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A novel Agro-industrial IoT (AlloT) technology and architecture for intelligent frost forecasting in green-
houses via hybrid Artificial Intelligence (Al), is reported. The Internet of Things (IoT) allows the objects
interconnection on the physical world using sensors and actuators via the Internet. The smart system
was designed and implemented through a climatological station equipped with Artificial Neural
Networks (ANN) and a fuzzy associative memory (FAM) for ecological control of the anti-frost disaster
irrigation. The ANN forecasts the inside temperature of the greenhouses and the fuzzy control predicts
the cropland temperatures for the activation of five output levels of the water pump. The results were
compared to a Fourier-statistical analysis of hourly data, showing that the ANN models provide a temper-
ature prediction with effectiveness higher than 90%, as compared to monthly data model. Moreover,
results of this process were validated through the determination of the coefficient of variance analysis
method (R?).
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© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

According to reports on ecological disasters by environmental
freezing, frost damage is a powerful agent of geomorphic change
that forms ice on the internal plant tissue, damaging their cells
[27]. This geomorphic change depends on air temperature, relative
humidity and cooling depth in farmland, among other environ-
mental conditions [29] and the changes of greenhouse configura-
tions and arrangements can influence the inside microclimate
[24], to protect the crop against climatic adversity [15]. Recently,
ecosystems designs have followed a clever transformation for
increasing and improving the production [16], through Artificial
Intelligence (Al) to create smart, self-optimizing industrial equip-
ment and facilities [22] to meet the growing food demand world-
wide [10]. The new era will involve the use of smart farming
technologies, applications, and solutions to ensure better crops
and improve the food production [4]. The agroindustry tendency
is to use of sustainable greenhouse production with minimized
carbon footprint [20]. The research hypothesis of this present work
is that if we can regulate the microclimate environmental on
greenhouses from presence of an environmental frost, we can esti-
mate the use of water dispersion system on plastic wrap for freeze

E-mail addresses: alejandro.castaneda@uteq.edu.mx (A. Castafieda-Miranda),
vmcastano@unam.mx (V.M. Castafio-Meneses)

https://doi.org/10.1016/j.measurement.2020.108043
0263-2241/© 2020 Elsevier Ltd. All rights reserved.

the plasticized surface and keep thermal energy of greenhouse
[13]. The basic idea consists in the internal heat does not escape
due to thermal insulation or thermal capacitance caused by the
low plastic porosity at low temperatures [7,14]. A water sprinkler
system interacts with the greenhouse wrap forming an ice layer
on top the plasticized surface [12,30]. We can thus mitigate the
effect of drastic temperature changes on agricultural crops caused
by the frost environment external to the greenhouse, which is
transformed into an igloo. Accordingly, a smart frost control in
greenhouses through neural networks using an intelligent weather
station has been reported [3] and a Fourier-statistical analysis of
hourly data for predict humidity and temperature [2] has been pre-
sented [28,6,11,23]. Furthermore, the improved stock on IoT cellu-
lar communication for remote access without internet consists in
the capacity of collected and stored information on a web server.
Now, the frost occurs when the air temperature at ground level
falls below zero degrees, physically at that point any liquid under
normal conditions begins its freezing process [9,19]. Additionally,
the thermal conductivity of samples at temperatures near 0 °C
was measured for freeze damage estimations in a cold entity
[33,31]. Accordingly, humidity and dry cold directly affects the
plant tissue, destroying the internal cells and depending on the
thermal resistance of crops, can proceed to the cause irreparable
damage to cultivation or total destruction of plants [18,19],
whereas other typical crops (corn, bean, maguey, among others)
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show significant damage with important economic losses (50-80%
of total production). Some particular types of disastrous weather
phenomenon in central Mexico are black frosts, which have very
negative effects for agriculture and using heaters provokes that
stems and leaves of frozen crops does not appear [8,26]. Currently,
a new solar greenhouse with thermal storage is investigated, the
system that uses water solar heating to raise the air temperature
on greenhouses during cold winter nights [1,5,17]. However, the
main disadvantage of this thermal performance of a solar green-
house is in the coldest regions, where frost events may occur
regularly.

2. Materials and methods

The implementation and the study location of the embedded
intelligent system prototype in greenhouses is located in Tulan-
cingo of Bravo, on the Hidalgo State, Mexico, with geographic coor-
dinates: latitude, 20.0836300°, longitude, —98.3633200° in decimal

degrees and elevation of 2153.96 m above sea level. In this place,
various tomato species are grown and is the entity that contains
different variations of the type of earthly climate which presents
recurrent black frosts affecting yield. The flowchart of the process
is shown on Fig. 1.

