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a b s t r a c t 

Buildings consume about 40 % of globally-produced energy. A notable amount of this energy is used to 

provide sufficient comfort levels to the building occupants. Moreover, given recent increases in global 

temperatures as a result of climate change and the associated decrease in comfort levels, providing ade- 

quate comfort levels in indoor spaces has become increasingly important. However, striking a balance be- 

tween reducing building energy use and providing adequate comfort levels is a significant challenge. Con- 

ventional control methods for indoor spaces, such as on/off, proportional-integral (PI), and proportional- 

integral-derivative (PID) controllers, display significant instabilities and frequently overshoot thermostats, 

resulting in unnecessary energy use. Additionally, conventional building control methods rarely include 

comfort regulatory schemes. Consequently, recent research efforts have focused on the use of advanced 

artificial intelligence (AI) methods to optimize building energy usage while maintaining occupant ther- 

mal comfort. We present a review of the current AI-based methodologies being used to enhance thermal 

comfort in indoor spaces. we focus on thermal comfort predictive models using diverse machine learning 

(ML) algorithms and their deployment in building control systems for energy saving purposes. We then 

discuss gaps in the existing literature and highlight potential future research directions. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

The use of fossil fuels as a primary source of energy, and the

esulting environmental concerns (e.g., climate change), are ar-

uably the most challenging issues of the 21st century. Conse-

uently, there is an urgent need across many sectors to devise

olutions that address global energy concerns [1] . The building

ector is a key consumer of globally-produced energy. Buildings

onsume about 40 % of the total energy produced worldwide [2] ,

hich translates to about 30 % of the total global CO 2 emissions.

s such, reducing the amount of energy consumed by the build-

ng sector would greatly assist the much-needed reductions in

lobal energy consumption and the associated environmental con-

erns. However, the issue of energy consumption in buildings is

ather challenging because buildings require energy to serve their

any purposes. Although there is increasing debate surrounding

he possibility of zero-energy buildings [3] , such ideas are still in
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heir infancy and have only been implemented in certain parts of

he developed world [4] ; it may be quite some time before they

re seen in practice globally. Therefore, the best current alterna-

ive is to exercise energy consciousness, wherein buildings are de-

igned to strictly utilize only the amount of energy required for

heir intended purposes, i.e., avoiding energy wastage. One area

here this can be applied is in the thermal comfort design of in-

oor spaces. It is estimated that the average modern man spends

0–90 % of his time in indoor spaces [5] . Moreover, the rise in

lobal air temperatures, primarily due to climate change, has exac-

rbated the issue of increased levels of discomfort and heat stress,

hich can result in heat-related mortality, especially in demo-

raphics at the extreme ends of the population curve (i.e., the el-

erly and the very young) [6] . Comfortable indoor spaces are also

ubstantially linked to improved productivity [7] and the overall

ell-being of building occupants [8] . As such, the concept of ther-

al comfort is increasingly being considered in building service

ractices [9] . Moreover, because achieving sufficient comfort lev-

ls in living environments most often requires the use of energy-

onsuming mechanical equipment, the concept of thermal comfort

n buildings has broad implications in relation to energy usage and

he subsequent direct and indirect effects of energy usage on the

https://doi.org/10.1016/j.enbuild.2020.109807
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
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environment [10] . Consequently, a key goal in the building service

industry is achieving sufficient thermal comfort levels while mini-

mizing energy consumption. 

Traditionally, thermal comfort in buildings has been assessed

and analyzed using the predicted mean vote (PMV) index [11] . The

PMV model is based on the thermodynamic balance between occu-

pants and their immediate thermal environments. It assumes that

for the human body to be comfortable, there must be a thermal

equilibrium between the body and its surrounding environment.

The primary goal of the PMV index is to determine the mean

thermal sensation vote for a group of occupants; it is computed

based on four physical parameters (air temperature, air velocity,

humidity, and mean radiant temperature) and two personal pa-

rameters (clothing and activity). Despite the wide adoption of the

PMV model in several building standards, such as EN ISO 7730 [12] ,

ASHRAE standard 55 [13] , and CEN CR 1752 [14] , it has also been

criticized, primarily because it was developed under steady-state

chamber conditions, which are not an accurate representation of

everyday, dynamic conditions in the real world [15] . Also, the PMV

model was developed based on data collected from healthy adult

individuals in a defined age group; therefore, it may require certain

corrections to be successfully applied in environments containing

children, the elderly, or the unhealthy. 

