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A B S T R A C T

Online social networks convey rich information about geospatial facets of reality. However in most cases,
geographic information is not explicit and structured, thus preventing its exploitation in real-time applications.
We address this limitation by introducing a novel geoparsing and geotagging technique called Geo-Semantic-
Parsing (GSP). GSP identifies location references in free text and extracts the corresponding geographic co-
ordinates. To reach this goal, we employ a semantic annotator to identify relevant portions of the input text and
to link them to the corresponding entity in a knowledge graph. Then, we devise and experiment with several
efficient strategies for traversing the knowledge graph, thus expanding the available set of information for the
geoparsing task. Finally, we exploit all available information for learning a regression model that selects the best
entity with which to geotag the input text. We evaluate GSP on a well-known reference dataset including almost
10 k event-related tweets, achieving F1 = 0.66. We extensively compare our results with those of 2 baselines and
3 state-of-the-art geoparsing techniques, achieving the best performance. On the same dataset, competitors
obtain F1 ≤ 0.55. We conclude by providing in-depth analyses of our results, showing that the overall superior
performance of GSP is mainly due to a large improvement in recall, with respect to existing techniques.

1. Introduction

Online Social Networks (OSN) are privileged observation channels
for understanding the geospatial facets of many real-world phenomena
[1]. Unfortunately, in most cases OSN content lacks explicit and
structured geographic information, as in the case of Twitter, where only
a minimal fraction (1% to 4%) of messages are natively geotagged [2].
This shortage of explicit geographic information drastically limits the
exploitation of OSN data in geospatial Decision Support Systems (DSS)
[3]. Conversely, the prompt availability of geotagged content would
empower existing systems and would open up the possibility to develop
new and better geospatial services and applications [4,5]. As a practical
example of this kind, several social media-based systems have been
proposed in recent years for mapping and visualizing situational in-
formation in the aftermath of mass disasters – a task dubbed as crisis
mapping – in an effort to augment emergency response [6,7]. These
systems, however, demand geotagged data to be placed on crisis maps,
which in turn imposes to perform the geoparsing task on the majority of
social media content. Explicit geographic information is not only
needed in early warning [8,9] and emergency response systems
[10–14], but also in systems and applications for improving event

promotion [15,16], touristic planning [17–19], healthcare accessibility
[20], news aggregation [21] and verification [22]. In addition, also
other important tasks such as the monitoring of epidemics [23] and
crime prevention [24–26] would benefit from the availability of addi-
tional geotagged OSN content, let alone those situations in which
geographic information is relevant per se, such as in demographic
studies [27].

Given the great importance of geotagged data for DSS, much effort
has been recently devoted to tasks such as geotagging and geoparsing
[28,29]. In detail, geotagging is defined as the generic task of associating
geographic coordinates to a given document or to a portion of a
document (e.g., a token). Instead, geoparsing is a more complex task that
can be used to perform geotagging and that involves parsing a text,
identifying location mentions and complementing them with their
corresponding geographic coordinates [30]. There exists also other
approaches to geotagging that are not necessarily based on free text
analysis, such as those based on OSN account information [31] or on
social relationships [32].

In this work, we focus on the geoparsing task, and we propose a
novel technique called Geo-Semantic-Parsing (GSP). GSP is able to
achieve state-of-the-art results by adopting machine learning and
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artificial intelligence (AI) techniques to extract geographic information
from the rich data contained in semantic knowledge graphs, such as
DBpedia and GeoNames. In particular, in a first step GSP leverages a
semantic annotator to identify relevant portions of the input text (i.e.,
the document to geoparse) and to link them to pertinent entities in a
reference knowledge graph. Then, it exploits several different strategies
to traverse the knowledge graph by navigating links between entities.
The result of this second step is an expanded set of candidate entities,
that are likely to contain relevant geographic information for the task.
Finally, among the geographic information of all retrieved entities, we
select those with which to geotag the input document by means of a
regression model, that we trained on labeled data. The combination of
powerful AI techniques and the rich, structured, interconnected data
contained in multiple knowledge graphs allows GSP to achieve
F1 = 0.66, whereas other state-of-the-art techniques and baselines
obtain F1 ≤ 0.55.

More in detail, one of the reasons why our solution achieves un-
precedented results is because it mitigates the problem of toponymic
polysemy – that is, the fact that the same toponym can refer to different
places according to the context in which it appears.1 The majority of
traditional geoparsing techniques adopt heuristics to disambiguate to-
ponyms matched in a gazetteer, a solution that might prove ineffective,
especially at world-scale. As a consequence, the application of such
techniques is often constrained to geographically-limited areas, in order
to achieve satisfactory performance [33]. Instead, GSP mitigates this
issue by performing semantic annotation of the input text – an opera-
tion that intrinsically performs disambiguation of tokens based on their
context. In addition, our experimental results demonstrate that the
expansion and selection steps of GSP also allow to correct some of the
errors made by the semantic annotator. A second reason for the in-
creased performance of GSP is related to the simplicity of previous
approaches to this task. In fact, traditional approaches simply match
geographic named entities found in the input text with entries in a
gazetteer. Contrarily, our solution is based on powerful techniques
(e.g., semantic annotation, regression via gradient boosting decision
trees, word and graph embeddings) and information-rich semantic
knowledge graphs. Finally, GSP also has a number of additional ad-
vantages over previous techniques: it does not require any explicit
geographic information (e.g., GPS coordinates, timezones), contrarily
to [34]; it only exploits text data of input documents (e.g., it does not
require any user information or social network topology), contrarily to
[13,32]; it processes only one text document at a time (e.g., it does not
require all tweets from a user's timeline, or many documents on a given
topic), contrarily to [35,36]; it does not require users to specify a target
geographic region, but instead it geoparses places all over the world,
contrarily to [33]; by leveraging knowledge graphs, GSP is capable of
extracting fine-grained, structured geographic information (e.g., at the
level of buildings, cities, counties and regions, countries) similarly to
[34,37].

Contributions of this work. Our main contributions can be summar-
ized as follows:

• we propose a novel geoparsing technique (GSP), capable of sig-
nificantly improving state-of-the-art performance at this task;

• to reach our goal, we propose and experiment with several dif-
ferent expansion strategies to efficiently traverse a knowledge graph,
thus expanding the set of entities to scan for geographic information;

• we learn a regression model to assign a confidence score to all
retrieved entities, in order to select only those providing pertinent
geographic information;

• we experimentally demonstrate the practical advantage of the
design choices on which GSP is rooted. The main improvement brought

by GSP is a large boost to the recall metric, which we attribute to the
optimized expansion strategies previously introduced.

Adding to the previous scientific contributions, our solution is also
based on state-of-the-art technologies and implementations, for all the
necessary steps. In particular, we leverage TagMe [38] for semantic
annotation and entity linking, and Microsoft's gradient boosting fra-
mework LightGBM [39] for learning our regression model, which are
currently considered the state-of-the-art for the respective tasks. We
also design and experiment with a large number of regressors, some
obtained via a process of feature engineering resulting from textual
analyses of our documents with FLAIR [40], while others directly
learned from our data via the use of BERT contextual word embeddings
[41] and rdf2vec graph node embeddings [42].

Roadmap. The remainder of this paper is organized as follows. In
Section 2, we survey existing works for geoparsing and geotagging of
social media content. In Section 3, we provide background information,
and we introduce the GSP technique. In Sections 4 and 5, we respec-
tively delve into the details of the expansion and selection steps of GSP,
also providing experimental results to support our choices. Then, in
Section 6 we describe our dataset, and we report experimental results of
GSP and other techniques for the geoparsing task. We conclude with
Section 7 discussing our results, and with Section 8 summarizing our
work and highlighting directions for future research and experimenta-
tion.

2. Related Wworks

A recent survey on location prediction on Twitter [29] proposed a
taxonomy of geotagging and geoparsing techniques according to dif-
ferent tasks. These can be: the prediction of (i) the locations mentioned
in tweets, (ii) the tweet origin location, or (iii) the user home location.
The remainder of this section adopts the same structure, with a parti-
cular focus on works dealing with the prediction of mentioned loca-
tions, since our contribution also falls in this category.

2.1. Mentioned location prediction

The goal of this task is to identify locations mentioned in a text and
link them to the corresponding geographic coordinates. It has been
investigated for a long time on well formatted documents – like news
articles, and researchers identified entity mention variability and am-
biguity as the two main challenges of this task. However, mentioned
location prediction is even more challenging in OSNs, due to the noisy
and short user-generated posts.

The most similar work to our present contribution is our previous
attempt at this task, where we proposed a preliminary version of the
GSP technique [2]. Similarly to this work, the core idea of [2] is to first
exploit a semantic annotator to identify relevant portions of the input
text, and then to parse the corresponding semantic resources in search
for possible geographic information. In our previous work, however, we
only leveraged a very limited number of semantic resources, actually
disregarding many nodes of the available knowledge graphs that could
bring useful information for the geoparsing task, as outlined in Fig. 2.
Moreover, the selection of the geographic information to geoparse the
input document was carried out by means of a binary classifier, based
on a Support Vector Machine (SVM). The AI-driven exploration of the
semantic knowledge graphs, together with the accurate selection of
informative graph nodes via gradient-boosted regression, thus represent
the main differences between our previous and current works. In turn,
the profitable exploitation of this additional information significantly
improves geoparsing performance, as demonstrated by our experi-
mental results, reporting F1 = 0.66 vs F1 = 0.55 of our previous work.