2.1. The embedding hardware

The instrumentation process of smart farming is describing as
follows, a data base obtains the data from a meteorological station
and is sent remotely by an Xbee-Wifi wireless protocol (WRL-
12569 of Sparkfun manufacturer). The data captured is modified
by a protocol exchanger device, which is constituted by Intel Edi-
son (DEV-13024 of Sparkfun manufacturer) integrated hardware,
a Micro SD Card (64 Gb.) and a GSM/GPRS cellular network device
(CEL-13120 of Sparkfun manufacturer). The electric power supply
of the meteorological station and embedded internet of things sys-
tem is self-sustaining using renewable energies through solar cells

Telecommunications infrastructure

Activation of water pump

&

’, Internal temperature forecast.

i

Agroindustry

Fig. 1. The process flow diagram for embedded intelligent system prototype applied on greenhouses.
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that use a charge controller, a battery power of 12 V to 6 Ah and a
DC/DC converter (12 V/5 V). The external remote weather station is
implemented using a Weather Shield (DEV-12081 of Sparkfun
manufacturer), which data collects using wireless technology
information (LMR-12570 of Sparkfun manufacturer) and provides
data of barometric pressure, relative humidity, solar radiation
and temperature, and also has connections to sensors of wind
speed, direction, rain gauge and a GPS for the location (GP635T
of Sparkfun manufacturer). Technically, a weather shield contains
voltage regulators and signal translators for all devices, where they
are integrated to the variables of the weather station with inte-
grated computer platform, which contains an operation menu
accessed through a communication of serial port.

2.2. The embedding connectivity

The M2M smart cellular system is characterized by covering
greater distances and having more privacy and less vulnerabity
than other types of IoT systems, which is ideal for greenhouses that
are located in remote or rural areas that are isolated from the
urban area. The implementation of software for Internet of Things
(IoT) in the integrated system works as follows; the data generated
by the weather station is concatenated and sent by a wireless serial
protocol. The second part of the intelligent forecasting application
consists of implementing the crop protection focused in green-
houses. The intelligent frost irrigation management of the weather
phenomenon that transforms in an ecological disaster uses the
mathematical models proposed to predict the temperature limits
for the frost presence, as shown in Fig. 2.

2.3. The embedding software

The monitoring and control are obtained automatically or man-
ually according to the user’s availability through a website, which
integrates the different hardware and software solutions (https://
www.embeddedcastaneda.com/weather/weather.html).

2.3.1. Methodology for data collection
The data are captured is added by a protocols exchanger. The
data is manipulated and stored by an Intel Edison. The integrated

system has a Windows IoT operating system. The acquired data
is defragmented for use by the syntactic lexicon analyzer imple-
mented on the device. The acquired data is stored on an SD Card
using a text file database (*.txt), that is transformed into a Micro-
soft Excel (*.csv). The data is requested through a Global System
for Mobile General and Packet Radio Service (GSM/GPRS) cellular
communications, using a Wireless Application Protocol (WAP).
Furthermore, that generates a Transmission Control Protocol with
Internet Protocol (TCP/IP) using a virtual machine for the subse-
quent remote connection and the visualization of data to a website.

2.3.2. Methodology for data analysis

The embedded software that is used to analyze data, the data-
base is in Microsoft Excel (*.csv) on an SD card and the program-
ming language was used for data collection is C++ through a host
system running a Linux platform and an Intel Edison device is pro-
grammed as a neuroprocessor. Thus, the frost prediction in this
study uses artificial intelligence, specifically the combination of
neural networks and fuzzy systems through a web page. The con-
cept of prediction and behavior of frost involves different factors
such as: outdoor air temperature (Ty), relative humidity of outdoor
air (Ry, ), wind speed (W), solar radiation (S;) and relative humidity
of the inner air (Ry,); being the temperature of the air within the
variable output (T;). The temperature of the culture is also incorpo-
rated to determine the presence of frost in the form of a fuzzy
system.

2.3.3. Methodology for data validation

In addition to the usual quantitative measures such as the
mean, mode and standard deviation used to evaluate the perfor-
mance of a model, the following statistical indices were used to
select the best ANN architecture based on the difference between
the real and the estimated values. The coefficient of determination
(R2) by the percent standard error of the prediction is indicated
according to the Eq. (10). For a perfect match, the coefficient of
determination (R2) should be close to 1.
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Fig. 2. Block diagram of the anti-frost water system for smart frost prediction.
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Fig. 3. The flow chart of ANN model uses to predict the interior temperature of greenhouse.

where the estimated value is defined for y;, the actual value is cal-

culated by y; and the average of actual data set is y;, all previous
with the consideration of i observations.

