions
having the greatest benefits and optimal variables in mm Wave of THz
ransmission systems based on existing information they have, and also
dopting the tolerable and adaptable spectrum handling system for
arge multi-access scenarios. All these issues and tasks can be easily and
fficiently achieved by applying machine learning and deep learning
pproaches like game theory, optimization theory, and reinforcement
earning [62].

.4.4. Role of AI in application layer
The aim of this layer is to improve the service performance rate

f smart applications. 6G network with benefits of AI helps in the
evelopment of various mission-critical applications such as smart
ealthcare, automated industries, smart city, and ITS. Machine learn-
ng plays an important role in wireless network optimization, which
nables intelligent resource management mechanisms in a real-time
nvironment [66]. This allows the system to make intelligent and
ynamic decisions that improve system performance continuously. AI
n the 6G network is necessary for services like autonomous driving,
ndustrial control, and drone guidance, which require real-time and
ow latency operations [67]. Intelligent resource management can be
mproved by taking cost dimension metrics in terms of resource effi-
iency into account. Here, resource efficiency is calculated by taking
nergy, computational, storage, and spectrum utilization efficiencies

nto consideration.
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Table 2
Research questions.

Q.No Question Objective

1 What is 6G and why is it needed? Detailed Architecture of 6G explained
along with its potential benefits.

2 What is the role of AI in networking? Different AI techniques are explained
along with their use and advantage in
each layer of communication.

3 Discuss the solution taxonomy and
comparative analysis of AI techniques in
6G.

The solution taxonomy and comparative
analysis based on existing surveys on AI
Techniques in 6G is explored.

4 What the different application areas in
6G in which AI can be incorporated?

It is expected that the survey will
explore the various applications of 6G
and its shortcomings and possible AI
solutions for each.

5 Discuss various challenges in different
areas of 6G communication.

It aims to provide information on open
issues and research challenges in various
areas of 6G communication.

6 How this study is applicable in a
real-life scenarios?

It aims to provide information on the
usefulness of incorporating AI techniques
in 6G networks.
Table 3
Quality evaluation.

Q.No. Question Answer

1 Does the given paper have any reference
to AI techniques or 6G networks?

YES

2 The papers gave an overview of AI
techniques for 6G where the words ‘‘AI
methods’’ are not being used for 6G, are
such papers excluded?

NO

3 Do the abstract, title and the content of
the given paper describe ‘‘AI techniques
for 6G’’?

YES

4 Do the abstract, title, and content of the
given paper describe AI techniques for
6G or its other sub-areas?

NO

3. Review methods

This section presents the methodology considered to conduct this
survey.

3.1. Review plan

The proposed survey begins with identifying research questions
(RQ), related data sources, database search criteria, inclusion and
exclusion criteria, and quality evaluation. We first identified relevant
material for our survey, then the material is checked for quality, and
then only the information pertaining to the purposed survey is taken
and cited.

3.2. Research questions

The proposed survey identified the research questions from the
existing literature on AI Techniques for 6G networks, as mentioned in
Table 2.

3.3. Data sources

A broad overview of all topics was necessary for this comprehensive
survey. We only used standard peer-reviewed journal databases (for
example, ACM Digital Library, MDPI, Springer, IEEEXplore, Science
Direct, Elsevier) to search the existing literature and the electronic data
sources recommended in [68,69]. Other resources we utilized as tech-
nical books pertaining to the topic, white papers, patents, predicting
websites and also online blogs related to the existing surveys.
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3.4. Search criteria

In this criteria, search using keywords like ‘‘AI techniques for 6G’’,
(‘‘6G Architecture’’ AND ‘‘6G enabled networks’’) and others. It was a
case for several research papers in which we had to do a manual search
since the search string was not present either in the title or its abstract.

3.5. Criteria of inclusion and exclusion

AI can be used in a variety of application areas, so the search string
‘‘AI techniques in 6G’’ often gave irreverent to our survey. To ensure
we had an ample number of papers at hand, we also included papers
from 2020 early access. To broaden our research field, we also included
data from other resources such as white papers and surveys conducted
by renowned companies, survey articles, technical papers, and patents.

3.6. Quality evaluation

In this section, to ensure quality, evaluation has been conducted
on the papers working on the recommendations by the Database of
abstracts of reviews of effects (DARE) and Center for reviews and
dissemination (CDR) [68]. Mostly, quality and reputed publications
were considered to filter and select the research papers to perform a
systematic review of AI techniques for 6G communication. The various
quality hiding questions given in Table 3.

4. 6G architecture and its components

The massive growth in the usage of smart devices leads to more
number of connected devices and tremendous growth in IoT based
applications leads to enormous amount data generation, which leads
to an exponential increase in data traffic [70]. Due to this, the current
solutions may give low latency and reliability and are not suitable
for holographic communication, high-precision manufacturing, remote
surgery, enhanced energy efficiency, and instant data transmission.
A new future generation 6G technology is required [71] to imple-
ment the aforementioned applications smoothly. This would ensure the
bolster up of both existing and new applications. In order to under-
stand all applications and services of future networks, and to satisfy
the above-mentioned requirements, we have proposed the potential

communication architecture for the future.
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Fig. 3. 6G architecture with sub-networks for different application services [72].

4.1. Traditional 6G architecture

4.1.1. Sub-network architecture
Communication architectures till 4G were mainly focused on pro-

viding voice and data to the end-users over the Internet, whereas the 5G
system brings an evolved architecture to fulfill the challenging indus-
trial environment requirement by supporting time-sensitive networking
(TSN) bridge functionality [73]. Using the path of 5G network, 6G
network designers work to replace wired connectivity by providing
reliability in various connectivity scenarios ranging from static, isolated
devices, to the mobile group of robots and drones [74] which are
required to communicate with each other and also should be able
to communicate directly to the main network as shown in Fig. 3.
To achieve the low latency, high time and spatial domain reliability,
and high data rates it is required that each 6G sub-networks ensure
critical services without any interruptions even in the case when there
is poor or no connectivity to the wider network. Hence, it is necessary
that each sub-network collects and analyze its local data and upgrade
locally as well as dynamically [75]. The execution of 6G services can be
dynamically split between the devices, which are part of a sub-network.
One of the main advantages of sub-network based 6G architecture is the
security and resilience to the lowest level of devices in the sub-network.
Thus, this architecture will ensure native TSN over wider areas with
security [72].

4.1.2. Converged RAN cores
Another important component in 6G architecture is Radio Access

Network (RAN) convergence. In previous networks, especially in 5G,
the base station was divided into two major units: Centralized Unit
(CU) and Distributed Unit (DU). The CU consists of non-real-time layer
2 and layer 3 functions, while DU consists of lower layers of user and
control plane protocol stack having physical layer 1 and real-time layer
2 [72]. The CU is always executed as a virtualized application in the
edge cloud. The core functions used in 5G, turn out to be progressively
decentralized as the sum traffic through the core increments signifi-
cantly. With the increase in centralization of the higher-layer RAN core
functions and the circulation of the core functions, simplifications can
be achieved by joining some of the RAN and core functions into single
entities. Thus in the 6G era, it is important and expected to merge both
5G RAN and core functionalities to reduce to set of functional blocks,
which would result in core-less RAN, which is more precise in user
plane [72].
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4.1.3. All-photonic RANs
The classes of 6G communication networks, namely ultrahigh-speed

with low latency communications (uHSLLC), ubiquitous mobile ultra-
broadband (uMUB), and ultrahigh data density (uHDD) need ultra-
broadband, and ultra-low latency simultaneously, which cannot be
possible with the help of 5G Networks. Recent and on-going research
in this field have investigated that these ultra-fast signal processing,
dependent on devices which are optically integrated that might create
an evolution in future RANs.