To address the shortcomings associated with the traditional

PMV model, different variants of the PMV model have been de-

veloped and proposed, e.g., the adaptive PMV (aPMV) index [16] ,

which considers outdoor air temperature as the only parameter

(instead of the six conventional parameters) to estimate thermal

comfort levels and the extended PMV (ePMV) index [17] , which

considers typical local climates as well as the six initial param-

eters used in the PMV index. In addition, besides these thermal

comfort models, which are mere derivatives of the original PMV

model and are based on the heat exchange theorem between the

occupant and their immediate environment, there is an adaptive

approach to understanding occupant thermal comfort. The adap-

tive approach considers factors beyond the physical parameters of

the environment to include the influence of different psychologi-

cal, physiological, and historical factors in the assessment of occu-

pant thermal comfort. The adaptive approach was first proposed

by De dear and Bragger [18] and has since been adopted in several

building design standards [ 19 , 20 ]as the main tool for determining

acceptable thermal conditions in naturally ventilated buildings. 

The two approaches for estimating and modeling thermal com-

fort (as discussed above), use conventional statistical methods to

relate occupant thermal comfort state to various factors likely to

influence thermal comfort (e.g., the four physical parameters and

two personal parameters used in the original PMV). However, the

use of traditional statistical methods to analyze highly variable and

complex scenarios such as the interaction between building occu-

pants and their immediate environments is limited. This is per-

haps the primary reason for consistent reports on the shortcom-

ings of the traditional comfort models to accurately predict oc-

cupant thermal comfort levels [21] . Furthermore, to provide com-

fortable indoor environments, comfort models ought to be inte-

grated into building control schemes; however, as extensively dis-

cussed by Park and Nagy, this has only recently been undertaken

by the building industry [22] . Moreover, traditional control meth-

ods for indoor environments, e.g., on/off, proportional-integral (PI),

and proportional-integral-derivative (PID) controllers, tend to dis-

play significant instabilities and frequently overshoot thermostats,

resulting in unnecessary energy use [ 23 , 24 ]. As such, conventional

control practices tend to be non-optimal in regards to both en-

ergy consumption and the provision of thermal comfort. However,

recent developments in artificial intelligence (AI) analytical and

data collection methodologies have been extensively applied in the

building service industry, e.g., in the estimation of thermal comfort
nd the predictive control of thermal comfort levels [25] . These

I-based methods offer advanced analytical techniques capable of

odeling the complex and non-linear nature of the interaction be-

ween occupants and their thermal environments. They also offer

reat promise in terms of readily bridging the gap between ther-

al comfort provision and building control, which inherently has

ignificant implications for building energy use. The aim of the cur-

ent paper is to (i) critically review recent publications that em-

loy AI methodologies in the assessment and control of occupant

hermal comfort levels (ii) analyze the building energy implications

hat result from the use of AI methodologies in the predictive con-

rol of occupant thermal comfort (iii) highlight potential future re-

earch directions. 

We consider articles published in the last 10 years from three

ain databases: Scopus, Google Scholar, and Thomas Reuters’ Web

f Science. In addition, we searched for relevant publications in

pecific journals and conference proceedings associated with build-

ng science. The journals considered in our search were Sustainable

nergy Reviews, Energy and Buildings, Building and Environment,

nd Indoor and Built environment. We also searched IEEE confer-

nce proceedings. During our search, we utilized the following key-

ords: thermal comfort, ML, AI, adaptive PMV, thermal comfort

ontrol, indoor environment, indoor thermal comfort, comfort in-

ex, indoor air temperature control, and control strategy. We used

hese keywords as single items and also as a combination of two or

ore keywords. For example, we would try the keyword " thermal

omfort ” individually and then try a combination of two keywords

uch as “thermal comfort and ML ”

The remaining components of this paper are organized as fol-

ows. Section 2 gives an overview of AI methodologies employed

n thermal comfort studies. It then critically discusses recent stud-

es using AI algorithms to model the thermal comfort state of oc-

upants. Section 3 presents studies illustrating the use of AI-based

redictive models in thermal comfort control and discusses the en-

rgy implications of using such controls. Section 4 discusses gaps

n our knowledge and indicates potential future research directions

n this field. Section 5 gives conclusive remarks regarding the use

f AI methodologies for thermal comfort control in buildings. 