3. Theoretical considerations

The adaptive network-based fuzzy inference system (ANFIS) is a
kind of artificial neural network that is based on the Takagi-
Sugeno fuzzy inference system. In the present method, it is differ-
entiated from ANFIS by the implementation and structure of the
fuzzy system, where it considers the inputs of ANN temperature
prediction and the cropland temperature, to activate an anti-
disaster frost irrigation on the greenhouse plastic surface through
a fuzzy controller. The mathematical models proposed are to pre-
dict the interior temperature of an greenhouse and the process is
based on the analysis of the following input variables: outside air
temperature (T,), outside air relative humidity (Ry,), wind speed
(W5), global solar radiation flux (S;), inside air relative humidity
(Rpi); being the inside air temperature the output variable (T;), as
shown in the flowchart of Fig. 3. Furthermore, once the tempera-
ture has been predicted, the diffuse system is considers activating
the ecological anti-disaster irrigation before freezing.

3.1. Artificial Neural Networks (ANN)

In recent years, there has been much research on the Artificial
Neural Networks (ANNs). ANNs are algorithms capable of learning
from experience based on signals or data from abroad, using a par-
allel, distributed and adaptive computing framework. The imple-
mentation and adaptability to the environment is through
software programmed into embedded software devices. These
devices present calculation parallelism and distributed memory.
According to their definition, ANNs are forecasting tools, due to a
mathematical structure capable of describing complex nonlinear
relationships between input and output data sets. Therefore, their
ability to learn is often defined as a process that optimizes the per-
formance of the network with respect to a given task. ANNs can be
considered as algorithms to study and model any given data set.
They are a non-standard tool of statistical analysis; through which
it is possible to study and make predictions about any data set with
ANNSs. The propagation rule used consists of linearly combining
inputs and synaptic weights. Mathematically, this model is
described by:

N M
y=F (Z > D Xty + buxu) @

i1 j=1

From Eq. (1) a matrix node [jxi] of j neurons per i inputs are
defined. Consequently, each neuron of network receives a thresh-
old forwyy;, wherei=1---N for j=1---M neurons. Consider that
x is the input vector and by is a constant called bias of each neu-
ron and wyy; is a vector of synaptic weights, F is the sigmoid func-
tion of activation [3]:

FX)=1/(1+¢€") 3)

The basic idea of neural networks consists in the learning is a
change to the system in order to improve a goal. Suppose we have
an objective function F(w), which measures how well a system is
currently performing. Nevertheless, the learning is change the
synaptic weights, i.e., correspondingly for w — w + Aw. Thus, the
change in performances is

AF = F(® + Aw) — F(®) (4)

Then, if we assume that F is smooth, we can estimate AF as a
function of the gradient of F with respect to w as follows:

AF = A" - V,F(w) 5)

However, if we want to improve performanceF, then AF > 0.
Moreover, the gradient based algorithms propose that we have to
take small step Aw in the direction of gradient, i.e., the direction
of the greatest level of improvement. So, if we take a small step
7, we have the change in performance defined as:

AF = yVwF(W)' - VyF(W) (6)

According to this definition, from Eq. (4), that obviously is
greater or equal to zero. The training of an ANN is done through
a learning algorithm based on the backward propagation (BP)
which is a supervised algorithm. This method requires a set of
training patterns, and their corresponding desired outputs, and
autonomously adjusts the connection weights between the neu-
rons. The correction of the weights is done in accordance with
the imposed learning rules and, therefore, obtains a unique knowl-
edge of the data [25].