This type of RAN relies on two important components, 1st is the
photonic engine which comes up with extremely high broadband signal
generation and processing, and 2nd is the All-Photonic AAU dependent
on a photo-diode coupled antenna array. The optical signals which are
found at the downlink of these AAUs are transferred to the integrated,
coherent receivers (ICRs) for detection and processing. The UTC-PD has
a powerful yield and its arrays are able to convert the optical signals
into electrical signals that are straightforwardly used to carry away the
RAN components. The array antenna elements are used to send RF
signals to graphene-based electro-absorption modulators (GP-EAMs),
which are used to strongly convert the RF signals to the useful optical
signals by using optical in-phase modulation. The useful optical signals
are then multiplexed and sent to the optical engines [76]. After all,
these components are combined to build an All-Photonic RANs. The
RF signals and optical arrays are then split into large and appropriate
bandwidth using the modulators and ICR arrays, which outputs into a
full spectrum RANs.

One of the most interesting characteristics of AAU is that, if its ar-
rays consist of components made up of RF and optical antennas, then it
can be utilized as an RF and optical wireless system simultaneously. All-
Photonic RANs can execute an entire spectral assembled framework for
detecting, imaging, and communication by bridging RF to the optics. It
has radar/lidar, which has the capacity to deal with many sensing tasks
and services that might help 6G in the field of transportation systems,
ITS. The convergence found in sensing and communication is more
likely to produce multiple functions and suggest that 6G Networks will
become the multitasking and multipurpose system to provide various
services that are necessary for AR, VR, and RF mapping of the radio
environment across different frequencies, which is the limitation of 5G
networks.

4.1.4. Disintegration and virtualization of the communication networking
devices

The inflexible and rigid networking devices have initiated to trans-
mit in the direction of disintegration in recent years. Present 5G net-
works were not able to solve the challenges and issues in networking,
such as challenges related to the design of disintegrated architectures
and providing privacy and security of virtualized network functions.
These disintegrated networks would help and work under the higher
control latency that might be introduced by centralization. It is believed
that 6G networks will solve these issues and challenges by providing
disaggregation to the utmost by virtualizing physical layer and medium
access control layer equipment [25]. All these functions operate if
proper hardware execution and less-expensive, affordable, and diverse
policies with minimal processing cost. Thus, 6G would help to lessen
the expense of networking components, which makes the deployment
of large networks economical.

4.1.5. 3D network architecture
5G and other generation networks have been structured and de-

ployed to provide connectivity in bi-dimensional space (for devices on
the ground). But, we expect that the next generation 6G heterogeneous
networks to provide 3D (three-dimensional) coverage, which includes
aerial & space networks (e.g., drones, satellites, and balloons) along
with terrestrial networks. This would ensure low-cost seamless service
with high reliability in events as well as in rural areas where fixed
infrastructure is not available [78].
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Fig. 4. Proposed AI-based 6G Architecture [24,77].
In spite of optimistic opportunities, few challenges are required to
e solved before implementing it. The altitude of low orbit satellites
s 700–1500 km, the ultra-low delays are difficult to achieve due to
arge distances between satellite and the earth. The large distance
lso needs a high power requirement for IoT devices to communicate
ith the satellite. For frequent data transmission from IoT devices,
ata aggregators can be deployed. The data aggregator can collect
ata from IoT devices in their coverage area using terrestrial commu-
ication technologies and then transmit all data together with space
ommunication [17]. As the aggregators will be less in number, they
an be managed and their batteries can be wirelessly recharged using
AVs (unmanned aerial vehicles) or replaced manually [79]. Thus

o achieve all goals using this architecture, it is required to enhance
ork on air to ground channel modeling, energy efficiency, topology
nd trajectory optimization, and resource management to get better
esults [25].

.2. AI-based 6G architecture: Proposed solution

In this section, we discussed the proposed AI-based 6G architec-
ure layer-wise starting from the bottom physical and MAC layer and
oving upwards to the data link, network, and finally, the application

ayer. For each of the layers, we discussed how AI can be incorporated
nd which functionalities of the layer it can enhance. Our proposed
rchitecture is given in Fig. 4.
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4.2.1. AI at physical and Medium Access Control (MAC) layer
This networking layer is considered as the foundation layer, where

important technical implementations have been functioned. The vari-
ous functions at this layer which, when integrated with AI, will perform
their tasks in the better way are discussed below:

• Allocating Channel Estimation: It is censorious for MIMO operations
to have proper and complete channel state information (CSI)
available at the base station. Pilot signal allocation for deriv-
ing the complete CSI has become a difficult task from control
overhead perspective in massive MIMO. To reduce this overhead,
various approaches and standards reduce the number of pilot
signals to be significantly smaller than the number of antenna
ports. To solve this channel estimation issue, AI techniques have
been integrated with the physical layer. For instance, Neumann
et al. [80] presented an innovative technique to learn the low
overhead and low complexity channel estimator. This was in-
fluenced by the structure of the MMSE estimator. There are no
model parameters that have to be fine-tuned for different channel
models. CNNs were used as the learning model and the learned
estimator is optimized for some idealized channels [80].

• Processing of Received Data: MIMO symbol detection plays an
important role in the parallel signal processing chain of com-
munication receivers. MIMO has become the mainstream field in
wireless communications because of its help in increasing spectral
efficiency and link reliability, efficient MIMO symbol detection
algorithms also play a critical part in receiver design, and various
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research is conducted in this field [81,82]. For instance, let us
assume that receiver CSI is available, we need an efficient and
optimal strategy for placing the maximum likelihood detector.
Nonetheless, the performance of this maximum likelihood detec-
tor is not encouraging as the performance is highly dependent
on model inaccuracies and CSI estimation errors. To overcome
this problem, AI techniques can give better performance with-
out depending on detailed channel models. Hengtao et al. [83]
developed a novel model-driven DL Bayes-optimal signal recov-
ery algorithm for detection and provides good performance. It
shows that deep learning can improve the iterative algorithm
by optimizing some parameters. Various other works show that
through end-to-end training of neural networks, AI models can
outplay the traditional MIMO detection approaches (Maximum
Likelihood) [84,85].

• Dynamic Spectrum Sensing and Access: Proper and complete access
to the spectrum is going to be a censorious task for 6G networks.
Spectrum sensing is an important task to improve spectrum usage
efficiency and address spectrum scarcity problems. Current state-
of-the-art techniques design the spectrum access protocols for
specific models so that the difficulty in accessing the spectrum can
be reduced. Nonetheless, spectrum sensing is the most challenging
as a quite large number of devices try to access the spectrum
at the same time, and also due to the inharmonious nature of
future cellular networks, the solutions which are dependent on
the model cannot be implemented in real-time conditions. So,
the learning-based random access and dynamic spectrum access
strategies can be used to solve the problem of spectrum access to
these large numbers of devices [86]. These AI-based approaches
help in identifying the spectrum properties and also helps in
building applicable training models to sense the working of the
spectrum. Deep Reinforcement learning-based strategy is pro-
vided in [87], showing that devices learn near-optimal spectrum
access strategies without prior knowledge of the underlying net-
work statistics. AI-enabled learning models detect the spectrum
working status by categorizing each feature vector into either of
the two classes, namely, the spectrum idle class and spectrum
buy class, and adaptively update the learning models bases on
dynamic environments.

• Channel Decryption: Channel decryption is also an important part
of physical layer transmission. To make it efficient, AI techniques
are used either as an integrated or stand-alone manner. Deep
learning-based neural networks are much popular for channel
decryption. They can be utilized in two diverse ways as — DNNs
in combination with traditional approaches for obtaining perfor-
mance gains and the other way is the stand-alone strategy to
perform close to Maximal Aposteriori Probability (MAP) decoding
for short block length communication [88]. Gruber et al. [89]
achieved to decode polar codes along with random codes with
MAP performance but has many limitations. They got a sur-
prising result with neural networks. It is of great importance
as state-of-the-art polar decoding suffers from high decrypting
complexity, proper parallelization, and at last, poor latency. Thus,
deep learning-based decrypting is a great substitute as it neglects
sequential algorithms [90].