. AI-based thermal comfort predictive models 

AI can subtly be defined as the ability of computers to develop

ntelligent qualities, similar to those of humans, and consequently

erform tasks that could previously only be performed by humans

lone. AI is a broad field with several diverse applications. For ex-

mple, AI has seen extensive application in the medical industry

26] , gaming industry [27] , general computing industry [28] , etc.

 large section of AI is devoted to data analytics and predictive

odeling. This involves using past experiences or historical data

o teach machines how to reason with human-like capabilities. Af-

er proper learning, the machine can be used in the prediction or

orecasting of certain events or future occurrences. Most AI meth-

ds used in data analytics and predictive modeling can be placed

nder the ML category of AI. 

This section briefly discusses common ML methods and algo-

ithms that have been extensively used in modeling occupant ther-

al comfort. It then provides a discussion on studies that have

sed ML techniques to model thermal comfort and the benefits

nd drawbacks associated with the use of such methods. 

.1. ML methods and algorithms for thermal comfort modeling 

.1.1. Learning methods 

ML is a sub-category or AI that employs advanced algorithms

o learn patterns in historical data and attempts to deduce fu-

ure occurrences or occurrences under certain defined conditions.
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Fig. 1. Artificial intelligence (AI)-based fuzzy logic and machine learning (ML) algorithms. 
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here are three common ways that machines can learn said pat-

erns: supervised learning [29] , unsupervised learning [30] , and re-

nforcement learning [31] . The choice of which learning methods a

achine adopts is often dependent upon the type of data avail-

ble. Supervised learning is often used when the inputs and as-

ociated outputs are both available such that we have a dataset

ncoded as pairs, ( m,n ). The general goal is to produce a func-

ion, F: m → n ,that accurately mimics the patterns between m and

. Thus, given a new set of inputs ( m x ), the function can accu-

ately deduce the corresponding outputs ( n x ). In most cases, the

oal with supervised learning is to adjust the parameters in the

nput variable to correctly fit or match the output variable by as-

igning weights. In unsupervised learning, the inputs are available

ut the corresponding outputs are not available (i.e., m is avail-

ble without the corresponding output n ). In such cases, the gen-

ral goal is to learn the patterns hidden within the datasets. For

xample, a possible outcome of unsupervised learning is a model

hat learns the patterns underlying a given dataset. Then, based

n the learned patterns, the model learns how to cluster the data

nto different groups. Consequently, the general goal is such that

hen the model is fed with new data, it successfully identifies

he group to which the data belongs. Similarly, with reinforce-

ent learning, there are no encoded data that directly pair the

nput to the output; rather, given the inputs, we only have an

stimate of how good or bad is the output. The estimate of an

utput is referred to as a reward and can be either a positive

r negative value. The general goal of the developed model is to

earn patterns within a dataset that maximize the chances of ac-

uiring a desired output or reward.Another AI technique that is

mployed in computer systems to mimic human-like reasoning is

uzzy logic. Fuzzy logic modeling is an improvement on the clas-

ical Boolean set of rules [32] . Whereas the possible outputs for a

lassical Boolean system are constrained to 0 or 1 or true or false,

 fuzzy logic system considers intermediate values that represent

artial truth. Fuzzy logic systems are largely dependent upon ex-

ert rules to make decisions. For example, given a set of input pa-

ameters, a fuzzy logic system will make decisions based on certain

ules to yield a desired output. Fig. 1 illustrates the placement of

L techniques and fuzzy logic systems within the larger concept
f AI and which have been extensively applied in thermal comfort

tudies. 

.1.2. Learning algorithms 

There are several ML algorithms that are commonly used to de-

elop predictive models of different ranges and capabilities [33] .

ecent studies have mostly employed neural network-based and

ecision tree-based methodologies to directly estimate thermal

omfort levels or improve upon the already existing indices of

hermal comfort (e.g., PMV). Other instant-based learning algo-

ithms such as support vector machine (SVM) and K-nearest neigh-

or have also been extensively used to estimate thermal comfort

evels. 

.2. Air temperature and relative humidity models 

Most studies that have employed ML methods in the prediction

f thermal comfort have done so in many different ways. For ex-

mple, some studies have predicted indoor air temperature using

iverse factors (e.g., physical weather elements) and diverse deep

earning techniques. In such studies, the general goal of the devel-

ped models is to predict indoor air temperature at a given future

utdoor temperature and thus be able to preemptively control the

ndoor environment. In addition to the large variety of deep learn-

ng architectures and properties, most of these studies used dif-

erent features to predict indoor air temperature and sometimes

ndoor relative humidity, which can also impact occupant thermal

omfort significantly. For example, Moon et al.. [34] used outdoor

emperature, solar radiation, and window operating conditions to

rain and develop an artificial neural network (ANN) model for a

uilding with a double façade. In a different study by the same au-

hor [35] , indoor temperature and outdoor temperature were used

o train and develop an ANN model that predicted the indoor set

emperature. Several other studies [36–42] used different variables

o train and develop deep learning models that predict indoor air

emperature. Table 1 compares different studies using ML tech-

iques to predict different variants of indoor air temperature and

umidity. 
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Table 1 

Summary of studies on ML-based temperature/relative humidity models. 