3.1.1. Artificial neural networks algorithm

This section briefly describes the supervised version of the ANN.
The parameter setting of a model used to represent a system is
called System Identification. The methods of identifying the system
are often classified into two main categories: gray and black box
models. Compared to direct modeling, which is governed by the
physical laws of the system, these models are adequate to
construct a mathematical model where the mechanism of the
system is not well understood or where its properties change
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unpredictably [21,32]. The gray box methods are a formulation of
the model in which the parameters are traceable to real physical
principles. The black box method relates the mathematically mea-
sured inputs to the measured outputs in which the parameters of
the model are transformed without any traditional physical mean-
ing. Black box models do not require prior knowledge of the sys-
tem, which can be an advantage if the information on the
dynamics of the system is limited; however, it involves the prob-
lem of selecting a suitable structure for the model. Another advan-
tage of this type of models is the possibility of obtaining a broad
model with a relatively small set of measurements. The model
can be improved as new data is entered. Compared to a gray box
model, the black box approach requires less time and effort to
develop. Generally, in a black box model, non-statistical methods
or statistical methods are used to formulate the relationship
between inputs and outputs. The ANN Model is determined by
three factors: (1) the topological structure of the network; (2) neu-
ronal characteristics; and (3) the algorithm of raining. The ANN
implemented in this study is a Multilayer Perceptron (MLP) that
includes an input layer of 5 nodes, a hidden layer with a variable
number of hidden nodes and an output layer that has only one
node as shown in the Figs. 2 and 3. Thus, the training of an ANN
is done through a procedure called learning algorithm based on
the backward propagation (BP) which is a supervised algorithm.
This method requires a set of training patterns, and their corre-
sponding desired outputs, and autonomously adjusts the connec-
tion weights between the neurons. The training rule for
backward propagation between layers is described by Eq. (7),
where p layer proceeds to q layer, AW, is the adjustment of synap-
tic weights between layers, o is a correction increase, E, is the
squared error between the desired responses (r,) and the current
responses (04) of the nodes in g layer, n, is the number of nodes
of the g layer and the factor 1/2 is the product of the error
derivative.

OF, 1/25°3%, (rg - 0)°
AW, = wt(awjp) = a(%’) (7)

Hence, to develop an adequate ANN is necessary to work with
several iterations, even to solve problems with little complexity,
to collect a smaller number of iterations together with the reduc-
tion of time in ANN learning. Although used successfully in many
real-world applications, the standard backward propagation algo-
rithm (SBP) suffers from a number of shortcomings; one of them
is the speed at which the algorithm converges. The reduction of
the number of iterations and the acceleration of the learning time
of neural networks are topics of recent research; some improve-
ments of the SBP algorithm are the conjugate gradient. Correction
of the weights is made according to imposed learning rules and
thereby, obtains unique knowledge from the data [3]. One criticism
of the ANN model of this reference work is the linearization
method, because the attribute vectors lose their discriminant
capacity, since the different pattern vectors could originate identi-
cal values once the linearization operation is improved. An
improvement to this feature avoids the execution of the linear
functionality, through the adaptation and implementation of the
fuzzy map in the present work. The complexity of the weather dur-
ing the spring, summer, autumn and winter seasons, using the
minimum daily temperature (°C) for different months are shown
in the Table 1 and the climatic variables are plotted in the Fig. 4.
The modified parameters of ANN in different months of the year
are shown in Table 2.

3.2. Fuzzy logic systems

The technique called fuzzy logic allows treating vague and scat-
tered information in terms of fuzzy sets, these allow you to define
whether something is included in them by assigning a value
between one and zero or is not in a zero the mathematical equation

Table 1
Time complexity using minimum daily temperature (°C) for different months.
Day Month

1 2 3 4 5 6 7 8 9 10 11 12
1 -2 0 -2 4.5 8 8 10 8 10 10 3 4
2 -2 0 -1 7.5 6 8 11 10 7 9 2 1
3 -2 -1 0 5.5 5 8 9 9 8 9 3 0
4 -3 -1 0 45 5 10 10 8 8 9 3 0.5
5 -2 -1 6 4 5 9 10 7 8 9 4 0
6 1 4 2 5.5 7 10 10 7 9 9 35 -2
7 -2 25 0 7 5 10 10 8 9 10 4 -4
8 -2 1 5 5 4 7 11 9 8 10 2 -2
9 -3 -4 3 5.5 8 10 10 9 7 7 3 25
10 -1 -1 1 5.5 5 9 10 10 8 8 4 0
11 2 5 0 6 9 9 10 9 9 10 5.5 -2
12 1 -3 4 3 7 10 10 9 9 7 5 -2
13 0 -4 2 8 5 9 10 9 9 7 3 -1
14 -2.5 -1 5 8 5 9 10.5 9 10 6 2 2
15 -0.5 -55 0 7 10 7 10 9 10 7 25 2
16 0 -4 -4 7 7 10 9 9 9 4 2 -2
17 0 -5 —4 5 9 10 10.5 9 8 7 2.5 -35
18 0 -4.5 4 6 9 8 10.5 9 9 2 4 -4.5
19 -2 0 4 5.5 7 10 10 10 9 2 5 -5
20 -4 1 5 5.5 7 10 9.5 9 6 -1 2 -3
21 -2 5 4.5 5 7 6 10 9 9 1 1 -2
22 -3 1 5 6 7 10 9 10 8 -3 1.5 -5
23 3 2 4 5.5 8 9 11 9 9 1 35 -6
24 -2.5 1 4 6 7 10 11 10 9 0 4.5 -7
25 -2 -1 6 5 10 6 115 9 10 1 6 -7
25 -1 -2 6 5 10 10 11 9 10 3 5.5 -5
27 -3 -15 9 5.5 7 6 10.5 10 9 4 6.5 -11
28 -2 -25 5 6 5 11 11 10 10 4 2 -10
29 -1 7 6 5 8 115 9.5 10 3 2 -3
30 0 5 5.5 9 8 10 9 10 4 35 -2
31 -4 5.5 9 10 10 4 0
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Fig. 4. The graph for the spring, summer, autumn and winter seasons that shows the data-time series.