.2.2. AI at data link layer
This layer aims to process and analyze the large amount of data

oming from the physical layer of 6G networks. This collected data
an be heterogeneous and can have multi-dimensions and non-linear.
o, it makes the processing task complex and put other challenges
oo. It is quite expensive to store such large data in higher and dense
ayers of networks. So, the important task of this layer is to lessen the
imensionality of collected data, filter the needed and valuable data
rom available unfiltered raw data. AI techniques such as PCA and

SOMAP are the frequently used techniques that allow 6G to do this
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difficult task of converting raw data to proper and usable data [91]. The
other advantages of these approaches over the conventional ones are
the decrease in computing time, storage space, and model complexity.
Data analytics is also responsible for analyzing the data collected to find
the needed information and knowledge. The main task of the analytic
sub-layer of the data link layer is to provide an appropriate explanation
for resource management, protocol adaptation, architecture slicing, and
signal processing.

4.2.3. AI at network layer
The unceasing increase in data traffic implies the need for smart

agents at the network layer to smartly plan, optimize, and choose the
most suitable action after utilizing appropriate knowledge from the
previous layers. The combination of AI with a 6G network can help
networks to achieve self-configuration, self-organization, self-healing,
self-optimization, self-Sectorization, and fault recovery. Thus, it will
lead to increase feasibility, reduce recovery time, and to provide im-
proved service quality to the end consumer. The above-mentioned
aspects of using AI at the network layer in 6G architecture is discussed
below:

• AI based Energy Optimization: Instead of the traditional compu-
tation method, network parameters and architectures can be
optimized with AI techniques. AI in 6G architecture can help
to achieve intelligent softwarization, virtualization, cloudization,
and slicing. For instance, different virtual network functions can
be started, modified, or terminated in different virtual machines
on-demand using a network management [24]. Data centers host
the servers and virtual network functions and their services can
be migrated from one server to another. By taking AI managed
data centers into account, we can learn the patterns for the usage
of services (which includes CPU, storage, and network usage) of
the clients. This collected data can help to optimize the on-off
operation of the servers and to close some servers to save power
while ensuring uninterrupted services for the clients [92].

• Fault Recovery : Every system has to undergo a performance report
and this data reflects the behavior of the system by providing
service accessibility, service availability, service quality, service
retain-ability, and service mobility. The abnormality in the system
is required to be detected and resolved. Here, experts from the
particular domain are required for problem detection, diagnosis,
and problem recovery when we try to solve the problem using
manual troubleshooting [92]. But, thousands of faults can be
found at the same interval of time is common in current networks,
human experts can manual troubleshoot it is non-trivial. An AI-
driven fault recovery system can analyze pre-processed data using
a deep network analyzer and can take remedial action on its own
to solve the anomaly [93]. Thus, AI techniques can help to make
system self-healing in 6G architecture.

• AI for Scheduling : Scheduling plays a vital role in the operation of
cellular networks. With the increase in innovation and usage of
IoT devices, cellular networks will not only have to be employed
for human users, but they will also have to consider the thousands
of low-power IoT devices. But, when coming to sensors, they
are needed to sense for a limited amount of time and relay the
measurements and then stopped. Thus, AI technology can be used
to analyze the traffic from the sensors and decide the number
of radio resources to allocate. A deep reinforcement learning
algorithm can be used to learn and make a better decision over
time to provide better results over traditional methods [94].

• Self-Tuning Sectorization: MIMO system is one of the foundations
for the current generation of cellular networks [95]. It is a tech-
nique that coherently combines signals generated by multiple
antennas to enable simultaneous beamforming, hence achieves
a tremendous throughput gain and reduces interference. Actu-
ally, sectorization can be considered as the process of generat-
ing an expansive beam where a separate wide beam is used to
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Fig. 5. A solution taxonomy for the selected applications of AI.

cover a separate sector. This sector-specific method of generating
accurate beam patterns is necessary to maximize the network
coverage. At the moment, broadcast beam parameters are set
manually by the engineers and remain unchanged for years till
major complain or fault is detected. Thus, this method cannot
update itself on the basis of the user’s position and movement.
A deep reinforcement learning algorithm can be introduced to
optimize broadcast beams for cellular networks dynamically. This
method can be used to autonomously update beam parameters by
studying user’s distribution in the area, thus maximizing network
coverage [96].

.2.4. AI at application layer
Integrating 6G with AI can provide a new smart application or

ncorporate new services to an existing application to make it better.
ne such example is the usage of AI techniques in mobile edge com-
uting can lead to the efficient computing power of edge devices so
hat every data is not needed to send to remote servers. This would till
ower latency, which is necessary for real-time applications. Another
uch application is dynamic spectrum allocation where various AI
lgorithms like KNN, LSVM, RNN can help to allocate resources so that
he overall network can work more efficiently. Another application is
n intelligent transportation system where various AI techniques could
ake communication and networking in these systems better. There are
any other applications where the introduction of AI with 6G networks

ould make existing systems more robust. The above mentioned three
pplications are mentioned in detail in the below solution taxonomy.

. Solution taxonomy: AI techniques for 6G networks

This section discusses the taxonomy of AI for 6G application areas.
ig. 5 shows the proposed work considers the three major application
reas of 6G where the AI can play an important role. Such application
reas are dynamic spectrum allocation, mobile edge computing, and
TS. The detailed description of these applications is as follows.

.1. Dynamic spectrum allocation

Due to the vast number of devices over the 6G, the spectrum must be
llocated intelligently for the best optimum utilization. High-frequency
ands can be allocated to the high-volume data, whereas for short
essages low-frequency bands can be used. Another tactic to be used

s dynamic spectrum allocation, where the idle space of the primary
sers (users who are currently registered on the network) can be used
y the secondary users (users who are not registered but want to access
he network). Primary users are given more priority over the secondary
sers and the signal of secondary users does not interfere with the
rimary user signals. Various AI techniques that can be incorporated
or the dynamic Spectrum allocation are shown in Fig. 6. The detailed
xplanation of such techniques are as follows.

• K Nearest Neighbor (KNN): New data value for instance a is
assigned to a class by taking the nearest k neighbors after calcu-
lating the distance using a method such as finding the Euclidean
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Fig. 6. AI techniques for dynamic spectrum allocation in 6G.

distance. The class selected is the class which has the majority in
the k neighbors. The value of k is mostly an odd number to get
a clear majority every time. An example of KNN being used to
allocate the spectrum in such a way that there is minimum colli-
sion/interference between different signals of low power and low
range sources. In this method, the signal sources are classified into
groups within which there would be a minimum signal collision
between the sources. The classes used to group the same is based
on the geographic location of the source and the interference
distance of each cell [98].

• Support Vector Machine: It is used for binary classification with
the goal to maximize the distance between samples of the dif-
ferent classes. Since secondary users uses the spectrum when the
primary user is idle, we can use SVM to predict the primary user’s
traffic and then select the primary user with maximum future
idle time and allocate it to the secondary user. It was found that
the LSVM (linear support vector machine) is outperforming other
techniques such as ANN, RNN, and GSVM (Gaussian Support
Vector Machine) and could detect the traffic most efficiently [99].

• Deep Reinforcement Learning with Reservoir Computing : Reservoir
computing is the specialized framework of RNN that works like a
black-box and converts the input signals into higher dimensional
spaces. Deep reinforcement learning is used to scout for the avail-
able spectrum bandwidth and the reservoir computing is used to
generate the Q-Value by feeding in the spectrum information to
the deep Q-network. After proper training of the network, each
secondary user is able to make decisions with good accuracy
regarding the spectrum access pivoting on minimum broadcasting
information from the primary users. This combination of DQN +
RC performs better than those methods relying on the spectrum
statistics only [100].

• Recurrent Neural Networks: Maksymyuk et al. proposed a model
based on RNN to dynamically manage the spectrum by taking into
account the efficiency and the interference among the cells and
also taking short and long traffic heuristics into consideration.
This model achieved an accuracy of 90% and also was able to
increase the network capabilities two folds [101].

The relative comparison of various AI techniques used in dynamic
spectrum allocation is mentioned in Table 4.