Reference Model Features 

Number of 

hiddenlayers 

Number of 

hidden neurons Output 

[34] ANN - outdoor temperature 5 20 - indoor temperature 

- cavity temperature 

- solar radiation 

- window opening conditions 

[35] ANN -indoor temperature 4 9 - set temperature 

- outdoor temperature 

- temperature difference from 

the setback temperature 

[36] ANN - outdoor temperature 1 17 - indoor temperature 

- change in outdoor 

temperature 

- outdoor humidity 

- change in outdoor humidity 

- indoor temperature 

- indoor humidity 

- change in indoor 

temperature 

- change in indoor humidity 

[37] ANN,ML - sol-air temperature 3 10 - indoor dry-bulb temperature 

- wind speed 

- outdoor relative humidity 

- time of the day 

[38] ANN - outdoor temperature 1 10 - indoor temperature 

- relative humidity 

- solar intensity 

- wind speed 

[39] ANN,MLP - day of the year 10 - - indoor temperature 

- outdoor temperature - indoor relative humidity 

- outdoor relative humidity 

- wind speed 

[40] ANN,MLP - outdoor temperature 1 10 - indoor temperature 

- past indoor temperature 

values 

- indoor relative humidity 

- past relative humidity vales 

[41] NNARX - outdoor temperature 1 12 - dry-bulb temperature 

- outdoor relative humidity 

- supply air temperature 

- supply relative humidity 

[42] NNARX - outdoor temperature 1 6 - indoor temperature 

- outdoor relative humidity - indoor relative humidity 
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One of the major shortcomings of this set of studies is the in-

consistency in the types of variables used to determine tempera-

ture levels likely to provide sufficient thermal comfort. This makes

it difficult to successfully employ the developed models in other

building scenarios as they would require identical input variables

to those used in model training in order to make sensible predic-

tions. Moreover, when the variables used in model training are dif-

ficult to obtain, the developed models become less generalizable.

Furthermore, such models are likely to suffer from inaccuracies as

a result of not considering several important elements, especially

those pertaining to individual behavior and state (e.g., clothing and

activity). However, at the same time, the simplicity of tempera-

ture/humidity models means that they may be easier to develop

and deploy in building systems than complex models, which re-

quire the consideration of complex factors during model training. 

Another major observation arising from these studies is that

their general outcome is mostly concerned with the predictive ac-

curacy of the developed models. While the accuracy of predic-

tive models is important, a further important step for such studies

would be to elaborate on how the developed predictive models can

be integrated into building systems for indoor environment con-

trol. A few studies [ 34 , 36 ] have proposed control algorithms using

the developed ANN models and have demonstrated the usefulness

of their predictive models based on computer simulation programs.

However, the precise benefits of the predictive models developed

in most studies using deep learning to predict indoor air tempera-
 h  
ure for thermal comfort purposes are not quantified (e.g., in terms

f building energy reductions). 

.3. Thermal sensation (PMV index) models 

In the previous section, we discussed one of the major short-

omings of simple temperature/humidity predictive models in the

ssessment of thermal comfort, i.e., their inability to consider im-

ortant elements known to affect thermal comfort [15] . To some

xtent, studies that develop predictive models to estimate the PMV

ndex attempt to address the issue of limited explanatory factors

y using advanced ML techniques to explain thermal sensation as

 resultant function of the four physical factors (i.e., air tempera-

ure, relative humidity, air velocity, and mean radiant temperature)

nd two personal factors (i.e., clothing and activity) first described

y Fanger [11] . In our review, we found that the majority of stud-

es that use ML methods to predict thermal comfort belong to this

roup of studies. As such, this section reviews a number of previ-

us studies that employed diverse ML algorithms to predict occu-

ant thermal sensations based on the six factors mentioned above.