Apart from our previous contribution, the task of mentioned loca-
tion prediction was traditionally tackled in two steps: (i) mentioned
location recognition, and (ii) their subsequent disambiguation.
Mentioned location recognition is generally considered as a special type

1 As an example, at the time of writing GeoNames returns 5331 records for
“Rome”, distributed across all six continents: https://www.geonames.org/
search.html?q=rome.
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of Named Entity Recognition (NER) task, and treated accordingly [43].
A few recent works also proposed other specific techniques for identi-
fying location names in texts, outperforming traditional approaches
based on NER. As an example, LNEx [44] learns a statistical language
model by applying a skip-gram model to token sequences extracted
from gazetteers, which contributes to the accurate and rapid detection
of location mentions in texts. The work discussed in [12] applies a
classification approach based on word embeddings and on a convolu-
tional neural network for detecting location mentions. The focus of [45]
is instead posed on the exploitation of spatial relations for location
estimation. Authors first employ information extraction methods to
identify toponyms and spatial relations in a text. Then, they use ex-
pectation maximization to learn models based on spatial probability
density functions, and they use these models to infer the location of
unknown objects.

Location disambiguation is usually performed by matching the de-
tected location NEs with the entries of a geographic gazetteer (e.g.,
GeoNames,2 OpenStreetMap3). Gazetteers also contain the association
between toponyms and their geographic coordinates, thus making it
trivial to return the geographic coordinates. An example of this type of
approach is geoparsepy,4 which combines NER techniques for the de-
tection of text chunks, containing location mentions, with heuristics to
disambiguate and match the detected NEs with OpenStreetMap entries
[33,46]. A similar approach was proposed by Halterman with the
mordecai5 system [37]. The main difference between geoparsepy and
mordecai is that the latter leverages a deep learning neural network
classifier to select best candidate coordinates from the matching entries
of the GeoNames gazetteer. Given that both geoparsepy and mordecai
currently represent state-of-the-art and widely-used geoparsing sys-
tems, in our evaluation section we compare our geoparsing results with
those benchmarks.

The aforementioned works, as well as our present contribution,
propose general-purpose geoparsing techniques that are suitable for
application to any standalone textual document (e.g., news articles,
tweets, emails, etc.). Other geoparsing systems are instead specifically
developed for social media, and they exploit some of the features
available on specific social networking platforms. For example, the
systems discussed in [35,36] leverage a whole user's timeline to col-
lectively disambiguate toponyms, while [32] exploits user friendship
networks to improve geoparsing accuracy. Similarly, TAGGS [13] en-
hances location disambiguation in Twitter by employing tweet and user
metadata together with other contextual spatial information extracted
from additional tweets.

2.2. Post origin location prediction

This task targets the prediction of the location from which a post is
shared, given its textual content and possible additional information.
The simplest approaches to this task scan the textual content of the post
and user's profile information in search for geographic clues, and they
combine the retrieved geographic information to infer the post origin
location. For example, [47] applies scoring and ranking algorithms to
data extracted from textual content, users' profile location and place
labels for predicting locations at the finest possible granularity. Instead,
[48] significantly extends the possible sources of geographic informa-
tion, adding user's network, external resources and knowledge-bases,
and posts related to similar topics. The obtained results are combined to
provide the final prediction, following an unsupervised approach.

However, most of the approaches tackle the more challenging sce-
nario of predicting a post origin location in the absence of explicit

geographic information. For example, [49] employs several off-the-
shelf machine learning classification algorithms (e.g., SVMs, Random
Forests, etc.) fed with eight tweet- and metadata-derived features to
classify global tweets at the country level. More sophisticated ap-
proaches look for content similarities between geotagged and non-
geotagged posts. The system proposed in [50] estimates the location
from which a post was generated by exploiting the similarities in the
content between the post and a set of geotagged tweets, as well as their
time-evolution characteristics. Similarly, [51] leverages a ranking
model to relate a non-geotagged tweet to the most similar geotagged
ones, based on the content. Then, it predicts the non-geotagged tweet
location by combining the locations of the geotagged tweets, using a
weighted majority voting algorithm. Contrarily to [49], both [50,51]
are capable of providing accurate, fine-grained (i.e., within a city) lo-
cation estimates. However, their application is typically restricted to
geographically-limited areas, whereas [49] can be conveniently applied
to classify world tweets. Finally, [52] tackles post origin location pre-
diction under the interesting perspective of user privacy. Authors pre-
sent a deep learning approach to violate user geolocation privacy on
Twitter, by predicting her last post origin. To do so, the model leverages
previous geotag leakages related to the user itself, and her network
neighbors. Notably, the model proves able to violate the privacy of the
60% of the analyzed users. However, authors also propose defensive
strategies, based on data perturbation techniques, to reduce prediction
accuracy.

2.3. User home location prediction

This task aims to identify users home locations – a goal that is ty-
pically achieved by leveraging a portion of the user's posting history. As
a striking example of this kind, in [14] user home locations are pre-
dicted based on historical locations of the same users, extracted using a
Markov model. Similarly to [49], also the technique recently proposed
in [31] focuses on country-level predictions. The latter method is based
on a comparison of frequent word distributions from user timelines
with country-based lists of popular Web searches from Google Trends.
Given a user, [31] computes a ranked list of possible home countries,
weighted by means of a confidence score obtained via statistical and
machine learning methods.

The previously described approaches are solely based on a user's
posting history (i.e., its timeline). Instead, another large body of work
also leveraged the correlation between strong connectivity patterns in
the social graph and geographic proximity in the real world [53]. Au-
thors of [54] define as “locatable” those users that present geographic
information allowing their geolocation. Then, given a non-locatable
user, their proposed technique iteratively considers reciprocal (i.e.,
bidirectional) social relationships to infer the user geolocation from its
locatable network neighbors. This simple and preliminary approach is
similar to those described in [47,48] for predicting post origin loca-
tions, in that it only combines readily and explicitly available geo-
graphic information. A similar approach is proposed in [53] for effi-
ciently detecting users belonging to a given city. The technique exploits
both textual tweet content and Twitter social graph. Instead, a more
powerful technique is proposed in [55], leveraging a probabilistic ap-
proach that jointly models geographic labels and Twitter texts of users,
organized in the form of a graph representing the friendship network. In
detail, authors use a Markov random field probability model to re-
present the network, and they ground the learning step on a Markov
Chain Monte Carlo simulation, that approximates the posterior prob-
ability distribution of the missing geographic user labels. Finally, [56]
presents an integrated geolocation prediction framework and uses it to
investigate what factors impact the prediction accuracy. Authors eval-
uate a range of feature selection methods to obtain “location indicative
words”, and they investigate the impact of non-geotagged tweets, lan-
guage and user-declared metadata on user location prediction. For
additional references and in-depth discussions of other user home

2 https://www.geonames.org/
3 https://www.openstreetmap.org/
4 https://pypi.org/project/geoparsepy/
5 https://github.com/openeventdata/mordecai
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location methods, we point interested readers to the survey by Ajao
et al. [28], and references therein.

3. Geoparsing documents with GSP

In this section, we first formally define the geoparsing task and how
geoparsing techniques are evaluated. Then, we provide the conceptual
overview of the GSP technique and the rationale for our design choices.

3.1. Problem definition

Geoparsing involves analyzing a textual document, identifying
mentions of known locations, and associating the corresponding geo-
graphic coordinates to each mentioned location. Given this formula-
tion, a geoparsing technique is defined as a model GP , such that
GP =t p( )i i, where ti is the i-th document in a collection, and
pi = {pi,1,pi,2,…,pi,N} is a set of predicted geographic coordinates pi,k,
each corresponding to a toponym detected by GP in ti. Ideally, we
would want the set of predicted coordinates pi to be equal to the set of
ground truth coordinates gi for ti:

= = …p g k j Np g , 1, ,i i i k i j, ,

Hence, when evaluating the performance of a geoparsing technique,
each pi,k = gi,j is considered as a true positive prediction. In practice, two
coordinates are considered to be equal if their geographic distance is
lower than a certain threshold T . For geoparsing tasks, the most
common choice is T = 100 miles (≃161 km) [29]. However, in our
work we adopt a more severe T = 50 km (≃31 miles), which is more
suitable for practical applications. In addition to correct predictions,
geoparsing techniques can also predict coordinates that do not corre-
spond to any ground truth coordinate: pi,k ∉ gi, thus yielding a type I
error (or false positive). Similarly, they can fail to predict a ground truth
coordinate: gi,j ∉ pi, thus yielding a type II error (or false negative). Fi-
nally, similarly to information retrieval and entity linking tasks, true
negatives are typically not considered for the evaluation of geoparsing
techniques [29].