5.2. Mobile edge computing

Mobile Edge Computing (MEC) is always a salient enabling technol-
ogy for 6G architecture, which pushes computations to be performed
as close to the devices as possible. Edge computing devices possessing
both communication and computational capabilities are required to
be kept near IoT devices from where data is generated. This will
reduce the amount of data sent to the central computing servers which
will eventually lead to lower latency, thus improving the performance
of real time applications. This model will also provide high security
as it would provide transient services through edge devices during
network failure. In complex networks like MEC, AI techniques could
provide better results rather than the use of traditional algorithms. AI
techniques could learn and analyze the collected data and support in
the task of prediction, optimization, and decision making in MEC [102].
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Fig. 7. AI techniques for mobile edge computing in 6G [97].
Table 4
A relative comparison of AI techniques used in dynamic spectrum allocation.

Author Year Objective AI technique used Merits Demerits

Zhao et al. [98] 2018 proposed algorithm
for interference-free
spectrum allocation
in small cell towers

KNN(K nearest
neighbor)

Performed better
(85%–87%) as
compared to
traditional
mechanism(70%–
75%) and
VCG(50%–55%)

Used only
geographical
location of small
cells and its radius
as input features

Agarwal et al. [99] 2016 Explored various
algorithms to
predict primary user
activities and idle
time

ANN (RNN and
multilayer
perceptron) and
SVM( Linear Kernel
and Gaussian
Kernel)

LSVM performs the
best

Only works for a
single primary
channel

Chang et al. [100] 2019 Proposed algorithm
for SU make its own
decision based on
past experience and
current condition of
the spectrum

Deep Reinforcement
learning

Performs better than
Q learning

Performs well only
when number of
channels is large

Maksymyuk et al. [101] 2019 purposed a model
for spectrum
allotment based on
long and short term
traffic information

RNN accuracy of 90% Better accuracy can
be achieved if a
large dataset is used
These AI algorithms can play an important role to provide high QoE
in smart dynamic applications for edge scenarios. Some of the edge-
based application where machine and deep learning methods plays an
important role as shown in Fig. 7:

5.2.1. Real-time video analytics
Real-time analysis of video streaming is a significant role in a

broad range of edge computing applications such as traffic safety and
planning, augmented reality, and surveillance [103]. Real-time video
devices are streaming data at 30 fps which is far better than previous
systems which were processed at the rate of 3 fps [104]. AI integrated
with Edge Computing and Internet of Things(IoT) cameras provides
solutions for various problems and might comes up with improved
291
services in real-time analytics [105]. Various research works have been
done in this field in recent years.

One such work is done by Ananthanarayanan et al. [103], in which
they developed an application named Rocket that develops high qual-
ity and high accuracy outputs with less expensive and quantity of
resources. Their application collects and stores the videos captured
from various cameras and decrypt it using vision processing modules.
Modules have pre-built interfaces and application-level optimizations
for processing and analyses of the collected data. Their application has
a resource manager for implementing the data processing tasks on the
different resource-constrained edge devices and cloud servers [103].
In [106], they presented the previous application Rocket in a variety of
applications like a connected kitchen to pre-make certain most ordered
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menu dishes to reduce customer waiting time, traffic dashboard for
raising an alarm in abnormal traffic volumes, and in the retail business
for product ordering and placement.

In recent years, it is found that there is difficulty in finding the
apropos video from a large dataset, as it is time-consuming and expen-
sive. So, Hsieh et al. [107] developed a less-expensive low-latent video
querying approach named as Focus. They implemented this approach
using a GT-CNN, which is less expensive CNN architecture with small
number of convolutional layers for identifying objects and indexing the
classes of objects of real-time video streaming. Xu et al. [108] used SVM
with Histogram Oriented Gradient (HOG) feature extraction algorithm
at the edge devices to develop a real-time human surveillance system.
They tested their model on the COCO image dataset having about 20k
images and their model was successfully identifying the human and
non-human objects in real-time. A similar kind of approach was also
implemented in [109].

5.2.2. Automatic speech recognition
The use of this Automatic Speech Recognition (ASR) field in day-

to-day life has been increased nowadays. Offline speech recognition
system that supports digital voice assistant without using the cloud is
also trending. Keyword spotting is one of the most used methods for
offline speech recognition [110]. There are 3 important components of
ASR:

• Data Collection: It collects the most suitable data available from
the large quantity of voice data for speech recognition.

• Feature Extraction Technique: It extracts important and valuable
features from the collected dataset.

• Neural Network Model for Classification: It uses extracted voice
features as input to the model and obtains a possibility of each
keyword as output.

arious researches have been incorporated in this field also in a few
ears back. For example, Lin et al. [111] designed a highly efficient
eep Neural Network (DNN) model which is known as EdgeSpeech-
ets to place deep learning models on communication devices for
oice recognition. This model proved to be more efficient in terms
f performance (accuracy of approximately 97%) and computational
omplexity than state-of-the-art techniques with a memory footprint of
bout 1 MB using Google Speech Commands dataset. One of the biggest
dvantages of this model is that it uses 36 times less mathematical
perations resulting in 10 times lower prediction latency. The size of
he network is also 7.8 times smaller than other models [111]. Another
fficient model developed by Krishna et al. [112] was the first time
hat a deep learning model is demonstrated with high accuracy using
nly Electroencephalography (EEG) features for character or word level
rediction. They created an ASR model using Gated Recurrent Unit
GRU) networks. They concluded that distillation training can improve
he accuracy of an ASR system fused with EEG features.

.2.3. Autonomous driving vehicles
Moving towards autonomous transportation, it is expected that it

ill offer safe traveling and improved traffic management. The number
f sensors required to build autonomous driving vehicles is high and is
lso necessary that the data generated from them must be processed
n real-time to make a quick decisions with high reliability (above
9.999%) and low latency (below 1 ms). It is difficult to transfer
uge amount of data to remote servers and get feedback in real-time.
ence, edge computing becomes a necessary component in autonomous
riving systems.

For autonomous vehicles, Navarro et al. [113] proposed a model
or pedestrian detection on road. A LIDAR sensor was used to extract
eatures like the movement of the object, stereoscopic information, and
he appearance of a pedestrian which finally generated a n-dimensional
ector. This feature vector was taken as input to run the machine

earning model for autonomous vehicles and get 96.8% accuracy in
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identifying pedestrians. Another model based on deep learning and
Retinex image enhancement was used to identify pedestrians in a short
amount of time in real-time environment. YOLOv3 [114] deep learning
algorithm were implemented on the COCOMO dataset and gave an
average recognition rate of 94% for pedestrian detection. You Only
Look Once (YOLO) algorithm will detect all the pedestrians in one go
and hence it will be faster.

5.2.4. Healthcare
AI is being used by doctors and healthcare researchers to aide them

in proving better patient care while keeping the accuracy high and cost
low. It is being used in almost all aspects of healthcare such as reading
medical images (e.g MRI, X-ray, etc.) and diagnosing the condition,
using Natural language processing for speech-to-text and automatic
documentation and development of more precision drugs which are
tailor-made according to the patient’s anatomy and not using the same
standard drug for all.

A three-later hierarchical architecture was proposed by Li et al.
[115] which is dubbed as EdgeCare. The bottom layer is the user
layer tasked with data collection. With the advent of user wearable
IoT devices capable of measuring user vitals at real-time. The real-time
data along with the Electronic Medical report (EMR) of the patient are
used as the raw data which are then transmitted to edge servers for
analysis [116]. The next layer is the edge layer in which the entire
network is divided into several constituent regions each with its own
Local Authority. It is the responsibility of the local authority for the
storage of uploaded data and to whom the data should be provided. In
this layer, various tasks are performed such as user account manage-
ment (creation and blocking it for suspicious behavior), storage facility,
data prepossessing and analysis, and finally access control (to whom the
data could be shared). The topmost layer is the core layer whose task
is to ensure data and privacy security over the entire network. It also
coordinates the working of the various local authority in a different
regions of the networks. The presence of core layer refines the working
of the entire system and ensures better coordination [117].