In our search, we found that most studies that employed ML-

ased techniques to predict occupant thermal sensations relied

ostly on neural networks of diverse architectures. For example,

iang and Du [43] developed an ANN model to predict the PMV in-

ex based on Fanger’s six variables and subsequently demonstrated

ow such a model can be integrated into the control system of
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t  

l  

o  

c  

i  
he variable air volume unit of a residential building. Atthajaryakul

nd Leephakpreeda [44] computed the PMV index in real-time us-

ng a feed-forward ANN and reported good agreement between

he occupant thermal comfort levels calculated using the devel-

ped ANN model and those calculated using the conventional PMV

odel. Similarly, Yao and Xu [45] , developed a back-propagation

NN model to approximate the PMV index using Fanger’s six vari-

bles and reported a 5 % error in accuracy. Li et al.. [46] also de-

eloped a back-propagation ANN model that output the PMV index

ased on Fanger’s six variables of thermal comfort. They also theo-

etically demonstrated its potential usage in HVAC control systems.

astilla et al.. [47] highlighted the expenses involved in calculating

he classical PMV index in terms of the computational load and the

xtensive network of sensors required to collect the input data. To

educe such costs, they proposed and developed the use of ANN

odels to approximate the PMV index. They noted that the ad-

antages of using such deep learning models to compute the PMV

ndex over traditional methods were a reduction in the number of

ensors required and the ability to control HVAC systems in real-

ime based on occupant thermal comfort. Garnier et al. [48] de-

eloped multiple low-order ANN models that forecast the PMV in-

ex at a future time and demonstrated the energy benefits of their

odel for the control of the multi-zone HVAC system of a resi-

ential building. In general, one of the main advantages of deep

earning algorithms and ML is their ability to provide accurate es-

imations of the desired elements using limited explanatory vari-

bles (i.e., input variables) [26] . This attribute of deep learning al-

orithms is beneficial in thermal comfort modeling in terms of re-

uced cost and time. This was evidenced by Buratti et al. [49] who

eveloped a feed-forward ANN model to predict the PMV index us-

ng two (i.e., air temperature and relative humidity) of the six vari-

bles introduced by Fanger [11] . The remaining studies are listed in

able 2 . 

Decision trees, especially random forests (RFs), have also been

xtensively employed in the development of predictive models for

hermal sensations. For example, Chaudhuri et al developed a RF

o estimate the thermal sensation, thermal preference, and thermal

omfort votes of building occupants using physical environment el-

ments and physiological measurements as explanatory variables.

he physical environmental elements included air temperature,

lobal temperature, relative humidity, and air velocity. Physiolog-

cal measurements obtained from wearable devices included skin

emperature, pulse rate, blood oxygen saturation, and blood pres-

ure. The developed RF model is reported to predict thermal sensa-

ion votes with an accuracy of 92.86 % and 94.29 % for female and

ale subjects, respectively [50] . Wang et al. [51] developed two

F models to predict the thermal sensation of older people in in-

oor spaces. The first of the models was trained on data collected

rom field studies, whereas the second model was developed using

ata collected from a chamber study. Comparing the two devel-

ped models, the authors reported a prediction accuracy of 56.6

 by the model developed with field study data and 76.6 % by

he model developed using the chamber studies data. Both models

ere reported to predict thermal sensations with a higher accuracy

han the traditional PMV model. Lu et al. [52] used the publicly

vailable ASHRAE database to develop five different types of clas-

ifiers that categorize occupant thermal sensation votes based on

ean radiant temperature, air velocity, air temperature, air humid-

ty, clothing insulation, and metabolic rate. The authors reported a

8.70 % recall success rate with RF algorithms, which was higher

han that of PMV (43 %). Similarly, Lu et al. [53] developed a RF

odel using indoor air temperature, skin temperature, and cloth-

ng surface temperature collected using infra-red cameras to pre-

ict thermal sensation votes. They report a 92.5 % recall rate for

he RF model, which was significantly higher than that of the tra-

itional PMV model at 48.6 % for male subjects. A similar compari-
on for models developed using data from female subjects showed

 91.4 % and 33.3 % for the RF model and PMV model, respectively.