Given the above definitions, we can count true positives (TP), false
positives (FP), and false negatives (FN), summarizing the results of the
application of a geoparsing technique to a collection of documents:

=

= =

= =

TP

FP x x x

FN x x x

p g

p g p g

g p g p

\ { | and }

\ { | and }

i
i i

i
i i

i
i i

i
i i

i
i i

where a\b is the set difference between a and b, and ∣a∣ is the car-
dinality of set a. In the remainder of this work, geoparsing results are
assessed by means of standard evaluation metrics based on TP, FP and
FN, such as precision, recall, and F1-score (F1).

3.2. Overview of GSP

In Fig. 1, we provide a schema of the GSP system. As introduced in
Section 1, the main idea behind GSP is to leverage the rich, structured
and linked information exposed by a knowledge graph to identify,
disambiguate and geotag mentioned locations. To do so, GSP processes
a single document ti at a time, through three sequential steps:

• step 1: semantic annotation (Fig. 1a), which identifies a relevant
token (anchor) in the input text ti (yellow-colored) and links it to a
pertinent entity (red-colored) in a knowledge graph. The purpose of this
first step is to augment the input text with the information exposed by
the knowledge graph;

• step 2: expansion (Fig. 1b), which traverses the information-rich,
structured knowledge graph, retrieving entities (blue-colored) related
to the starting one and likely to convey further useful geographic

information. The purpose of this intermediate step is to take full ad-
vantage of the knowledge graph structure for enriching the available
information, thus potentially increasing the model recall;

• step 3: selection (Fig. 1c), which analyses the entities retrieved by
the expansion step to pick the best candidate (green-colored) for geo-
tagging the anchor. In particular, GSP parses the selected entity to ex-
tract the geographic coordinates, returned as the final result of the
geoparsing process. The purpose of this final step is to deal with the
information overload, introduced by the expansion step, thus im-
proving the model precision.

In the remainder of this Section, we describe and motivate the three
steps of GSP. Furthermore, our core scientific contributions – that is, the
expansion and selection steps – are also thoroughly discussed and eval-
uated in Sections 4 and 5. For simplicity, throughout this work we use
the terms knowledge graph and knowledge-base interchangeably, since we
always leverage the Linked Data representation of all mentioned
knowledge-bases. Similarly, we use the terms entity and resource inter-
changeably, when referring to a node of a knowledge graph.

3.2.1. Step 1: Semantic annotation
In GSP, we delegate the identification and disambiguation of loca-

tion mentions to semantic annotation, which thus constitutes the
starting point of our procedure (step 1 in Fig. 1). Semantic annotation is
a long-studied task for augmenting documents, so that mentions of
relevant entities in a text (e.g., persons, places, organizations) are
linked to the corresponding entity in a reference knowledge-base [38].
This annotation process is highly informative, since it enables the ex-
ploitation of the rich information contained in the knowledge-base. By
giving access to a wealth of structured and interconnected information,
semantic annotation also effectively mitigates the drawbacks related to
the sparsity of short social media texts. In addition, it also has the side
effect of alleviating possible geoparsing mistakes caused by toponymic
polysemy, since semantic annotators automatically carry out dis-
ambiguation and only return the most likely reference to a knowledge-
base entity for every annotated token. Notably, this disambiguation
operation is more accurate than those carried out in previous works,
such as those based on simple heuristics as [33]. Semantic annotation is
also more powerful than traditional NER for identifying relevant por-
tions of a text, since it gives access to the information of a knowledge-
base. Downstream of the annotation step, each relevant anchor of each
input text ti is linked to the most pertinent entity of a reference
knowledge graph, providing the information needed to identify and
geotag the mentioned locations. Those entities constitute the input of
the subsequent expansion step.

Implementation notes. We perform semantic annotation with TagMe6

– one of the most popular and best-performing off-the-shelf annotators
currently available. In [2], we provided geoparsing results comparing
the performance of 4 different semantic annotators, with TagMe
achieving the best results. Moreover, TagMe is particularly suitable for
our work, since it is specifically designed for short and poorly written
texts, such as social media messages [38]. In order to have complete
access to all its functionalities and to allow fast queries, we leverage a
local deployment [57]. By default, TagMe annotates documents with
Wikipedia entities. However, for each such entity we refer to its
equivalent on DBpedia, in order to exploit Linked Data properties and
relations. Thus, (the English) DBpedia is our reference knowledge
graph.

3.2.2. Step 2: Expansion
As a result of the semantic annotation step, we have documents

where relevant tokens are identified and linked to entities in a knowl-
edge graph. By parsing the structured information associated with these
entities, we would thus be able to retrieve the coordinates of geographic

6 https://tagme.d4science.org/tagme/
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entities, whenever available, thus solving the geoparsing task.
However, this naïve approach would only exploit information of a
single node in a graph, thus negating the advantage of knowledge
graphs in the first place and ignoring many other potentially in-
formative nodes. Instead, being able to combine information from
multiple entities would allow to correct wrong or missing information
on a node.7 Furthermore, it would also allow to correct at least part of
the errors resulting from the semantic annotation step.

Because of these reasons, both our earlier [2] and our present
geoparsing technique perform an expansion step. Given a starting node
(i.e., the one linked to a token in ti by the semantic annotator), the goal
of this second step is to find other nodes that are related to the starting
one, within which to look for relevant information for the geoparsing
task, as sketched in Fig. 1b. To perform expansion, in [2] we exploited
relations of semantic equivalence (i.e., owl:sameAs links) between
entities. These links connect representations of the same entity across
different knowledge-bases. Thus, in order to extract geographic in-
formation about an entity, in [2] we also exploited information about
all semantically-equivalent entities that are reachable by iteratively
navigating equivalence links. As shown in Fig. 2a via the formalism of
multilayer networks, this expansion unfolds in a visually vertical
fashion. On the one hand, it allows to leverage information coming
from more than one node. On the other hand, however, the total
number of nodes reachable via this expansion strategy (≈101) is still
underwhelming, when compared to the total number of nodes available
in a knowledge graph (≈106 − 107). Moreover, it only exploits rela-
tions of semantic equivalence, disregarding all the other types of rela-
tions between entities.

In our new GSP technique, we greatly increase the number of nodes
that we leverage for geoparsing. We reach this goal by devising and
experimenting with several different expansion strategies that, given a
starting node, are capable of retrieving a large (i.e., with potentially
hundreds of entities) ordered vector of related – but not equivalent –
nodes from within the same knowledge graph. The common idea to all
these expansion strategies is to explore nodes horizontally rather than
vertically (i.e., within a knowledge graph vs across knowledge graphs),
as shown in Fig. 2b. This approach has the advantage of retrieving
many more nodes (together with all their associated information) with
respect to that of [2]. In turn, this boosts GSP's recall – that is, the
capacity of extracting geographic coordinates for toponyms in the input
document. However, retrieving too many, possibly unrelated nodes can
impair precision. Because of this trade-off, it is important to evaluate
different horizontal expansion strategies, as extensively investigated in
Section 4.

Implementation notes. All our horizontal expansion strategies accept

a configurable size parameter L, representing the number of nodes to
retrieve. In fact, contrarily to the vertical expansion used in [2], hor-
izontal expansions are “unconstrained” and can potentially return all
nodes in a graph. Therefore, in the remainder we refer to strategy∣L,
meaning a specific expansion strategy and the number L of nodes it
returns. Moreover, all expansion strategies only return nodes with
geographic information. Nodes that are not complemented with any
geographic information are not considered during expansion, even if
related or similar to the starting node, since they could not be used for
geoparsing anyway. Finally, we constrain expansion strategies to de-
pend solely on the starting node returned by the semantic annotator. In
this way, the expansions can be pre-computed once and for all for the
entire knowledge graph, thus avoiding to perform this demanding op-
eration at runtime.

3.2.3. Step 3: Selection
After the expansion step, we have access to a potentially large set of

candidate nodes. Intuitively, the better is the expansion, the easier it is
the selection of the node from which to extract geographic information.
In fact, if the expansion only returned entities that are strictly geo-
graphically-related to the starting one, then any of those entities would
provide pertinent geographic information for the geoparsing task, thus
rendering the selection step trivial. However, in the majority of cases,
the expansion step also provides some unrelated entities that should not
be considered for geoparsing. Thus, the goal of this third step is to select
the best node for geoparsing among all the candidates returned by the
expansion step, as sketched in Fig. 1c.

In [2], results of the vertical expansion were filtered by a binary
SVM classifier. This simple solution was successful because of the lim-
ited number of candidates yielded by the vertical expansion. In our
present work however, the novel horizontal expansion potentially
yields several orders of magnitude more candidates, thus making a
binary classification task extremely unbalanced, hence impractical. For
this reason, here we cast the selection problem as a regression task,
where we aim to predict a confidence score for each candidate node.
After assigning a confidence to each candidate returned by the expan-
sion step, GSP simply selects the node with the highest confidence and
geotags the input document with the geographic coordinates of that
node. This step is conceptually similar to a filtering/pruning step – also
adopted in many machine learning algorithms for improving the ac-
curacy of predictions – where GSP selects the entity for which it is more
confident. Notably, the efficacy of the expansion&selection approach has
already been demonstrated in [2], with the selection/filtering step
significantly boosting the model's precision. In Section 5 we further
elaborate on this step, discussing how we frame the regression task,
how we train our model, and which features we leverage for the re-
gression.