Queralta et al. [118] developed an edge-AI system for fall detection
working over the LoRa network. The system reduced the processing at
the sensor nodes and transferred the task to the edge nodes. Human
vitals (e.g. EEG, EMG, etc.) and environmental readings (e.g humidity,
temperature) are sent via Bluetooth to an edge node [119]. Primary
processing is done at the edge nodes using AI and they can detect the
fall with high accuracy. The results from these levels are send to the
LoRa based access point where some advanced algorithms are applied
and finally they are forwarded to the cloud servers for the final data
processing. LSTM recurrent network was used and it achieved peak
accuracy of 90.10%.

5.2.5. Smart home and smart cities
The emergence of IoT devices will bring intelligent systems such

as intelligent lightning system, smart doorbell, smart appliances, and
smart security system. To achieve this, several wireless IoT sensors
and controllers are required. To ensure safety so that sensitive data
is not used in wrong manner, it is necessary that data processing of
smart home systems rely on edge computing. The combination of AI
techniques with edge devices would help to make the use of intelligent
systems more powerfully.

To ensure safety, a fall detection system was developed which would
generate alert messages and notify users when an object falls. Here,
Raspberry pi2 device is used as an edge computing device to process
and reduce the size of images for real-time surveillance [120]. ML
models work for extracting features on the cloud to detect the fall of
the object and notify users whenever required [121]. The above-stated
model can be improved by using deep learning model to consider only
the foreground image for fall detection. It will eventually reduce traffic
and save communication costs. Another deep learning model for load
management in smart cities dubbed as DRUMS was proposed in which
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Fig. 8. AI techniques for management of ITS in 6G [19].
the analysis on the consumption data from smart homes was done using
CNN. The main aim was to reduce the gap in the load supply and
demand [122].

The edge computing-based model for the smart city would offer
location-awareness and latency-sensitive monitoring and would help in
reducing cost and increase efficiency. The hierarchical edge computing
architecture was designed by Tang et al. [123] to analyze big data
generated from millions of sensors attached across a smart city [124,
125]. The SVM algorithm was used to detect threatening events on
the pipeline. The large numbers of sensors were used to collect data
and this data was used by edge computing device to detect and avoid
life-threatening events. For example, in case of gas leakage, the device
would detect the threats and stop supply of gas to that particular smart
home and thus reducing the risk. For this, SVM was used by the authors.
Here, the data was sent to the remote servers only to compute complex
calculations which would help to analyze and give better results if the
same event repeats in the future. In this scenario, use of other deep
learning models like LSTM neural network model could give better
results with more efficiency. Another SVM approach was proposed by
Jindal et al. [126] for the load management of the load imposed by
hybrid vehicles and smart homes. Here, cloud technology was utilized
for the usage analysis of the grid, and suitable regulations of demands
were performed.

5.2.6. User data privacy and security
The global boom in user data is felicitated by social networking

sites, mobile applications which are highly customized for each user
and by IoT devices which are used in many sectors such as health
care and home Automation. Such massive amounts of private data if
leaked can be misused. To ensure that a user’s private data is not
exploited and sold to third-party data firms many security protocols
can be implements and improved using AI. Osia et al. [127] developed
the combined architecture consisting of cloud computing and edge

computing in sync to ensure data security. Once the data is collected,
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it is then sent to the edge servers for processing the user’s private and
confidential information. Once this is done, the remaining non-trivial
information is transferred to the cloud servers [127].

Another method using computer vision was designed in which user
has the complete knowledge about cameras recording them, how the
collected data is used. IoT Resource Registry (IRR) is a platform created
for the IoT device owner, which helps them register the device on the
platform, define the privacy policy for the same and to clarify for what
reason the data collected will be used. A mobile application called IoT
Assistant tells the user about the devices registered in the IRR and it
gives the user an alternative to opt-out of data collection service. The
user’s privacy preferences are stored in the IoT devices and can be
accessed again for future reference. It also includes a Face Trainer sys-
tem which is based on deep neural network OpenFace which captures
the features of the user’s face. The network is trained using user-
photos provided to IOT assistant mobile application. To ensure that
good accuracy, users must upload a minimum of 20 photographs [128].
Privacy Mediator is a tool by which if a user wants to opt-out of the
data collection service before the video gets transferred to the cloud
servers, the faces of such users will be covered by a black rectangle
box [129].

The above methods can be used from the user side to ensure privacy.
The network must also detect malicious attacks and anomalous data.
Pajouh et al. [130] proposed using the K-NN and naive Bayes algo-
rithms to detect anomalous behavior. They trained the model on the
NSL-KDD dataset and were able to verify that an edge device can detect
such behaviors [130]. Hussain et al. [131] developed a deep CNN
based architecture achieving peak accuracy of 96%. A central anomaly
detection system can get overwhelmed by the amount of data in the
network and might not give maximum performance. To circumvent the
problem, the network was divided into 100 non-overlapping regions
each equipped with its own edge server dedicated to anomaly detection
only. The relative comparison of various AI techniques to make mobile
edge-based application is mentioned in Table 5.
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Table 5
Comparison of various AI techniques used in mobile edge computing.

Application Author Year Objective AI technique used Merit Demerit

Real-time video

Ananthanarayanan et al. [103] 2017 Proposed a real-time
video analytics
system for traffic
planning and safety

DNN Provided high
accuracy outputs
with low costs using
the software named
‘‘Rocket’’

Less use-cases
provided by the
system

Hsieh et al. [107] 2018 Proposed a system
to process the
queries on large
video datasets
efficiently

Ground-Truth CNN
(GT-CNN) (e.g.
YOLO)

Provided both
low-cost and
low-latency
querying with
cheaper CNN than
other approaches
like NoScope

Only applicable for
video dataset and
not the audio,
geo-informatics and
bio-informatics

Xu et al. [108] 2018 Developed a smart
surveillance
architecture to
facilitate the on-site,
real-time video
processing

HOG + SVM for
human detection
and KCF algorithm
for object tracking

Experimental results
outperformed other
approaches towards
a real-time
surveillance solution
of edge networks

Their detection
algorithms were
expensive and
system was not as
efficient as needed
for real time video
surveillance

Nikouei et al. [110] 2018 Explored the
workability of
current-of-the-art
and developed a
novel model for
smart surveillance
system

Light-Weight CNN Developed an
efficient system for
human detection
having average FPS
of 1.79 and with
less memory

Still some
challenges were not
fulfilled

Ananthanarayanan et al. [106] 2019 Proposed an
improvised version
of real-time video
analytics system
developed in
previous version
[103]

CNN More advanced
approach and more
use-cases than the
previous one

Approach utilized
needed more
efficiency for
general use.

ASR

Lin et al. [111] 2018 Proposed
EdgeSpeechNets
model based on
DNN for voice
recognition

DNN Used 36 times less
mathematical
operation which
resulted into 10
times lower
prediction latency

This model strategy
is required to be
explored on
different datasets of
speech recognition
to validate the
results

Krishna et al. [112] 2019 Proposed a novel
model for efficient
speech recognition

Deep Learning
based distillation
training using EEG
features

First time deep
learning was used
with EEG features

Approach needs to
be improved for
general use

Autonomous
driving

Navarro et al. [113] 2016 Proposed method
for autonomous
vehicles to detect
pedestrians

KNN, Naive Bayes
and SVM

Achieved 96.2%
accuracy

Algorithm is
computationally
heavy

Qu et al. [114] 2018 Proposed system for
pedestrian detection
after enhancing low
quality images

YOLOv3 Algorithm performs
algorithms without
enhanced images

Good detection rate
only when the
number of single
pedestrian images
less than 25

Healthcare

Li et al. [115] 2019 Presented a efficient
system for mobile
healthcare systems

Hierarchical model
for system named
EdgeCare

Elaborately designed
the system with
secured and efficient
data management

Some challenges
were compromised

Queralta et al. [118] 2019 Proposed a system
architecture that
combined AI with
Edge computing and
health monitoring

LSTM-RNN Achieved better
accuracy in
implementing this
combined system
than traditional
approaches

Not capable of high
extensive
performance and
improvements were
needed
(continued on next page)
5.3. Intelligent transportation system

ITS is an innovative application that provides the user with all
information on the prevalent conditions in multiple modes of transport
and helps them stay safe and well informed. It also aids in traffic
management. The bifurcation of ITS is based on communication and
294
networking aspects of 6G as shown in Fig. 8. In this section, we discuss
the applicability of AI in the transport networks.