Other studies employed further ML algorithms that are neither

eep learning nor decision tree techniques to model occupant ther-

al comfort. For instance, Farhan et al. [54] developed a com-

ort model based on a support vector machine (SVM) algorithm as

ell as physiological, environmental elements, and behavioral el-

ments. The accuracy of the developed SVM model in predicting

hermal sensation votes was reported as 76.7 %, which was around

ouble that of the conventional PMV model (35.4 %). Bin and Ke

55] used least-square SVM algorithms to develop a model that

redicts the PMV index using the six variables first described by

anger (i.e., air temperature, air velocity, relative humidity, mean

adiant temperature, clothing insulation, and metabolic rate) and

eported good prediction performance using the developed model.

sing the same six variables discussed above, Megri and Naqa

56] developed a SVM that predicted thermal comfort levels of

uilding occupants. They compared the performance of the devel-

ped model with that of several other thermal comfort indices in-

luding the PMV and effective tem perature. They reported strong

orrelations between the developed SVM model and common ther-

al comfort indices. In addition, Chaudhuri et al. [57] compared

he performance of six ML classifiers, including the SVM, in es-

imating thermal comfort levels and compared their performance

ith that of the traditional PMV model. The authors report better

redictive performance with the SVM model (79.90 %) than with

he PMV model (65.50 %). Li et al. [58] also proposed a RF-based

VAC control system. The developed RF classifier is trained on oc-

upant physiological and behavioral data to continuously predict

ersonal thermal preference in real time. The developed model is

eportedly able to correctly predict 80 % occupant thermal prefer-

nce. 

From reviewing the above studies, we found that nearly all the

L models developed to predict occupant thermal sensation were

eported to provide better estimates of occupant thermal sensa-

ions than the original PMV/PPD model. In addition to the im-

roved predictive accuracy of occupant thermal sensations, prop-

rly trained ML algorithms are likely to provide reduced computa-

ion loads in estimating thermal sensation votes, as compared with

implified models [59] , relevant tables [ 11 , 60 ], and computer mod-

ls [61] , which are commonly used in computing thermal sensa-

ion votes. An added advantage of ML models that predict occu-

ant thermal sensations based on the Fanger PMV model relates

o the consistency in the input variables used, i.e., the input vari-

bles are well known, making these models more likely to be gen-

ralizable and easily deployable in new buildings. While the use of

L algorithms has clear advantages in the assessment of occupant

hermal sensations, the current literature indicates that there are

till major concerns that need to be addressed. For instance, we

ound that most of the existing studies tend to be concerned with

he predictive accuracy of the developed ML-based models, espe-

ially in comparison with the conventional PMV/PPD model; they

arely discuss the deployment of such models in building control

ystems. Moreover, most of these studies tended to use clothing

nd activity level values derived from simplified sources such as

SHRAE tables, which can affect the predictive accuracy of the de-

eloped models. 

.4. Clothing and activity models 

Occupant clothing insulation and activity level make major con-

ributions to occupant thermal comfort. Clothing provides insu-

ation to the body and is therefore an important determinant

f heat exchange between the body and the environment and

onsequently thermal comfort [65] . On the other hand, activ-

ty is correlated with human metabolic rate and is an inherent
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Table 2 

Summary of studies on ML-based thermal sensation (PMV) predictive models. 

Reference Model Features 

Number of hidden 

layers/ number of 

trees 

Number of neurons 

(hidden layer) Output/class 

[36] ANN - outdoor temperature 1 17 - change in temperature 

- outdoor humidity - change in humidity 

- Indoor temperature - change in PMV 

- indoor humidity 

- change in indoor temperature, outdoor temperature and 

humidity 

[44] BPNN - indoor air temperature 2 [8] [4] - PMV 

- wet-bulb temperature 

- globe temperature 

- air velocity 

- clothing insulation 

- activity 

[46] FFANN - mean radiant temperature 3 6,2,1 - PMV 

- indoor air temperature 

- indoor air humidity 

- indoor air flow rate 

- activity 

- clothing 

[47] FFNN - mean radiant temperature 2 8,4 - PMV 

- indoor air temperature 

- indoor air humidity 

- indoor air flow rate 

- activity 

- clothing 

[49] FFNN - air temperature 2 41,41 - PMV 

- relative humidity 

[62] BPNN - outdoor temperature 1 17 - PMV 

- indoor temperature 

-outdoor humidity 

- indoor humidity 

[63] RBFN -wet-bulb temperature 1 30 -PMV 

-globe temperature 

-clothing insulation 

-indoor air temperature 

-indoor relative humidity 

[64] FFNN - relative humidity 3 - -TSV 

- metabolic rate 

- clothing insulation levels 

- air speed 

-air temperature 

-mean radiant temperature 

-outdoor temperature 

-outdoor vapor pressure 

-outdoor wet-bulb temperature 

-horizontal total solar radiation 

-age 

-gender 

[50] RF - air temperature 500 - -PMV 

- black globe temperature 

-relative humidity 

-air velocity 

-skin conductance 

-skin temperature 

-pulse rate 

-blood oxygen saturation 

-blood pressure 

[51] RF -air temperature - - -TSV 

-air velocity 

- CO 2 emissions 

-illuminance 

-health status 

- acclimatization 

[52] RF - average three height temperature -PMV 

-indoor relative humidity 

-outdoor average min/max air temperature 

-outdoor average min/max relative humidity 

-average metabolic rate 

Clothing + chair insulation levels 

-average three heights of Mean Radiant Temperature 
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eterminant of the amount of heat loss by the body [11] . Although