3.2.4. Concluding steps
The core of the proposed GSP technique was outlined in the two

Fig. 1. Logical overview of the 3 main steps applied by GSP to the input document ti. Semantic annotation (step 1) links a relevant token (anchor) to an entity (red-
colored node) within a reference knowledge graph. Expansion (step 2) identifies related entities (blue-colored nodes) that possibly convey useful geographic
information. Selection (step 3) picks the best entity (green-colored node) to geotag the anchor. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

7 We recall that Linked Data knowledge graphs are collaboratively curated. As
with all user-generated content, mistakes and inconsistencies are indeed pos-
sible and should be accounted for.
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previous sections. However, GSP performs two additional simple op-
erations before outputting its predictions, described in the following for
completeness. The vertical and horizontal expansion strategies are or-
thogonal with respect to one another, meaning that they give access to
different nodes and, potentially, to different information. Being ortho-
gonal, they can also be used simultaneously. Because of this, after se-
lecting a node with the approach described in the previous section, GSP
also applies the vertical expansion. In other words, our technique ac-
tually leverages both the horizontal and vertical expansions, as shown
in Fig. 2.

The extraction of the geographic coordinates from a node in a
knowledge graph, occurs by means of a parsing step. In this step, GSP
scans all predicates of the semantic resource, looking for geographic
information. In particular, in Linked Data there exist many different
predicates designed to store geographic information (e.g., geo:lat
and geo:long, georss:point, etc.). In GSP, we support as many as
45 geographic predicates. Moreover, since the geographic information
contained in such predicates can be stored in different formats (e.g.,
decimal degrees; degrees, minutes, seconds), we then implemented a set
of simple formulas for converting the different geographic formats into
decimal latitude and longitude coordinates. As a result, the output of the
parsing step and of the whole GSP technique is represented by a decimal
latitude and longitude geographic coordinate (wherever available) that
complements the input document.

4. Information expansion strategies

In this section, we describe the different strategies leveraged by GSP
as part of its expansion step. Each strategy follows a different intuition,
with the goal of retrieving the largest set of geographic entities related
to the starting one. In the last part of this section we compare the ef-
fectiveness of the different strategies, both when applied individually
and jointly. To better clarify each strategy and the differences between
them, we make use of a fictitious toy experiment. Let us assume to have
the following short text to geoparse:

“I'll spend a couple of hours in Bath, visiting its Roman heritage.”
The ground truth for this text is represented by the geographic co-

ordinates of the British town of Bath, renowned for its thermal baths

dating back to the Roman Empire. However, let us assume for this ex-
ample that the semantic annotator fails in linking the token Bath to the
correct entity.8 Instead, it erroneously links Bath to the entity bath9 (in
the sense of bathtub), which is the starting node in our toy example. In
the following, we apply the different geographic expansion strategies
with size L = 2 to the small toy knowledge graph repeated once per
strategy in Fig. 3.

4.1. Spelling-based expansion

Although semantic annotators are specifically designed to dis-
ambiguate entities, polysemy, typos and jargon still pose a challenge.
The majority of disambiguation errors occurs between entities with
very similar names. A natural choice for expanding our set of nodes and
for correcting possible errors, is therefore to consider entities whose
names are similar to that of the starting node.

For any given starting node, the spelling-based expansion (hence-
forth spelling) retrieves and sorts the top-L geographic entities
having closest names. The similarity between entities names is com-
puted as the case-sensitive Levenshtein (edit) distance. Fig. 3a shows
the results of spelling when applied to our toy experiment. After
sorting the knowledge graph entities, spelling yields the sorted
vector …[Bath, Bach, Bata, ]. The entity Bach, corresponding to the fa-
mous musician, is not complemented with geographic information and
so it is discarded. Finally, spelling∣L=2 returns the geographic enti-
ties corresponding to the British town Bath and to the Equatorial
Guinea city Bata. By traversing the graph based on entities names, this
strategy can retrieve nodes that are not directly linked nor topologically
near to the starting one.

4.2. Latent semantic expansion

Node embeddings refer to a set of techniques for unsupervised
feature extraction from large graphs, inspired by the usefulness that
word and document embeddings recently demonstrated for many text

Fig. 2. Difference between vertical and horizontal expansion. Vertical expansion traverses semantically equivalent entities (purple-colored) across different
knowledge graphs, whereas horizontal expansion considers those nodes that are most related (blue-colored) to the starting one, within the reference knowledge
graph. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

8 http://dbpedia.org/page/Bath,_Somerset
9 http://dbpedia.org/page/Bathtub
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mining tasks [41]. In this representation, each node in a graph is de-
scribed by a high-dimensional feature vector capable of encoding the
latent structural information of the node within the graph. As such,
nodes that play a similar role in the topology of a graph end up having
similar node embeddings representations. Similarly to word embed-
dings, several different techniques have been proposed for computing
the node embeddings of a graph. Among these, the rdf2vec technique
[42] was recently proposed and specifically designed for semantic
knowledge graphs, such as the ones leveraged by GSP. In particular,
rdf2vec extends previous generic node embeddings techniques by also
considering semantic node properties and the many different types of
edges that represent the semantic relations between entities in knowl-
edge graphs. As such, it is particularly suitable for graph mining tasks
on knowledge graphs. In our experiments, we used the readily-available
rdf2vec embeddings,10 pre-trained for the English DBpedia.

Latent semantic expansion (henceforth latent-semantic) re-
trieves and sorts the top-L nodes having largest cosine similarity be-
tween their rdf2vec representation and that of the starting node. In
other words, this expansion strategy leverages powerful semantic node
embeddings techniques to retrieve the nodes that are most similar to
the starting one, in the latent semantic vector space. Similarly to the

spelling expansion, also latent-semantic potentially retrieves nodes
that are topologically far from the starting one. When applied to our toy
example, we imagine latent-semantic∣L=2 to retrieve geographic
entities that are semantically related to the concept of bathing (e.g.,
having hot springs), such as …[Hot Springs, Bath, ], as shown in Fig. 3b.

4.3. Topological expansion

The previously introduced expansions do not explicitly consider the
topology of the knowledge graph. However, when the semantic anno-
tator fails to point to the correct starting node, or when the starting
node is not complemented by geographic information, relevant geo-
graphic information is nonetheless likely to be found in a topologically
near node, with respect to the starting one. In other words, we are
confident that the annotator pointed us at least in the vicinity of the
correct node. Thus, the following expansion strategies leverage this
hypothesis and traverse existing links between nodes.

In practice, to implement topological expansion of size L, we re-
trieve the L nearest nodes with respect to the starting one. We begin by
retrieving 1-hop geographic nearest neighbors to the starting node, then
2-hops geographic neighbors and so on, until we retrieve L nodes.
Differently from previous strategies, all n-hop neighbors of the starting
node share the same “similarity”, which requires a mean to break ties

Fig. 3. Toy example showing the nodes retrieved by the different expansion strategies on a small knowledge graph, for expansion size L = 2.

10 http://data.dws.informatik.uni-mannheim.de/rdf2vec/
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since we want our expansion strategies to yield sorted vectors. To sort
nodes that have the same distance with respect to the starting one, we
leverage the similarity measures used in the spelling and latent-
semantic strategies. In detail, we have the (i) topological-spe
strategy, when the sorting criterion is based on spelling (i.e., the edit
distance between entities names), and the (ii) topological-lat
strategy, when the sorting criterion is based on latent semantic simi-
larity (i.e., the cosine similarity between rdf2vec vectors). Interestingly,
these two strategies can be seen as the combination of two orthogonal
sorting criteria – namely, topology and either spelling or latent semantic
similarity. Fig. 3c and d show the results of our topological expansions,
when applied to the toy example.

4.4. Evaluation

In the remainder of this section, we evaluate the effectiveness of the
different expansion strategies by measuring the extent to which they
increase the number of geotagged toponyms (i.e, toponyms for which
we retrieved geographic coordinates).

Experimental setup and evaluation metrics. As anticipated in Section
3.2.2, increasing geotagged toponyms contributes to raise geoparsing
recall. Because of this, we introduce an ad hoc metric to evaluate the
expansion strategies, called maximum theoretical recall, defined as the
recall we would obtain by always selecting the correct geographic co-
ordinates among all those retrieved by a given expansion strategy. In
practice, the real recall also depends on the selection step, that might
erroneously discard correct geographic information retrieved via an
expansion strategy. We evaluate this facet in the next section, while
here we only focus on measuring geographic information retrieved via
expansion, that would not have been collected otherwise. The effec-
tiveness of the various strategies is evaluated as a function of the ex-
pansion size L. By definition, the maximum theoretical recall is a
monotonic non-decreasing function of L. Strategies are compared be-
tween one another, and with the baseline scenario where no expansion
is performed. In Fig. 4, the latter scenario corresponds to expansions of
size L = 0. Instead, we remind that expansions of size L = 1, despite
returning only 1 entity as in the no-expansion scenario (where only the
starting node is considered), produce improved results since expanding
forces to select geographic entities, independently of L. The following
results are obtained on the training split of our dataset, thoroughly
described in Section 6.1.