5.3.1. Communication in intelligent transportation
Communication in ITS has been a trending research topic since the

last few years. Communication among the vehicles and also among
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Table 5 (continued).
Application Author Year Objective AI technique used Merit Demerit

Smart home &
cities

Hsu et al. [120] 2017 Fall detection
system for smart
home

Deep learning Reduced traffic and
save communication
cost

This model is still
under development
and has not been
implemented

Tang et al. [123] 2017 Proposed algorithm
for smart pipeline
monitoring in smart
city

SVM Provide high
computing
performance, low
latency and
intelligence in smart
city

Use of LSTM could
give better results
with more efficiency

Data privacy
and security

Pajouh et al. [130] 2016 Detect Malicious
attacks and behavior

KNN and naive
Bayes

Performed better as
compared to
traditional methods

Detects attacks only
in the backbone
layer only

Osia et al. [127] 2017 Proposed algorithm
to split large neural
networks

Deep learning Increased user
privacy

Hyper-parameters
can be optimized

Das et al. [129] 2017 Created an
application which
gave the user
complete control
over the data being
collected via
cameras

Computer Vision
and Deep Neural
Network

Gave an option to
users to opt out of
the data collecting
process

Application requires
the user to upload
20 pictures of
themselves for
better accuracy

Hussain et al. [131] 2019 Proposed a system
to prevent the
network being
overwhelmed by
massive amounts of
data

CNN Achieved peak
accuracy of 96%

Each one of the 100
divided regions
needs to be
equipped with its
own edge server
which increases the
overhead costs
other roadside infrastructure is vital for the introduction of intelligence
in transportation systems. Bluetooth, WiFi, Zigbee, and other com-
munication protocols were used to establish communication between
the vehicles. But, these techniques came with a certain limitations
such as lack of sufficient flexibility, high power consumption, collision
avoidance issues, and so on. These limitations were barriers to the ad-
vancement of transportation systems. So, in recent years, much research
is incorporated on how to integrate AI in this field. In this section,
we have discussed AI integration in three sub-parts of communication
based transportation as shown below:

• AI for Multi-radio Access (MRA) and Channel Division: Nowa-
days, rapid access to multiple radios and precise channel di-
vision has become a necessary requirement for communication
networks. Various technologies like Orthogonal Frequency Di-
vision Multiplexing (OFDM), Time Division Duplex (TDD), and

Non-orthogonal Multiple Access (NOMA) are extensively used
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for channel estimation for multi-radio access in communication
networking. But, these traditional technologies were not able
to meet the high standard requirements of the transportation
systems. Thus, it is believed that by integrating AI with this
communication-based transport system will solve these limita-
tions. So, various noteworthy contributions have been made by
various researchers in this field. Different AI techniques like SVM,
MLP, Bayesian Learning, KNN, DNN, LSTM, and Q-Learning are
incorporated in this transportation system for the last 10 years.
Xie et al. [132] developed the MRA network switching problem as
an Markov Decision Process(MDP) and solved the MDP problem
using value iteration algorithm. They took into account a scenario
where Multi-mode Mobile Terminals (MMT) in a heterogeneous
network environment can connect to multiple networks at the
same time. By implementing MDP, they achieved higher aver-
age utility function value and the throughput requirement for

networks with higher probability which is far better than the
Fig. 9. Illustration of dynamic beamforming in vehicular network [19].
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previous state-of-the-art approach named Greedy Method. The
average switching time for MDP is 2.42 which is far better than
the switching time of 11.46 for greedy method.
Another approach of using Sparse Code Multiple Access (SCMA)
which was integrated with deep learning was used by Kim et al.
[133]. They proposed a D-SCMA approach in which an autoen-
coder based structure was implemented in the generation of
codewords and the determination of decoding strategy. DNN
helped in mapping data to resource and decoding the received
signal. There are many advantages of using this approach such as
decoding can be done here in a single shot, which could only be
possible by executing several iterations using cyclic belief propa-
gation in traditional SCMA, also D-SCMA provides lower bit error
rate and lower computational complexity than the traditional
SCMA.

• AI for Radio Configuration: In the past years, when the tradi-
tional communication system was introduced, radio configuration
was taken into consideration as decoding blocks for space–time
codes, channel equalization, and also for signal modulation. These
blocks were shredded with separated communication functions,
and the configuration of radio was done in a progressive ap-
proach as a functional chain [134]. The Channel resource allo-
cation algorithm must be developed by taking into consideration
the different modulation signals. There are certain limitations
of this approach as it is time-consuming and it is not appli-
cable for highly complex dynamic transportation systems. It is
a challenge for 6G networks to overcome these limitations. By
taking AI into effect, it might solve these problems. To address
these challenges, researchers proposed various AI-based adap-
tive configuration algorithms to optimize these blocks for radio
configuration.
Ye et al. [135] demonstrated an offline DBN based model for
channel estimation and signal detection in an OFDM system. The
results showed that deep learning has advantages when wireless
channels are complicated by serious distortion and interference.
So, it was proved that DNNs are capable of remembering and
analyzing the complex and challenging properties of the wireless
channels [135,136]. Mendis et al. [137] introduced an Automated
Modulation Classification (AMC) for cognitive radio. Their pro-
posed architecture included a Spectral Correlation Function (SCF)
based on the feature characterization mechanism, which was used
to generate SCF patterns that characterize the features of the
modulation techniques involved, and DBN based identification
scheme having DBN to classify the modulation techniques by
learning their features from the SCF patterns. They concluded that
their approach achieved high accuracy (above 90%) even with the
involvement of environment noise [137].
Another novel DL based approach was proposed by Felix et al.
[138], in which they implemented autoencoder for OFDM which
configured the channel without using traditional signal processing
block. Gui et al. [139] proposed an efficient and high performance
based DL-aided NOMA scheme. Using Restricted Boltzmann ma-
chines (RBM) and LSTM network, their scheme could model
the spatial–temporal relationship between input signals and the
sharply changing channel conditions by learning the environment
automatically via offline learning. Their model was far better than
previous state-of-the-art methods in terms of BLER and sum data
rate, robustness, and high precision rate [139].

• AI for beam-forming : With the advancement in communication
technology, it is believed that, in the near future, the mmWave
will be extensively used. Observing the current extensive use of
beam-forming and massive MIMO technologies, it is desired that
it would provide great advancement in specific high-dynamic
transportation communication systems [140]. But, for building
the mmWave in these high-mobility systems are using tradi-

tional beam-forming techniques, the beam-forming accuracy got
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affected by vehicle location predictions and high overhead of
frequent beam training [141]. Fig. 9 shows these limitations.
In order to build proper and efficient mmWave and the re-
spective strategy for beam-forming, AI might be able to solve
these barriers. Few recent pieces of researches are shown below:
For high-dynamic transport systems, data regarding out-of-band
measurements and vehicle positions becomes a barrier in forming
the best beam pair selection time. So, in [140], Klautau et al.
developed a DL based beam selection algorithm after executing
various algorithms and based on the observation that this DL
based approach is far better than other algorithms in terms
of accuracy for classification and root mean squared error for
regression. Another approach was proposed by Asadi et al. [142],
where they implemented the ML-based algorithmic system by
which the coarse user location can be involved in dynamic beam
selection for sensing the changing environment. It had improved
the performance and stability of communication networks. Alkha-
teeb et al. in their paper [143], considered that the overhead of
beam training must be in accordance to the need of generating
mmWave and proposed a novel DL based beamforming algorithm
for the specific high mobility mmWave system. They concluded
that using this approach, reliable coverage, low latency, and less
training overhead have been achieved.

The comparison of various AI techniques used in the communication
field of intelligent transportation systems is mentioned in Table 6.

5.3.2. Networking in intelligent transportation
The issues faced during the networking of ITS is resource allocation

and traffic control this section, we discussed existing solutions for the
aforementioned issues using AI techniques.