hese two factors (i.e. clothing insulation and activity level) are

ore elements of human thermal comfort, their contribution to oc-

upant comfort is not well represented in many thermal comfort

ndices. This is primarily because it is difficult to obtain data re-

ating to these two factors. Luo et al. [66] provide an extensive re-

iew on the challenges associated with estimating metabolic rates

n built environments. Similarly, Haldi and Robinson [67] discuss

he challenges associated with the estimation of occupant cloth-

ng insulation levels. Owing to the difficulty in obtaining accurate

lothing and activity data in thermal comfort studies, efforts have

een made to develop data-driven predictive models that estimate

hese parameters more accurately using ML methods. For exam-

le, Ngarambe et al. [68] used climatic data and mode of transport

o train a 5-layered deep neural network model that forecast daily

ean clothing insulation levels of university students. The devel-

ped model predicted 90 % of the variations in mean clothing lev-

ls. Similarly, Na et al. [69] developed a deep learning model based

n a convolutional neural network with eight layers that predicted

he metabolic rates of individual occupants. They used IoT-based

inetic cameras to collect physiological data (e.g. heart rate) that

ere then used in the training of the developed model. 

One major observation from these sets of studies is that given

he advantages offered by AI, there have been minimal efforts by

esearchers in this field to employ AI-based techniques to improve

he estimation/prediction of occupant clothing insulation and ac-

ivity levels (i.e., in relation of the recent availability of IoT-based

ireless devices which are capable of collecting large datasets re-

ated to the clothing status and activity of occupants and the ad-

anced ML-based analytical methods capable of finding meaning-

ul patterns within such complex datasets compared with conven-

ional statistical methods). For instance, in our review, we found

nly two studies that employ AI-based methods to predict cloth-

ng levels [68] and activity [69] . Consequently, the usefulness of

I methods, especially ML-based predictive techniques, in the esti-

ation of occupant clothing levels and activity, together with the

ubsequent implications of accurate estimations of these parame-

ers on the overall state of occupant thermal comfort, still require

urther exploration. 

Nevertheless, the shortcomings of ML-based predictive models

or clothing and activity may be anticipated. One of the major is-

ues with, for instance, ML-based predictive models for clothing is

ikely to be a lack of generalization. This is because the clothing

actor in building occupants is influenced by myriad factors, e.g.,

ulture, dress code, and gender. Consequently, it would be nearly

mpossible to obtain a universal clothing model that can be em-

loyed in buildings of all types without the need to consistently

evelop individual models to fit each building of interest. The issue

f a lack of generalizable models is also applicable to models de-

eloped to predict occupant activity (although on a much smaller

cale than that in ML-based predictive models for occupant cloth-

ng state). This is one of the main elements likely to discourage

he development of ML-based predictive models for clothing and

ctivity—the financial costs and time associated with developing

lothing and activity models to suit each individual building are

ikely to outweigh the profits yielded by such models in terms of

uilding energy consumption and the provision of thermal com-

ort. 

.5. Personal comfort models 

Currently, the debate surrounding occupant thermal comfort

s focused on individual thermal comfort. This is because in the

ast, thermal comfort was quantified collectively for a group of oc-

upants (e.g., the PMV–PID model). However, thermal comfort in

eal-life scenarios is a matter of personal preference—how one in-
ividual feels under certain thermal conditions is likely to be dif-

erent from another individual. The differences in thermal prefer-

nce between individuals are primarily due to differences in phys-

cal factors such as gender and health conditions, or psychological

actors such as perception and state of mind. Wang et al. [70] pro-

ide an extensive review on the individual differences associated

ith thermal comfort within a space; these differences warrant

he shift from a group-centered understanding of thermal com-

ort to an individual-centric stance on thermal comfort. Moreover,

ecent developments in IoT-based devices (e.g., wearable sensors)

ave made it easy to collect data that can be used in develop-

ng and calibrating personal thermal comfort models without be-

ng overly intrusive. In addition, as highlighted throughout the cur-

ent paper, advancements in ML technologies have made it easy

o study highly complex datasets and extract meaningful insights

hat can be condensed into a function and integrated into a sys-

em that is able to continuously learn and update itself. Therefore,

n this section, we summarize the current research that utilizes di-

erse ML techniques to develop personal thermal comfort models

nd discuss current gaps. 