Results. Fig. 4a shows the results of the different expansion

strategies, when applied individually. Topological expansion with
spelling-based sorting (topological-spe) largely outperforms all
other strategies. With respect to the baseline scenario where no ex-
pansion is applied, topological-spe produces most of the recall
gain within the first expansion steps: +9.4% at L = 1 and +12.0% at
L = 2. This means that, assuming a flawless selection step, the sole
application of topological-spe∣L=2 would boost the overall geo-
parsing recall by 12%. This important finding proves our hypotheses
correct and motivates our experimentation on expansion strategies.
Largely boosting recall at small expansion sizes is a desirable feature,
since the complexity of the subsequent selection task dramatically in-
creases with L. For L ≥ 3 the incremental gain at each step is< 1%.
Nevertheless, topological-spe keeps retrieving relevant geographic
information also for larger values of L, as demonstrated by its steadily
rising curve in Fig. 4a, up to a recall gain of +26.3% at L = 50. All
other expansion strategies achieve significantly worse results, demon-
strating a lower capacity of retrieving relevant geographic information
from their exploration of the knowledge graph. The latent-se-
mantic strategy, based on rdf2vec node embeddings, achieves slightly
better results with respect to the remaining strategies for L > 10.
Notably, even the worst-performing strategy (i.e., spelling) yields a
recall improvement of +2.0% at L = 1 and +2.9% at L = 2, further
supporting the usefulness of this approach.

Complementarity of expansion strategies. The proposed strategies are
diverse and largely orthogonal. As such, they potentially return very
different sets of entities for the same input. We are thus interested in
evaluating the extent to which two different strategies can complement
each other by retrieving complementary information. In other words,
two strategies could be individually weak, but when used simulta-
neously, they could nonetheless provide large amounts of relevant in-
formation. To evaluate this facet, we consider the output of all expan-
sion strategies as sets (instead of ordered vectors) of entities. Then, for
each combination of two different strategies, we compute the Jaccard
distance dJ between the sets of retrieved entities. The higher is dJ,
which is defined in the [0,1] range, the more diverse are the entities
retrieved by the two strategies. In turn, a large dJ would support their
combined application. Fig. 4b shows results of this experiment, as a
function of the expansion size L. As shown, no combination of strategies
achieves a large Jaccard distance, with all combinations laying in the
region of dJ < 0.2. The best results are achieved by spelling
+topological-lat and by spelling+latent-semantic.
However, the overall results of this experiment suggest that naïvely

Fig. 4. Performance evaluation of the proposed expansion strategies, when applied individually and jointly, as a function of the expansion size L.
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combining different strategies does not produce outright better results.
Given the results of the experiments with the different expansion

strategies, in the remainder of our work we perform the expansion step
of GSP by applying the topological expansion with spelling-based
sorting (topological-spe), which achieved remarkable results also for
low L values.

5. Best candidate selection

Given a set of L candidate geographic entities retrieved by an ex-
pansion strategy, the goal of the selection step is to choose the best
candidate for geotagging the input document. Based on our problem
definition, good candidates are those whose geographic distance dg

from the ground truth coordinates is T< . In fact, all candidates that
verify this assumption yield a true positive prediction at evaluation time.
Among these, the best candidate is arguably the one with the lowest
geographic distance from the ground truth.

5.1. Candidates labeling

As anticipated, we cast the selection problem as a regression task
where we estimate a confidence score for each candidate, and we
choose the candidate with the highest score. For any given candidate
retrieved by an expansion strategy, its ground truth confidence score c
should reflect its quality with respect to the ground truth coordinates.
In this way, a regression model trained to estimate c scores would in
fact produce a geographic ranking of the candidates. We leverage these
observations by assigning a ground truth confidence score c = 0 to
candidates whose distance from the ground truth coordinates is

Tdg , as shown in the example of Fig. 5. Instead, all candidates
whose T<dg are assigned a positive score. In particular, the nearest
candidate to the ground truth coordinates has c = L, the second nearest
has c = L − 1, and so on.

5.2. Feature engineering

In the previous section we described how ground truth labels for the
regression task are assigned. Now, we list and describe the features for
our regression model (i.e., our regressors). Table 1 lists and briefly
describes the features that we compute for each candidate. Each feature
aims at measuring the relations between the candidate and (i) the
starting node given by the semantic annotator, (ii) the token(s) of the
input document that were linked to the starting node by the annotator
(henceforth called the anchor), and (iii) the overall context (including
the anchor's context in the input document and the nodes context in the
knowledge graph). Notably, our features do not leverage any geo-
graphic information, implying that we aim to estimate the geographic
quality of candidates based on other characteristics (i.e., their relations
with the starting node, the anchor and their context). In the following

and in Table 1, we group features according to the type of information
they convey.

Annotation & expansion features (A&E). These features are based on
the confidence with which the semantic annotator linked the anchor to
the starting node in the knowledge graph, and on the distance traversed
by the expansion strategy to retrieve the candidate. A large annotation
confidence usually implies that the starting node already represents a
good candidate for geoparsing. Conversely, a poor confidence is a proxy
for disambiguation errors. In that case, considering other entities may
be advantageous. Similarly, the further the expansion moves away from
the starting node, the less the retrieved candidate is semantically re-
lated to it. As a consequence, large distances may discriminate non
pertinent resources.

Spelling features (SPE). Spelling features are designed to capture the
spelling characteristics of the anchors and of the entity names, both
separately and compared. The rationale behind this class of features is
that it is unlikely that the name of a good candidate is completely un-
related to the anchor. At the same time, a high similarity between the
candidate and the starting node reflects a possible disambiguation error
of the annotator. Finally, location mentions often start with uppercase
letters. Hence, we consider their presence in the anchor as possible
proxies of location mentions. All these features can be computed solely
from the anchor string and the candidate URL, both of which are re-
turned by the semantic annotator.

DBpedia features (DBP). This class of features considers the content
and the semantic characteristics of the candidate in the reference
knowledge graph (i.e., the English DBpedia). In particular, we leverage
the DBpedia ontology to understand the resource type of the candidate
(e.g., place, event, activity, agent), with a specific focus on places.
Moreover, we measure the centrality of the corresponding node within
the graph. Finally, we estimate how much its descriptive abstracts are
related to the anchor in the input document.

Syntactic features (SYN). We leverage natural language processing
(NLP) techniques to carry out a syntactic analysis of the input text,
assigning tags to the anchors according to their syntactic role (e.g.,
nouns, verbs, etc.). In fact, valid location anchors are more likely to
correspond to specific syntactic tags such as nouns, with respect to
other tags (e.g., verbs, conjunctions). In detail, we perform two types of
syntactic analysis: (i) part-of-speech (POS) tagging and (ii) text
chunking. POS tagging analyses the text word by word, considering a
fine-grained set of 50 possible tags. Instead, text chunking identifies and
tags syntactically correlated groups of words, with a coarser-grained set
of 10 possible tags. We obtain POS and chunking tags, together with
their respective confidence scores, by adopting the state-of-the-art NLP
framework FLAIR11 [40].

Named Entity features (NER). Named Entity Recognition (NER) is a
task that aims to locate NE mentions in unstructured text and to tag
them with predefined categories (e.g., persons, organizations, loca-
tions). Similarly to syntactic features, we follow the idea that NER tags
corresponding to the category location are good proxies for valid an-
chors, whereas anchors tagged differently should be discarded for
geoparsing tasks. Again, we leverage FLAIR to perform the NER task on
our input texts, obtaining NER tags with the respective confidence.
Notably, many state-of-the-art geoparsing techniques are based on NER
to identify toponyms in texts [33,37,46].

Latent features (LAT). The last group of features leverages state-of-
the-art embeddings techniques designed for texts and graphs, in order
to estimate the latent similarity between the candidate and, respec-
tively, the anchor and the starting node. In Section 4.2 we introduced
rdf2vec node embeddings [42] as a profitable mean to retrieve and sort
candidate entities for expansion. Here, we leverage the same idea for
estimating the similarity between the candidate and the starting node.
To do so, we simply compute the cosine similarity between the

Fig. 5. Assignment of regression labels to candidates retrieved by an expansion
strategy of size L = 5.

11 https://github.com/flairNLP/flair
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respective rdf2vec vectors. Then, in order to assess the semantic simi-
larity between the candidate and the anchor, we leverage contextual
word embeddings, and in particular their state-of-the-art implementa-
tion BERT12 [41]. Word embeddings are dense, continuous re-
presentations of words, designed to capture their distributional and
semantic properties. While traditional approaches assign a unique
vector to each word, contextual word embeddings address the problem
of polysemy by computing word vectors depending on the specific
context in which words appear. Here, we are interested in assessing
how much the concept addressed by the anchor in the input text is
related to the candidate entity. Hence, we apply BERT to the input text,
extracting the embeddings vector corresponding to the anchor. This
vector captures the semantic properties of the anchor with respect to
the specific context in which it appears. Similarly, we also apply BERT
to the candidate's short abstract, extracting the vector corresponding to
the first occurrence of the resource name in the abstract. We obtain an
embeddings vector representing the candidate within its abstract. Fi-
nally, we compute the cosine similarity between the two aforemen-
tioned vectors, thus assessing the semantic similarity between the
candidate and the anchor. This feature can help our regression model to
address polysemy, by providing different representations of the same
tokens appearing in different contexts and by estimating latent se-
mantic similarities between candidates and their corresponding an-
chors.