that assigns these values is called inclusion or a membership func-
tion. In computational efficiency for complex problems, with many
linguistic variables or many rules, it is fundamental to select meth-
ods that do not require many calculations or memory, so triangular
or trapezoidal inclusion functions are preferable. A triangular func-
tion is commonly used in fuzzy systems as simple way to define a
fuzzy set with little data and calculate the value of belonging with
calculations defined by Eq. (8), the limits shown in Fig. 5, where it
limits the functional limits shown that this function is suitable for
modeling properties with a value of including non-zero values nar-
row range around the point ¢ where the function of belonging of

the group is maximum.

0 u<a
(D) a<p<
(cF) c<u<

0 u>e

T(ua.c.e) = : (8)

The rules of fuzzy logic combine fuzzy sets of input, which are
called premises, and associate a set of fuzzy output, called conse-
quence. The rules are represented as a table for fuzzy associative
memory (FAM) and is the consequence of each rule defined for
each combination of two inputs, the FAM allow to make a graphical
representation of the relationships between two input variables
and the output variable. The next step is to associate these sets
with a number of triangular partitions. It is common to use five tri-
angular partitions, which in this case are called: Very Low [VL],
Low [L], Normal [N], High [H] and Very High [VH]. The fuzzifier
establishes a relationship between the non-fuzzy entry points to
the system and their corresponding fuzzy setsG. The grouping
fuzzy logical relationships by determining fuzzy logical relation-
ships having the same left-hand side and calculate G; for each i-
th fuzzy logical relationship group is described by the Eq. (9),
where g, is the membership function of the i-th fuzzy group.

G T/ 05/p, 0/us O/py O/ps
G| |o5/m 1w 05/ O/, O/u
G= |G |=| 0/ 05/, 1w 05/m, O/ps
Ga 0/py  O/py  0.5/p5 1/p, 0.5/ps
Gs 0/, 0/, 0/ps 0.5/py 1/ps

9

The defuzzifier is the function that transforms a fuzzy set into a
non-fuzzy output value using a fuzzy inference device. The process
of defuzzification uses the centroid of the area described by the
union of fuzzy sets, and is described by the area under the gener-
ating for the geometry union (A) through the Eq. (10) and the area
centroid (C) calculated by the Eq. (11), where six pairs of points
(xi, ;) generated the geometric figure generated by the intersec-
tion of two fuzzy sets and x is the variable to be described by logic.

-1 5
A= ) Z (Xiflipy — Xic114;) (10)
i—0
1 5
C= GA Z (%1 + Xie1) (Xiliq — Xiv1 1)) (11)
i=0
4. Results

4.1. Field measurements and ANN station models

The greenhouse has a 1 cm thick plastic layer on top. The data
selected for the development of this research were: outside air
temperature °C (S;), outside air relative humidity % (S,), wind
speed m/s (Ss), and global solar radiation flux W/m? (S,). Hence,
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Table 2

Hidden layer matrix for artificial neural network, called changed parameters of ANN in different months of the year.

Synaptic weights

@1 (Rni) w7 (Ws) @3(Sr) @4(To) @s5(Rpo)