• Role of AI in Network Resource Allocation: The proper allocation
of wireless network resources including channels, computational
capacity, power level, and time slots is difficult because of un-
predictable user requirements. Apart from a standard wireless
network, the vehicular wireless network requires heterogeneous
structure, high mobility nodes, and high QoS for both passengers
and drivers (in case of a not fully autonomous vehicle). To imple-
ment the conventional resource allocation algorithm like auction
theory, greedy algorithm, and game theory on vehicular wireless
networks faces some challenges.
In the field of autonomous transportation, resource allocation
is necessary for decision making to be responsive by allocating
resources rapidly even in changing environments to overcome sig-
naling overhead, provides accurate results to avoid accidents even
in a complex environment, and also self-adaptive. One model
for dynamic resource allocation problem was proposed by Yang
et al. [146] where they employed graph coloring theory to ensure
the accurate environment modeling in VANET heterogeneous
networks. But, this proposal was not able to address the problem
of self-adaptability and was even time-consuming. Many other
conventional algorithms also failed to provide good efficiency in
a vehicular network, but many new emerged ML technologies can
be able to solve the problems for future vehicular networks in 6G.
Due to the special constraints of the vehicular network, various
AI-based models for dynamic resource allocation are proposed for
6G network.
He et al. proposed model for next-generation vehicular network
considering radio, caching, networking, and computing resources
based on DRL. Considering virtualization and centralization, a
new resource allocation strategy was formulated for multiple
tasks joint optimization problem [147]. The use of two deep
learning models CNN and DBN together was suggested in [148]
to predict asynchronous traffic and to assign the channel to
links intelligently. Using CNN, traffic patterns were learn online,
analyzed and trained to predict the future traffic levels for any
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Table 6
Comparison of Various AI Techniques used by existing works in the Communication field of ITS.

Author Year Objective AI technique used Merit Demerit
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) Xie et al. [132] 2017 Developed a MDP

to solve the
switching problem
in MRA network

MDP MDP achieved
better results than
greedy approach

Some work can be
done to improve
this algorithm for
6G networks

Kim et al. [133] 2018 To minimize the
BER, proposed a DL
based SCMA

DNN Showed lower BER
with less
computational time
than traditional
scheme

More improvements
are needed for
implementing with
6G networks

Ye et al. [135] 2017 Proposed a DL
based scheme to
improve the
reliability of
grant-free NOMA

Multi-loss function
based DL-aided
grant-free NOMA

Lessen the human
crafted work and
enabled the
automatic system
which performed
better than
conventional NOMA

Low power
consumption and
high-reliability
requirements were
not considered

Lin et al. [144] 2020 Proposed a model
to decode SCMA
modulated signals
corrupted by
additive white
Gaussian noise

Deep Neural
Network named
DL-SCMA

Better performance
compared to
traditional SCMA

Not compatible in
real environment
system

Ra
di

o
co

nf
ig

ur
at

io
n Ye et al. [135] 2018 Proposed a DL

model to address
the channel
distortion

DNN The model could
remember and
analyze the
complicated
characteristics

Rigorous and more
comprehensive
experiments were
not conducted

Felix et al. [138] 2018 Implemented
autoencoder for
OFDM

Autoencoder Configured the
channel without
using traditional
signal processing
block

Novel approach but
the performance
was not up to the
mark

Gui et al. [139] 2018 Proposed a DL-aided
NOMA scheme

RBM-LSTM Efficient, high
performance and
better than previous
state-of-the-art

Not compatible in
real environment
system

Wang et al. [145] 2020 Proposed a DL
model for MIMO
systems

CNN based
Co-Automatic
Modulation
Classification

Performed better
than HOC and
ANN-based
traditional methods

Future challenges
were not considered
while proposing the
method.

be
am

fo
rm

in
g Klautau et al. [140] 2018 Proposed an

application for
Beam-Selection

Deep Learning
based model

Generated 5G
propagation channel
data that decouples
the tasks of
modeling mobility
and channel

Computational Cost
was high and lack
in accurate
modeling.

Asadi et al. [142] 2018 Proposed a
lightweight
context-aware
online learning
algorithm to address
the problem of
beam selection

FML based
algorithm

Improved
performance and
stability

Integrating DL
would perform
better

Alkhateeb et al. [143] 2018 Developed an
integrated ML and
coordinated
beamforming
strategy for enabling
mobile applications
in mmWave systems.

DL based algorithm Ensured reliable
coverage and low
latency

Further
improvements in
the model will
perform better
hour of the day. From the results of CNN, the DBN algorithm is
implemented to intelligently allocate channels. The Deep Belief
network (DBN) used was already trained with existing data set
from channel allocation algorithm.
Apart from ground vehicles, Kawamoto et al. studied Q-learning
based intelligent resource allocation problem for unmanned aerial
vehicles where communication demand and propagation environ-
ment are dynamically changing. The result from their study [149]
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suggest that their algorithm can adapt to various dynamically
changing environment. Thus, by using machine learning and AI
techniques in 6G network can help by making rapid response
by decision making, estimation, recovery, and self-adaption of
resource allocation in vehicular communication [152].

• Network Traffic Control: For high-dynamic vehicular networks,
various domains like network routing, location, topology infor-
mation, traffic offloading, and congestion avoidance are widely
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v
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t
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Table 7
Comparison of Various AI Techniques used by existing works in the Networking field of ITS.

Author Year Objective AI techniques used Merit Demerit

N
et

w
or

k
re

so
ur

ce
al

lo
ca

tio
n Yang et al. [146] 2016 To ensure accurate

environment
modeling in VANET
heterogeneous
networks.

Used graph coloring
resource sharing
scheme

Their algorithm
could achieve
sub-optimal solution
with low complexity

But the algorithm
could not address
the problem of
self-adaptability and
was even time
consuming

He et al. [147] 2018 To improve
performance of
future vehicular
networks by
improving caching
and computing
resources method

Deep Reinforcement
Learning

The resource
allocation strategy
proposed for
multiple tasks joint
optimization
problem has
provided good
results

There were energy
efficiency problems
in proposed
framework

Tang et al. [148] 2018 Proposed an
algorithm to smartly
avoid traffic
congestion and
allocate relevant
channels to wireless
links of SDN-IoT

CNN and DBN Results showed that
their algorithm
outperformed
conventional
channel assignment
algorithms

Some work can be
done to improve
this algorithm for
6G networks to
make it
environment
independent

Kawamoto et al. [149] 2019 Proposed intelligent
resource allocation
algorithm for
unmanned aerial
vehicles

Q-learning Their algorithm
could adapt to
various dynamically
changing
environment

Still improvements
are needed in the
model for enhanced
performance in
resource allocation.

N
et

w
or

k
Tr

af
fic

Co
nt

ro
l Kato et al. [150] 2017 Proposed model to

estimate traffic
situation of whole
network at edge
level from collected
data

DBN Results showed that
average per hop
delay of their
algorithm was lower
than various
conventional routing
methods

Did not considered
input features other
than traffic patterns.

Gulati et al. [151] 2018 Proposed content
centric data
dissemination
scheme for vehicles

CNN and DBN Ensures high data
availability and
minimum delay

Disconnection
probability increases
with increase in
velocity of vehicles.
studied for network traffic control [153]. Considering above pa-
rameters, there is need to achieve ultra-low latency (<1 ms)
and high data rate could not be solved even with the emer-
gence of stability based adaptive routing, optimized link-state
routing protocol, dynamic state routing, routing information pro-
tocol, and proactive source routing [154]. Machine Learning tech-
niques could be used for future generation 6G vehicular network
to improve dynamic routing and self-learning at the edge for
congestion avoidance [155].
Location and safety information in a vehicular network is defi-
nitely going to be congested and even in remote areas, it is hard
to pass complete global information timely. Thus, the model was
proposed by Kato et al. [150] using deep learning algorithm.
They used a DBN neural network and find co-relation between
historical collected traffic patterns and routing decisions to esti-
mate the traffic situation of the whole network. CNN based model
was further proposed with optimal vehicle dissemination strategy
and gradient descent process to ensure high data availability and
minimum delay [151].