5.3. Regression algorithms

To train our regression models we resort to state-of-the-art machine
learning algorithms based on decision trees. In detail, we experiment
with the 3 following algorithms: (i) Random Forest (RF), (ii) Gradient
Boosting Decision Trees (GBDT), and (iii) Dropouts meet multiple
Additive Regression Trees (DART). RF is a well-known ensemble
learning technique based on multiple decision trees. The different trees
are trained in parallel, each one receiving as input a random sample of
the training instances and of the available features, implementing the
so-called bagging approach. The outputs of the trees are aggregated by a
suitable ensemble method. The bagging approach is able to mitigate the
model variance and possible overfitting, making RF an efficient and
accurate technique. GBDT implements the ensemble learning paradigm
in a completely different way. During the training phase, GBDT grows a
sequence of weak learners (i.e., shallow trees), in which each weak
learner focuses on correcting the residual errors of the current model
approximation. By aggregating the weak learner outputs, GBDT gen-
erates a strong learner. GBDT often outperforms RF in terms of predic-
tion performance, but it is more computationally expensive and more
prone to overfitting. The last algorithm with which we experiment is
DART. It modifies an ensemble learning approach similar to GBDT by
introducing dropout, a feature borrowed from deep learning. In this
context, dropout consists in randomly dropping trees. This strategy
proves useful to prevent trivial trees and to mitigate overfitting, but it
has a negative impact on computational efficiency [58].

We implemented all the aforementioned algorithms with the
Microsoft's LightGBM13 framework, representing the current state-of-
the-art for tree-based classification, regression and ranking [39].

5.4. Evaluation

Experimental setup. We train our regression models using the training
set described in Section 6.1. For each algorithm, we adopt Randomized
Search Cross Validation (RSCV) to explore the hyper-parameters space
and optimize algorithms settings. We resort to RSCV since it is more
efficient than grid search or manual search, especially in the presence of

hyper-parameters sampled from continuous distributions [59], as in our
case. Tree-based algorithms are also known for variable, non-determi-
nistic behaviors, resulting in a certain amount of variance in their
performance across different runs. To account for this behavior, we
repeat each experiment 10 times, reporting mean and standard devia-
tion of the results, to gain a more reliable estimation of their perfor-
mance.

At the beginning of this section we explained that the best candidate
is simply chosen as the one with the highest estimated confidence score
c . However, we enforce an additional constraint in order to provide
more accurate results. In particular, we discard those candidates whose
score <c cth. The value cth represents a confidence threshold that al-
lows to prune predictions generated with a very low confidence. We
calibrate cth to the value that maximizes the model's F1 on the valida-
tion set, specifically created for this purpose. Finally, the obtained
models are evaluated on the test set with a fully blind approach.
Messages ti belonging to validation and test sets are never used to train
the regression models, thus mitigating the risk of overfitting when we
calibrate the confidence threshold cth, and when we evaluate the model
performance.

Evaluation metrics. We evaluate each selection model as a combi-
nation of the related regression and filtering steps. Since the selection
concludes the GSP's analysis pipeline, the most natural choice is to
evaluate it according to the same metrics used for the overall geopar-
sing task. Hence, we adopt the precision, recall and F1 metrics, as de-
fined in Section 3.1.

Results. In Fig. 6, we present a performance comparison of the dif-
ferent regression algorithms for the selection task, as a function of the
expansion size L. In particular, Fig. 6a, b and c report the trends of the
evaluation metrics for 0 ≤ L ≤ 20. Instead, Fig. 6d, e and f provide the
percentage gain/loss attributable to the expansion step (thus, for
L > 0) with respect to the case without any expansion (L = 0). Each
point in the figures represents the mean scores obtained on the 10 runs,
while error bars represent the corresponding standard deviation.

A first consideration regards the whole GSP approach. As expected,
the expansion and selection steps provide complementary contribu-
tions. In fact, as the expansion size L grows, so does the overall geo-
parsing recall, as visible in Fig. 6b and e. Depending on the algorithm
and the expansion size, the improvement in recall ranges from +21% to
+42%. This result confirms our starting motivation of using expansion
for enriching the set of candidate entities from which to extract perti-
nent geographic information. It also confirms our previous findings
related to the maximum theoretical recall of the different expansion
strategies. However, as shown in Fig. 6a and d, expanding also hinders
precision, given the higher likelihood of false positive predictions. Hence
the need for an accurate selection step to mitigate losses in precision. In
our experiments, such losses range from −2% to −12%. As a con-
sequence of these results, the overall balance achieved by GSP is very
positive, meaning that the striking recall gain largely outweighs the
relatively small precision loss. This is demonstrated by the F1 trends,
presented in Fig. 6c and f. Although the previous considerations hold
for all regression algorithms, GBDT achieves consistently better results
with respect to RF and DART. In particular, GBDT achieves the best
global result with F1 = 0.665 (resulting in a +19% F1 gain) at the
expansion size L = 14. This result corresponds to precision =0.737
(−7%) and recall =0.606 (+40%), confirming our previous point.

Finally, Fig. 6c highlights the existence of a performance plateaux
for L ≥ 4, revealing a sort of “saturation” in the learning process at
larger expansion sizes. This effect may be due to the shortage of training
examples for which good candidates are retrieved only at large ex-
pansion sizes. In turn, this shortage of training examples prevents our
models from effectively learning how to recognize them. Larger anno-
tated datasets may allow to delay this plateaux, resulting in additional
performance improvements for large expansion sizes.

Building on our results so far, from now on we consider GSP with its
best configuration resulting from the adoption of topological expansion

12 https://github.com/google-research/bert
13 https://github.com/microsoft/LightGBM
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with spelling-based sorting and the GBDT algorithm for the selection
step. Expansion size is set to L = 14.

6. Geoparsing results

In this section we advance our thorough analysis of GSP's geopar-
sing results. Firstly, we present the details of our dataset. Then, we
compare the best configuration of GSP with several baselines, with 2
state-of-the-art geoparsing algorithms, and with our previous tech-
nique. Finally, we provide additional results on GSP's predictions, both
in terms of identifying the most informative features for the selection
task and of assessing the spatial granularity of our predictions.

6.1. Dataset

In Section 1, we underlined the importance of the geoparsing task to
properly integrate OSN data in decision support systems. Although
geoparsing techniques can process any kind of texts (e.g., news articles,
emails), we remarked the challenges posed by OSN user-generated
content, which is characterized by short texts, poor context and use of
jargon and colloquial expressions. For these reasons, we train and
evaluate our technique on a dataset composed of OSN user-generated
posts.

In particular, we use the official dataset of the 2016 Named entity
recognition and linking challenge (NEEL16).14 This well-known, re-
ference dataset includes 9289 English tweets, extracted from a corpus of
over 18 M documents, covering several noteworthy events from 2011 to

13, and a set of hashtags from 2014 to 15. Notably, NEEL16 challenge
organizers provide annotations about mentions of places/locations,
enabling the usage of the dataset for geoparsing purposes. In particular,
each ground truth location is complemented with the corresponding
geographic coordinates as well as with the link to the corresponding
resource on the English DBpedia. The total number of locations is 5348.
Their distribution across tweets is very skewed, as shown in Fig. 7a.
Namely, 85.4% of the tweets do not mention any location, 10.1% of the
tweets mentions one location, and only 4.5% of the tweets mentions
multiple locations. Notably, locations are scattered all over the world,
as shown in Fig. 7b. Working at the world scale poses a severe challenge
to geoparsing methods, but at the same time it is a requirement for
many real-world applications. As a result, the NEEL16 dataset provides
a suitable playground for training and evaluating geoparsing techni-
ques.

Starting from the complete NEEL16 dataset, we obtain training
(64% of tweets), validation (16%) and test (20%) sets by performing a
stratified sampling over the number of locations per tweet. We also
include tweets without any mention of locations, because we want to
ensure that all evaluated techniques do not return false positive pre-
dictions for them. As a result of this sampling strategy, the total number
of locations is balanced across the obtained dataset splits. Moreover,
performing the split at the message level – and not at the single location
instance level – ensures that instances in the test set cannot affect the
model training and validation. In this way, we evaluate our models with
a fully blind test, correctly assessing possible overfitting. Our evaluation
for this work is more severe than the one used in our previous work [2],
thus explaining the differences in the reported performance.

Table 1
Grouping and brief description of the features used for the regression task. We specify categorical features, together with their cardinality, and case insensitive
features.