Month 1 0.94256 —0.310689 —0.0548145 0.250923 2.52923

2 0.948636 —0.28275 0.0464792 —0.0545413 0.4914

3 1.09808 —0.339832 0.0187778 —0.103153 —2.8627

4 0.673155 —0.26256 0.0323826 0.27199 0.304716

5 0.562815 —0.226705 —0.184886 0.133545 —0.584523

6 0.193755 0.0454557 0.0734149 0.131425 0.490419

7 0.65911 —0.188655 —0.0727979 —0.072996 —0.0865882

8 0.904371 —0.199594 —0.144021 0.103324 0.01631

9 0.887349 —0.234471 —0.0234992 -0.15011 0.0667453

10 0.667061 —0.193048 —0.176446 —0.00353592 -0.47418

11 0.697842 —0.0973856 —0.0651743 —0.717656 —4.33875

12 0.983983 —0.285975 —0.0638287 0.0742819 7.01234

to specific time and day, this weather station is set up to analyze
the sampling information every 10 min. The variables plotted
are: external temperature, external humidity, wind speed, solar
radiation, internal temperature and internal humidity. To obtain
the coefficients of both ANN mathematical models, several mea-
surements were taken to predict the interior air temperature in
the greenhouse. This research is based on the analysis of the input
variables, which are: T,, Rp,, W5, S, Ry, being the inside air temper-
ature the output variableT;. The measurements of the previous
variables were made by sampling every 10 min during a period
of 365 days. They were divided into four groups, representing the

— Triangular profile
Gaussian profile
09
08 7
0,7 1
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four seasons of the year, although only two stations were used as
data for this project: the summer and winter seasons. Thinking
about the recorded Input-output values along with the perfor-
mance of the experimental identification, it could be all the input
signals and the desired restrictions needed during the procedure.
Taking into account a group of ANN models, the correct candidate
is chosen to make the best predictions in the summer and winter
seasons, making a comparison to select the best model to predict
the internal temperature between the real data provided with
ANN models by Summer and Winter seasons as shown in Fig. 6,
respectively. The percentage of data that was used for training

4
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Fig. 5. Graphical representation of the Gaussian and triangular functions for variable fuzzy value belonging.
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and testing is approximately 50%, which corresponds to the sum-
mer and winter seasons.

4.2. Accuracy measurements

A comparison made between ANN models in different months
introducing the base of the coefficient of determination (R?), which
is a measure of the correlation between the observed and predicted
data, are shown in Fig. 7. The values of the parameters by the
method of analysis of variance (ANOVA) in different months of
the year are shown in Table 3. The ANN equation of the year-
adjusted model are represented mathematically as a function
f(X)by Eq. (12), where X; is Ry; relative humidity of the inner air,X;
is W wind speed, X3 is S, global radiation flow solar, X, is Ty out-

door air temperature, X5 is Ry relative humidity of outdoor air and
T; is the temperature of the air inside the greenhouse.

T; = 3.66415 — 268.671x10>Ry; + 56.5276x10 > W,
+0.900254x1073S, + 736.981x10>T,

+382.686x10 Ry, (12)

From Eq. (11), since the P-value is less than 0.05, there is a sta-
tistically significant relationship between the variables with a con-
fidence level of 95.0%, the behavior of the linear regression of
annual behavior is shown in Fig. 8, where the results of adjusting
a multiple linear regression model are plotted to describe the rela-
tionship between the annual internal temperature of the green-
house and 5 independent variables.
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Fig. 7. Results of the multiple linear regression models for the internal greenhouse temperature in different months of the year and 5 input independent variables.

Table 3
Comparing the estimated error for the different ANN models in different months of the year.
Month R2 Constant Rpo(%) Ws(m/s) Si(w/m?) To(°C) Rui(%)
(%)
January February 94.28 -1.0114 —0.236221 0.0326977 0.00059725 0.856672 0.360606
March 90.75 28.9004 —0.187503 0.0060157 0.00148862 0.105096 0.068014
April
May 89.27 7.16663 —0.24153 0.177004 0.00083953 0.565885 0.336149
June
July 90.23 27.1952 —0.207019 0.0866254 0.00189649 0.111526 0.106824
August
September 91.30 2.08221 —-0.277121 0.0956593 0.00055788 0.75372 0.417986
October
November 95.22 -1.5295 —0.240119 0.0103814 0.00106435 0.886823 0.365608
December

4.3. Water mechanical properties against environmental temperature

The temperatures of the semi-arid regions generally have their
lowest point at higher altitudes (2000 m above sea level), whereas
the water melting point is 0 °C and the water boiling point is
100 °C. It is important to consider the variation of temperature
with respect to dynamic and kinematic viscosity, which is shown
in Fig. 9. Mathematically, the response of kinetic and dynamic vis-

cosity is a decreasing exposition with respect to the temperature.
This response is represented by Eq. (13) and Eq. (14) respectively.
The reference of some numerical values used for this physical
model is described by Table 4.

W(T)=1.81.e 001847, 104 (13)

PT)=1.78-e ~0018T  10°° (14)
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Table 4
Water properties for temperature vs. dynamic and kinematic viscosities.