It is impossible for the current network to satisfy the requirements of
ehicular networks like traffic control and resource allocation together.
ut, this can be made possible by including terahertz communication,
LC and intelligent AI techniques along with virtualization for the fu-

ure generation 6G networks. The comparison of various AI techniques
sed in networking of intelligent transportation system is mentioned in

able 7.
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6. Implementation issues and challenges

Although 6G is in the research phase right now, it shows great
promise in terms of its network capability and diverse range of ap-
plications it can provide. However, it has not be perfected yet and
it cannot be deployed in the current stage. The short-comings are as
follows.

6.1. Frequency band

The teraHertz band will be used in 6G, which has a low wavelength.
Due to this, the range of the signal will be hardly a few meters, and
it is not economically justified to place a signal amplifier every few
meters to circumvent this issue. Molecules in the air can absorb the
signal and convert it to its kinetic energy, thus reducing range. This
signal attenuation amplifies when there is moisture in the air, further
shortening its range [156].

6.2. Device capability

6G enables unprecedented data speeds and the devices should be
capable of utilizing it to the fullest. As far now, most of the devices
are designed on the working principles of 5G, and they need to be
designed in such a way that it can be used for 6G as well. Also, such
devices cannot support all of the novel features of 6G, such as AI,
AR/VR, high QoS, intelligent vehicles device sensing, and communica-
tion [157].
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6.3. Big data

The data rate generation will reach exabytes in a matter of a few
years. As of now, big data technology deals with large amounts of
data from a single source, but not for small-sized data from various
heterogeneous sources. The current infrastructure unable to handle
so much data and we need supercomputers to process them. To ac-
commodate such changes, we must make changes to the existing big
data techniques [158,159]. Big data will leverage the principles of
Iot and cloud computing to aid in data collection, its storage, and
computation. Ray et al. [160] identified the potential security threats
and shortcomings while leveraging such technologies. Changbo et al.
discussed the potential challenges regarding the possible integration of
5G and big data such as security and privacy concerns in data sharing
and data fusion and the requirement of real-time analysis of data [161].
Since 6G is an advancement from 5G, such challenges are expected as
well.

6.4. Shortcomings in AI

Although AI is a technology with great potential, which has some
shortcomings which are not resolved yet, AI works as a black-box in
which we do not know how it works and why it takes a particular
decision. In real-time scenarios, this can be a huge risk and poten-
tially life-threatening in applications such as ITS. AI technology as
it currently not given full decision making capability and must be
used in congruence with the currently used proven techniques. There
is no way of knowing whether the selected model and the data set
in consideration will produce accurate results beforehand. Also, the
model can perform well for one scenario but fail in for others. Different
network service providers need to implement different AI models for
their own individual needs, and they often are not in sync with each
other, which can deteriorate network performance [162].

6.5. Edge communication

As discussed earlier, mobile edge communication will be one of the
enabling technology of 6G. However, it has a few limitations as well.
First of all, edge nodes are mobile devices that work on battery and
have limited computing power, so most of the computing is done at
the cloud, and the edge nodes are used only as an inter-mediator for
communication. Edge nodes also are not capable of storing the excess
information it receives and must transfer the data to the next layer as
soon as it receives it; this increases the communication overhead. This
reduces the 6G network performance.

7. A use case of UAV-enabled intelligent transportation system

A smart city has become a new buzz in current times for bringing
new applications for making existing processes smart and better to
improve the efficiency of future smart cities and the quality of living
of the people. ITS is considered as one of the major building blocks of
any smart city along with smart health care, smart governance, smart
environment, and smart public services.

The 6G system can help in the deployment of autonomous vehicles
and UAVs. Connectivity in ITS should be such that a vehicle can
communicate with sensors, other vehicles, infrastructure, and even
pedestrians [164]. With this type of communication system and usage
of some advanced AI techniques, ITS can achieve safe intersection
crossing, safe lane changing, optimal traffic signal control, smart park-
ing allocation, and emergency warning notification. Unmanned Aerial
Vehicle (UAV) plays an important role in 6G systems to provide a high
data transmission rate and also support wireless broadcast in the areas
where the cellular base station is not functioning or is absent as shown
in Fig. 10. UAVs support certain features like line-of-sight links, easy
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Fig. 10. UAV enabled ITS. [163].

deployment, and degree of freedom with controlled mobility, which
cannot be achieved through terrestrial communication [165,166]. UAV
can facilitate the main component of 6G wireless networks which are
eMBB, mMTC, and URLLC and thus could help in various fields in-
cluding military, science & commerce, aerial photography, surveillance,
agriculture, and disaster management [167].

At the time of the disaster, UAVs are required to communicate with
each other and to provide communication links for terrestrial devices.
In place of traditional ITS, where communication was not possible
in times of disaster, UAV enabled ITS could help to identify areas
affected by disaster and also aid in disaster response. Due to the limited
communication range, higher costs, and requirement of continuous
connectivity, it is impossible to cover the area for a reasonable amount
of time. Thus, it is required to increase energy efficiency using a deep
reinforcement learning model [168,169] so that UAVs can keep flying
and provide the network for a longer time.

In spite of having advantages in current ITS, there are various issues
and challenges which have to be overcome using AI-based 6G future
networks. The bandwidth limitation in the current ITS system is causing
problems like communication interference, delay, and hence affects
delivery efficiency in dense traffic scenarios [170]. The other challenge
in current vehicular networks is the management of the data gathered
from a huge number of vehicles congested with reduced distances
at the same time and take actions on that collected data [171,172].
The current network is not equipped to handle this situation and thus
causes delays and might also threaten the privacy and security of the
user [173,174]. Also, the scheduling and channel allocation algorithms
present in the current system are less efficient. There is decentralization
characteristic existing in the current ITS, but still, in the current,
ITS system vehicles connect and disconnect from the system at any
time, and there is no fixed central system that ensures trustworthy
communication between vehicles [175].

The above limitations in the current ITS can be overcome with the
usage of our proposed architecture embedding AI techniques with 6G
networks. The bandwidth problem can be eliminated by incorporating
the VLC component present in 6G architecture. VLC gives the ultra-high
bandwidth, which is the biggest advantage of 6G and we assume that
more vehicles can communicate for a large period, which eliminates
the bandwidth limitation of ITS. Also, the channel allocation problem
can be solved by using CNN in our proposed architecture. The overhead

and computation complexity will get reduced with the introduction of
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CNN based algorithm. In the data link layer of our architecture, we have
placed AI feature extraction techniques like PCA and ISOMAP, which
reduces the overhead and computational complexity by eliminating the
significant data. By implementing these techniques in current ITS, the
flow of data in the communication channel between two vehicles will
become easy and efficient. The current decentralization technique can
be made more secure by designing a proper fixed system by integrating
AI algorithms in 6G. Such a system would formulate a proper flow
or directive for communication between decentralized vehicles. RL
algorithm could help to manage resource flow among vehicles and also
with the main system.

8. Conclusion

5G technology is expected to be fully deployed worldwide by 2023,
but it will not be able to cater to the network requirements to the
exponential increase in the number of users as well as would not be
able to fully service all the functionalities that the full capacity. This
growing demand of both users and functionalities requires 6G to be
deployed as soon as possible. Research on AI about its application
in the various domains is also being conducted and the results are
promising.

In this paper, we explore the emphasis of AI integration in 6G, both
in the application domain and the architecture domain, starting by
discussing what AI is. The impact of AI is omnipresent in all the do-
mains and 6G is expected to harness the full potential of AI techniques
when it is gradually rolled out. We further proposed an AI-enabled 6G
architecture utilizing various AI technologies starting from the physical
layer and going all the way up to the application layer. Additionally,
we discussed various possible applications that can be viable with such
smart networks, having significant improvements over the traditional
architecture by overcoming issues such as QoS, low latency provisions
to the end-users. The study was further supplemented by presenting
a use-case for UAV enabled ITS which fully leveraged our solution
taxonomy methods. Finally, we explored the possible shortcomings and
implementation issues in such intelligent networks and the applications
that can be realized/refined with its help.
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