A&E 1 confidence: semantic annotator confidence score
2 hop: topological distance between the starting node and the candidate
3 expansion_rank: number of entities traversed by the expansion strategy to reach the candidate
4 expansion_rank_onlygeo: number of geographic entities traversed by the expansion strategy to reach the candidate

SPE 5 num_tokens_candidate_label: number of tokens in the candidate entity name
6 len_candidate_label: number of characters in the candidate entity name
7 edit_from_original_label: edit distance between the names of the starting node and of the candidate
8 num_tokens_anchor: number of tokens in the anchor
9 len_anchor: number of characters in the anchor
10 uppercase_in_anchor: number of uppercase characters in the anchor
11 edit_from_anchor: edit distance between the candidate entity name and the anchor
12 edit_ratio_from_anchor: ratio between edit_from_anchor and len_anchor
13 num_tokens_ratio: ratio between num_tokens_candidate_label and num_tokens_anchor
14 len_ratio: ratio between len_candidate_label and len_anchor

DBP 15 superclass: DBpedia ontology class of the candidate entity, derived from owl:Thing subclasses [categorical, 5]
16 num_of_superclasses: number of superclasses of the DBpedia candidate entity
17 num_of_classes: number of classes of the DBpedia candidate entity
18 page_degree: node degree of the DBpedia candidate entity
19 page_length: number of characters contained in the corresponding Wikipedia article source
20 anchor_in_short_abstract: num. Occurrences of the anchor in the short abstract of the candidate entity
21 anchor_in_short_abstract_ci: num. Occurrences of the anchor in the short abstract of the candidate entity [case insensitive]
22 anchor_in_long_abstract: num. Occurrences of the anchor in the long abstract of the candidate entity
23 anchor_in_long_abstract_ci: num. Occurrences of the anchor in the long abstract of the candidate entity [case insensitive]

SUN 24 pos_tag: part-of-speech (POS) tag of the anchor [categorical, 50]
25 chunk_tag: chunking tag of the anchor [categorical, 10]
26 pos_confidence: POS-tagging confidence
27 chunk_confidence: chunking confidence

NER 28 ner_tag: named-entity recognition (NER) tag of the anchor [categorical, 5]
29 ner_confidence: NER-tagging confidence

LAT 30 rdf2vec_similarity: cosine similarity between the starting node's and the candidate's rdf2vec vectors
31 bert_similarity: cosine similarity between the anchor's and the candidate's name BERT vectors

14 https://aclweb.org/portal/content/named-entity-
recognition-and-linking-challenge
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6.2. Performance comparisons

Benchmarks. Performance comparisons are aimed at evaluating the
performance of our proposed GSP technique, with reference to those of
baselines and other advanced geoparsing systems. The first baseline
that we implemented (labeled naïve geoparser), leverages the geopy
Python package15 as an interface to the online ArcGIS geocoding

service.16 This service is designed to geocode well-formatted addresses,
but it also includes a simple free-text processing feature. As such, it
represents a rather simplistic approach for geoparsing short and noisy
documents. The second baseline (labeled NER + geocoder) is a basic
implementation of the NER + gazetteer lookup approach. We imple-
ment the NER step using the well-known polyglot natural language
processing framework.17 Then, we perform the gazetteer lookup step by

Fig. 6. Performance comparison of different regression algorithms for the selection task, when varying the expansion size L.

Fig. 7. NEEL16 dataset profiling.

15 https://geopy.readthedocs.io/ 16 https://developers.arcgis.com/features/geocoding/
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means of the Google Maps geocoder. Adding to the 2 simple baselines,
we also compare our results against 2 state-of-the-art geoparsers. As
anticipated in Section 2, we include as benchmarks the techniques
proposed by Middleton et al. [33] and by Halterman [37]. Both tech-
niques leverage the common approach to geoparsing based on Named-
Entity Recognition and geographic gazetteer lookup. Middleton et al.'s
technique returns the location tokens extracted from the input text,
delegating the user to query the OpenStreetMap gazetteer by means of a
dedicated API service. Instead, Halterman's technique directly performs
also the disambiguation step, returning the location coordinates. In fact,
this model is more sophisticated than that by Middleton et al., lever-
aging a deep learning neural network classifier to select the proper
instances in the GeoNames gazetteer. In both cases, once the location
named entities are linked to the proper gazetteer entries, the system
returns the related coordinates. Finally, we also include our earlier
geoparsing technique [2] in the comparison. Here, our goal is that of
evaluating the effectiveness of the novel expansion and selection steps,
with respect to the simpler approach developed in [2].

Evaluation metrics and experimental setup. We evaluate geoparsing
techniques according to the precision, recall and F1 metrics, described in
Section 3.1. Moreover, we introduce also the elapsed time, defined as the
average time that a geoparsing technique needs to process a single
tweet belonging to the test set. All the compared techniques are im-
plemented with the Python language and deployed on a machine
equipped with an 8-core CPU featuring 50Gb of RAM, and a Nvidia
Tesla K80 GPU.

Results. Table 2 reports a thorough comparison of geoparsing re-
sults. As shown, GSP outperforms all competitors. Both baselines per-
formed rather poorly, as expected for a challenging task such as geo-
parsing. However, surprisingly the NER + geocoder baseline managed
to beat the system in [33]. An analysis of the results reveals that this is
mainly due to the need to perform geoparsing at world-level, which
made it challenging for [33] to correctly disambiguate detected topo-
nyms. As we discussed in Section 2, many geoparsing systems based on
gazetteer lookup need to be constrained to operate in a geographically
limited area, for maintaining satisfactory performance. In our case, this
could not be done, since the NEEL16 dataset is geographically un-
constrained, including locations from all over the world, as shown in
Fig. 7b.

When compared to previous geoparsing techniques, the F1 gain of
GSP ranges from +269.44% with respect to Middleton et al. [33] to
+20.25% with respect to our previous technique [2]. The improvement
from our previous attempt at the geoparsing task and GSP is determined
by our higher recall. Indeed, a relatively low recall was the limiting
factor in [2]. Having improved on the recall, our proposed GSP tech-
nique managed to obtain overall better results. In turn, this motivates
our design choices related to the expansion step. Anyway, the large

recall gain is partly counterbalanced by a slightly reduced precision
(−9.90%), demonstrating the difficulty at correctly selecting the best
entity among those retrieved during the expansion step.

The price for more accurate predictions is slightly paid in terms of
time efficiency. The last column of Table 2 shows that GSP (both in its
present and earlier version) needs around 0.3 s to geoparse a single
tweet, compared to 0.05 of Halterman and 0.01 of Middleton et al.
Despite being computationally more demanding, GSP is nonetheless
suitable for real-time applications, also considering the possibility to
deploy multiple parallel instances in those cases requiring high
throughput.

6.3. Feature importance analysis

In Fig. 8 we report the results of the feature importance analysis for
the best configuration of GSP (i.e., the one using GBDT for the selection
step). Adopting a standard approach, we compute the feature im-
portance as the sum of the information gain provided by a feature each
time it triggers a split in one of the trees composing the model. In
particular, Fig. 8a shows the importance of the top-15 individual fea-
tures. Interestingly, all feature groups make it to the top-15, meaning
that each group conveys useful information for the model. The named-
entity recognition (NER) tag is the most important feature in our model.
This further confirms the validity of previous approaches to geoparsing,
based on NER tagging and gazetteer lookup. As expected, also features
measuring the difference between the anchor and the entity name play
an important role (edit_from_anchor and edit_ratio_-
from_anchor). The third most-informative feature is a latent semantic
feature – namely, the one computed out of rdf2vec node embeddings.
This feature measures the semantic difference between the starting
node returned by the semantic annotator and the candidate obtained
via expansion.

By leveraging information gain's additivity, we also collectively
evaluate feature importance by group. Fig. 8b reports the results of this
analysis, showing that spelling (SPE) and DBpedia (DBP) features ac-
count for the majority of contributions. This result confirms the im-
portance of modeling the intrinsic properties and the similarities of the
anchors and the entities. In order to avoid possible biases due to the
numerosity of certain feature groups with respect to others, we also
normalize the feature importance of each group by its cardinality. After
normalization we observe a different ranking, dominated by the more
sophisticated, information-rich NER and by latent semantic features
(LAT). Instead, syntactic (SYN) features seems to provide the smallest
contribution throughout all experiments. We underline that these ob-
servations are intended to shed light on the overall learning process. In
fact, a rigorous assessment of the feature importance should account for
possible correlations between features, that is beyond the scope of this
analysis.

Table 2
Geoparsing performance comparison between GSP, 2 baselines, and 3 state-of-the-art geoparsing techniques. Best results for each metric are shown in bold font.
Beside each metric, we report in parentheses the % gain/loss of each technique with respect to GSP. All differences between GSP and the other benchmarks are
statistically significant, except for the elapsed time with respect to Avvenuti et al.