Water mechanical properties

Environmental

Dynamic viscosit
temperatura (°C) y y

(kg-s/m?) x 107

Kinematic viscosity
(m?/s) x 1078

0 1.7920000 1.7870000
1 1.7770005 1.7482466
2 1.7446026 1.7170597
3 1.7127955 1.6864291
4 1.6815682 1.6563449
5 1.6509103 1.6267975
6 1.6208113 1.5977771
7 1.5912611 1.5692744
8 1.5622496 1.5412801
9 1.5337670 1.5137853
10 1.5058038 1.4867809
15 1.3734514 1.3588155
20 1.2527321 1.2418638
25 1.1426234 1.1349781
30 1.0421926 1.0372918
35 0.9505893 0.9480134
40 0.8670374 0.8664190
45 0.7908292 0.7918473
50 0.7213194 0.7236939
55 0.6579192 0.6614065
60 0.6000914 0.6044800
65 0.5473465 0.5524531
70 0.4992375 0.5049041
75 0.4553571 0.4614476
80 0.4153336 04217314
85 0.3788279 0.3854334
90 0.3455309 0.3522596
95 0.3151605 03219411
100 0.2874595 0.2942320
Table 5

Fuzzy rules accurate for ecological anti-disaster system with frost irrigation in
greenhouses.

The defuzzifier frost Output activation of Average temperature

irrigation PWM (%) ranges (°C)
No frost (NF) 0-10 4

Possible frost (PF) 5-30 2

Mild frost (MF) 25-50 0

Severe frost (SF) 45-80 -2

Hard frost (HF) 75-100 -4

From the Fig. 9, the water condensation process is defined by
the difference in density between cold and warm water. This fea-
ture, that in the presence frost to forming a plasticized igloo on
the greenhouse surface. Therefore, these physical properties of
water are exploited through the water distribution system for
anti-frost preventing the cooling of the croplands through the
water surface solidification (freezing of water surface), because
the rate of change in the water density does not vary constantly
with changes in temperature inside the greenhouse, keeping a dif-
ferent internal temperature (usually warmer than the outside envi-
ronmental temperature) inside the frozen plastic surface despite
the low temperature that occurs externally to the plastic surface
of the greenhouse.

4.4. Fuzzy associative memory of ecological anti-disaster frost
irrigation

Finally, the physical properties of the water and the plastic
envelope of the greenhouse are exploited through a diffuse system

Internal cropland temperature T; (°C)

-4

-3

Prediction of internal temperature T; (°C)

4 3 2 1 0 -1 -2 -3 -4
Fig. 10. Graph showing diffuse output of anti-frost irrigation system (% PWM) for

cropland temperature (°C) vs. the prediction of internal temperature in the
greenhouse (°C).

for smart weather station ecological anti-disaster frost irrigation.
The implementation of ecological anti-disaster frost irrigation con-
siders partitions of the input and output linguistic variables as the
basis of the fuzzy rules, which depends on the method of blurring,
inference and debriefing using aspects related to efficiency and
adaptation. The fuzzy rules accuracy using Eq. (9), are shown in
Table 5 and the results are mapped in Fig. 10, where it is classified
into 5 probable states of output depending on the cropland tem-
perature and the internal temperature of the greenhouse that is
predicted by the ANN, classified as: Hard-Freeze (HF), Severe-
Freeze (SF), Soft-Freeze (MF), Possible-Frost (PF), No-Frost (NF).
For the activation of the water pump system for the ecological
anti-disaster frost irrigation, a technique is used for percentage
activation energy called Pulse Width Modulation (PWM). Hence,
the PWM allows having a 0% off state and when it is required to
the maximum of its power is 100%. Consequently, this activation
percentage for presence of the frost is assigned through Fuzzy
Associative Memory (FAM). Moreover, this percentage assigned is
shown in Table 6, where the data used for shaping the fuzzy map
are shown. Additionally, the results of the fuzzy rules accuracy
and the values to output activation of PWM (%) for the defuzzifier
frost irrigation are shown in Fig. 11. Finally, the fuzzy frost actions
are classified in: the state of No Frost (NF) corresponding at 0-10%
PWM activation for an average temperature of 4 °C, the state of
Possible Frost (PF) corresponding at 5-30% PWM activation for
an average temperature of 2 °C, the state of Mild Frost (MF) corre-
sponding at 25-50% PWM activation for an average temperature of
0 °C, the state of Severe Frost (SF) corresponding at 45-80% PWM
activation for an average temperature of —2 °C and finally, the state
of Hard Frost (HF) corresponding at 75-100% PWM activation for
an average temperature of —4 °C.