Technique Evaluation metrics

Precision ( ±%) Recall (± %) F1 ( ±%) Elapsed time (± %)

Benchmarks
Naïve geoparser 0.033 (−2133.33) 0.157 (−285.99) 0.054 (−1131.48) 0.811 s (+ 60.30)
NER + geocoder 0.300 (−145.67) 0.267 (−126.97) 0.282 (−135.82) 0.113 s (− 184.96)
Middleton et al. [33] 0.123 (−499.19) 0.333 (−81.98) 0.180 (−269.44) 0.011 s (− 2827.27)
Halterman [37] 0.320 (−130.31) 0.299 (−102.68) 0.309 (−115.21) 0.049 s (− 557.14)
Avvenuti et al. [2] 0.818 (+9.90) 0.417 (−45.32) 0.553 (−20.25) 0.321 s (− 0.31)

Our contribution
GSP 0.737 0.606 0.665 0.322 s

17 https://polyglot.readthedocs.io/
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6.4. Place granularity analysis

A favorable feature of GSP is the possibility to leverage knowledge
graphs and the Linked Data ontology to infer the granularity of the
predicted locations. Following previous works [33], we define 4 gran-
ularity levels: (i) points of interest (POIs), roughly corresponding to
buildings and other notable landmarks; (ii) cities; (iii) regions and
counties, and (iv) countries. To infer the granularity level of a given
prediction by GSP, we analyze the DBpedia ontology of the geographic
entity providing the coordinates. For example, if we geotagged a token
with the entity Bath, our prediction would be at the city-level, since
the DBpedia resource for Bath has rdf:Type=dbo:City.18 By fol-
lowing a similar approach, we are able to assess the granularity of each
distinct ground truth instance in the NEEL16 dataset, since ground truth
annotations are complemented with DBpedia URLs. We can thus per-
form a granularity-aware evaluation of GSP, by considering as true
positives only those predictions matching both the ground truth co-
ordinates and the corresponding granularity level.

We show the results of this more severe evaluation in Fig. 9a. The
overall results are still satisfactory, with good performance at the
country (F1 = 0.670) and city (F1 = 0.600) granularity levels. Con-
versely, the performance slightly drops for regions (F1 = 0.458) and
POIs (F1 = 0.491). To explain this result, in Fig. 9b we provide the
distribution of the ground truth granularity levels in the dataset. As
shown, regions and POIs are significantly underrepresented. This pos-
sibly explains why our model struggled to learn instances at these
granularity levels. In summary, GSP shows suitable performance in
location granularity prediction, although there is room to improve it by
enriching and balancing the training dataset.

7. Discussion

The geoparsing results of the proposed GSP technique, and the
comparison with baselines and other state-of-the-art techniques, de-
monstrated the effectiveness of our design choices, and the favorable
compelling performance of GSP. Building on these results, in this sec-
tion we discuss some additional features of our technique, with a spe-
cific focus on its robustness, generalizability, extensibility and applicability.

7.1. Robustness and generalizability

Although evaluated on tweets, our technique does not make any
assumption on the input text, and it does not exploit any peculiar

feature of Twitter nor of OSNs in general. Because of this, it is suitable
to geoparse any textual document, including longer texts such as news
articles, emails and blog posts. The choice of evaluating our technique
on the OSN-derived NEEL16 dataset stems from the will to test GSP on
challenging texts. In fact, OSN user-generated content – and tweets
specifically – are known for their shortness, lexical sparsity, and for the
use of abbreviations, jargon and colloquial expression. As such, they
represent a proving ground for any text mining technique. Given this
scenario, our already promising results are likely to further improve,
should GSP be applied to geoparse longer and well-written texts. In
addition to the challenges related to the analysis of short OSN texts, the
NEEL16 dataset also presents other pitfalls. Indeed, it considers multiple
different events and topics, spread across a large geographic area (as
shown in Fig. 7b), and encompassing several years.

In conclusion, the positive results obtained on this challenging and
diverse evaluation dataset guarantee that GSP can generalize well also
to other texts and topics, thus proving its robustness and general-
izability. Results of the application of GSP in-the-wild are thus likely to
remain very positive. As a final remark on robustness and general-
izability, we report that both GSP and its ancestor [2] correctly geo-
parse the challenging toy example of Section 4, whereas only the
NER + geocoder succeeds among all other benchmarks.

7.2. Extensibility

Contrarily to other geoparsing techniques, GSP does not suffer from
the restriction to be applied to geographically-limited or predefined
areas. In fact, it can easily predict locations worldwide, as demonstrated
in our experiments. However, the model proposed in this work was
developed for processing English texts. This limitation does not derive
from our design choices, that are totally language-independent, but it
only depends on the availability of the language-specific components
used by GSP. In other words, our technique could be applied to docu-
ments in any language, without any modification, provided that certain
resources for that language exist. In particular, the first language-de-
pendent component used by GSP is the semantic annotator. At the time
of writing, the one used in our work (i.e., TagMe) processes English,
German and Italian texts. However, other well-known annotators, such
as DBpedia Spotlight,19 support as much as 12 languages with the
possibility to extend it to additional ones. Moreover, our technique
needs language-specific models for NER, chunking and part-of-speech
tagging, as well as for BERT and rdf2vec embeddings. These require-
ments are similar to those of many other text mining techniques, and

Fig. 8. Feature importance analysis for the best configuration of GSP, measured as the information gain provided by each feature in the regression model. We refer to
Table 1 for details about the features and the related groups and acronyms.

18 http://dbpedia.org/page/Bath,_Somerset 19 https://www.dbpedia-spotlight.org/

L. Nizzoli, et al. Decision Support Systems 136 (2020) 113346

14

http://dbpedia.org/page/Bath
https://www.dbpedia-spotlight.org/


they can be easily met. In fact, many natural language processing (NLP)
tools are available for the most widespread languages. As an example,
the NLP library polyglot supports from 16 to 196 languages, depending
on the task. Similarly, BERT features a multi-lingual model, presently
including 104 languages. Finally, an open-source library20 allows
training rdf2vec models for all existing DBpedias. This discussion high-
lighted which tools are needed to extend GSP to other languages, and
where to start for building a deployment in a specific language.

7.3. Applicability

Thanks to its previously discussed robustness, generalizability and
extensibility, the GSP technique proves suitable for integration in geo-
spatial decision support systems based on OSN data, allowing very
general and flexible settings. When empowered with GSP, those systems
benefit from a significantly increased amount of accurate and struc-
tured geographic data, provided at the most specific granularity avail-
able. The comparison with state-of-the-art benchmarks, provided in
Section 6.2, demonstrated remarkably higher performance of GSP. In
particular, methods based on NER + gazetteer lookup proved unable of
working at the world scale, mainly due to their rough disambiguation
approaches. This implies that such simple approaches can not be
profitably used for tasks such as monitoring epidemic spreading or in-
ternational tourism flows, contrarily to GSP. Furthermore, although the
higher complexity of GSP increases the time elapsed to process a mes-
sage with respect to the other benchmarks, it still allows for practical,
real-time applications. Notably, the suitability of a simpler version of
our geo-semantic-parsing technique for decision support systems was
already proved in [6]. When integrated in the referenced crisis mapping
system, GSP contributed to increase the fraction of georeferenced
tweets from a poor 5% to a remarkable 39%, thus significantly ex-
tending the coverage and improving the accuracy of crisis maps.

8. Conclusions and future works

Motivated by current limitations of existing geoparsing techniques,
we proposed Geo-Semantic-Parsing (GSP) – a novel technique for en-
riching text documents with structured geographic information. GSP
leverages semantic annotation to identify relevant portions of the input
text and to link them to pertinent entities in knowledge graphs, such as

DBpedia. Then, it exploits the information-rich and interconnected
nature of the knowledge graph to retrieve additional entities from
which to extract geographic information. To reach this goal, we devised
an expansion step that allows GSP to efficiently traverse the knowledge
graph. Finally, in a dedicated selection step, GSP selects the best entity
with which to geotag the input document by solving a regression task.
Extensive experimental results demonstrated the viability of our solu-
tion. In particular, GSP outperformed all state-of-the-art competitors
achieving F1 = 0.66 versus F1 ≤ 0.55 of other techniques. Due to its
robustness, generalizability and extensibility, GSP can be integrated in
geo-spatial decision support systems based on OSN data, empowering
them with accurate and structured geographic data, available in real
time. Notably, this kind of approach was able to increase the fraction of
georeferenced tweets from a poor 5% to a remarkable 39% in a real-
world crisis mapping setting.

Future works on geoparsing could investigate more sophisticated
methods to effectively combine different, mutually-orthogonal expan-
sion strategies, and possibly even multiple semantic annotators. As an
alternative approach, interested stakeholders could also develop se-
mantic annotators that are specifically designed to return pertinent
geographic entities, given the importance of geographic information for
many downstream tasks. Finally, an alluring line of research could in-
volve investigating end-to-end geoparsing techniques, developed on top
of state-of-the-art contextual word embeddings. In fact, word embed-
dings vector spaces are known to reflect spatial relationships between
words in their topology. As a consequence, it could be possible to map
the N-dimensional word embeddings vector space directly on the geo-
graphic space by learning a suitable projection function. Semantic
knowledge graphs provide the ideal playground to learn such models,
since they represent large corpora of textual documents. Moreover,
such documents could be considered as already annotated, thanks to
the hyperlink structure and the geographic information contained in
the semantic resources.
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