5. Conclusions and future works

In this paper we developed an intelligent system for environ-
mental application through a fuzzy water pump system and smart
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Table 6
Values table for fuzzy associative memory (FAM) and the relationships between two input variables and the output variable (% PWM).
Predicted ANN temperature (°C)
4 3 2 1 0 -1 -2 -3 —4
Cropland temperature (°C) 4 15.0 15.7 16.5 17.4 184 19.5 20.7 221 23.7
3 17.9 18.8 19.8 20.8 22.0 233 24.8 26.4 28.4
2 21.5 22.5 23.7 249 26.3 27.9 29.7 31.7 34.0
1 25.7 27.0 283 29.8 315 334 355 37.9 40.7
0 30.8 323 33.9 35.7 37.7 40.0 425 45.4 48.7
-1 36.9 38.6 40.6 42.8 45.2 479 509 54.3 58.3
-2 441 46.3 48.6 51.2 54.1 573 60.9 65.0 69.8
-3 52.8 55.4 58.2 61.3 64.7 68.6 72.9 77.9 83.5
-4 63.3 66.3 69.7 734 77.5 82.1 87.3 93.2 100.0

\
|

jvati PWM)
Anti-frostirrigation activation (%

Diffuse value output (% PWM)
i 100

Hard frost (HF) 90

80
Severe frost (SF) 70

- 60
_Mild frost (MF) 50
40

30

20
No frost (NF)

10

0

Fig. 11. Fuzzy associative memory (FAM) and the relationships between cropland temperature (°C) and predicted ANN temperature (°C) input variables and the ecological
anti-disaster frost irrigation (% PWM) output variable.

weather station for the ecological anti-disaster frost irrigation.
These artificial intelligence techniques can be applied to a smart
farming system that can be performed through the internet of
things (IoT) in environmental applications. Additionally, the
method developed allows to estimate the desired parameter of
the Pulse Width Modulation (PWM) output that can be used for
the anti-frost irrigation control in greenhouses. According to its
application, in the smart frost control on greenhouses, we pro-
posed the use of linear autoregressive models with models of
external ANN to predict the dynamic behavior of air temperature
inside a greenhouse. The temperature predictor uses an ANN of
multilayer Perceptron (MLP), which is trained by backward propa-
gation algorithm (BPA), and the validity of the data was made by
analysis of variance (ANOVA). Hence, this feature improved upon
the prediction. Therefore, measurements of the outside air temper-
ature, the relative humidity of the outside air, the wind speed, the
global solar radiation flow, the relative humidity of the indoor air
were used as input variables to the system and were tested differ-
ent structures of the ANN model. The external climatic variables
provided by the meteorological station were divided into two main
sections corresponding to the summer and winter seasons, in order
to develop and evaluate the ANN model and the data sample. Addi-
tionally, through programming means, the performance indices for

each of the structures were calculated, selecting those models with
better prediction of the real conditions of the interior temperature.
The ANOVA statistical method was used to analyze the variation of
the two seasons comparing the neural network and the results of
the ANN models in different months of the year compared with
the real data. The best results of the prediction of the interior tem-
perature were obtained by the structures of the ANN models; with
a confidence level of 95%. The intelligent forecasting application
uses the fuzzy classification system with a triangular profile which
adjusts to the presence of frost. We implemented a fuzzy logic sys-
tem for the classification of the water pump system for the ecolog-
ical irrigation anti-disaster by freezing, where a diffuse associative
memory (FAM) was applied, which is classified as: Hard-Freeze
(HF) from 100 to 80 percent probability, Severe-Freeze (SF) from
80 to 60 percent probability, Soft-Freeze (MF) from 60 to 40 per-
cent probability, Possible-Frost (PF) from 40 to 20 percent proba-
bility, No-Frost (NF) from 20 to O percent probability,
respectively. Results of the FAM use the relationships between
cropland temperature (°C) and predicted ANN temperature (°C)
input variables for activation of ecological anti-disaster frost irriga-
tion (% PWM) in 5 probability states and graduates every 20 per-
cent probability. The technological innovation applied to smart
farming and frost intelligent control in applications of extreme
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environmental microclimate is the activation of the output vari-
able for ecological irrigation anti-disaster by freezing (% PWM),
which transforms the greenhouse into an igloo. The Internet of
Things (IoT) in environmental applications is developed through
the use of a web page and cellular technology (GSM/GPRS) through
a Wireless Application Protocol (WAP), which is a technical stan-
dard for accessing information through a mobile wireless network.
Moreover, the implementation for smart alerts and notifications to
be useful in farming that exposed to environmental freezing
through digital innovation.
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