Liu et al. [71] developed a back-propagation ANN model using

ir temperature, air humidity, air velocity, and mean radiant tem-

erature as input variables, with field survey responses of ther-

al sensation as data labels. In their study, thermal comfort level,

hich was also the output parameter of their model, was assessed

ased on three categories (i.e., 0, 0.5, and 1), where 0 stood for

ool, 0.5 stood for comfort, and 1 stood for warm. The chosen

cale to assess thermal comfort levels is different from the origi-

al 7-point scale proposed by Fanger [11] . This is because as ex-

lained Liu, the 7-point thermal comfort scale was designed for a

arge group of people and is therefore inaccurate for individuals;

or example, an individual does not have to distinguish between

ool and slightly cool. Kim et al. [72] used six ML algorithms to

xplore the relationships between occupant heating behavior, cool-

ng behavior, and individual thermal preference, with thermal pref-

rence gauged on a 3-category scale (warmer, no change, cooler).

he ML algorithms considered included RF, GBM, SVM, logistic re-

ression, Gaussian classifiers, and conventional classification trees.

he data used for model training were collected from field mea-

urements taken from 38 participants in an office building set-

ing. These researchers reported that better estimations were given

y individual thermal comfort models than by conventional PMV

odels. Auffenber g et al. [73] proposed a model that estimates

he comfort temperature of an individual based on Bayesian net-

orks. The model was trained on the ASHRAE RP-884 dataset. They

eported 17.5–23.5 % higher accuracy with the developed models

ompared with the conventional PMV index. Similarly, Ghahramani

t al. [74] used field data collected from 33 subjects to develop

 Bayesian network model that estimates personal thermal pref-

rence using only air temperature as an input variable. They re-

orted better accuracy in the estimation of thermal comfort with

he developed Bayesian model (70 %) than with the original PMV

odel (56 %). Li et al. [58] developed a RF model that predicts

hermal preference on a 3-point scale (warm/no change/ cooler).

he model was trained on data related to physical elements (i.e.,

ndoor air temperature, relative humidity, carbon dioxide, win-

ow opening status, and outdoor humidity) collected using sensors

nd occupant-related data (heart rate, clothing level, skin temper-

ture, and activity) collected using wristbands. They reported 80

 accuracy when using the developed model to estimate actual

ndividual thermal preferences levels. Lee et al. [75] also devel-

ped a Bayesian inference clustering model that learned individual

hermal preference on a 3-point scale (warm/no change/cooler).

he model was trained using Fanger’s six variables as model pa-

ameters acquired from the RP-884 ASHRAE database. Similarly,

iang and Yao [76] developed a personalized thermal sensation
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model. The model was trained using the six variables introduced

by Fanger and also discussed above. The thermal sensation votes

were predicted on the 7-point scale dictated by ASHRAE. Compar-

ing the performance of the developed model for predicting thermal

sensation votes with that of the conventional PMV model, the au-

thors reported a better performance with the SVM model (89.82 %)

than with the PMV model (49.71 %). Peng and Hsie [77] discussed

the shortcomings of traditional comfort models in modeling indi-

vidual comfort and as a solution, proposing a hybrid SVM classifier

that efficiently classifies individual thermal sensation votes. Shetty

et al. [78] developed three separate tree-based algorithms (i.e., de-

cision trees, random forest, and boosted trees) to predict fan usage

preferences. The fan usage preferences were determined using two

factors (i.e., fan state and fan speed). The fan state was treated as

a binary classification problem with two possible outcomes, ON or

OFF, and the fan speed was treated as a regression problem with

0 and 100 as the lowest and highest values, respectively. The vari-

ables used to predict fan usage preferences (i.e., fan state and fan

speed) included presence state (e.g., if the occupant is within the

vicinity of his/her desk), hour (as a proxy for time), the moving

average of indoor air temperature, and the moving average of the

presence state. Among the three tree-based algorithms used, the

RF model was reported to achieve the highest accuracy (97.73 %)

in the prediction of fan state and lowest errors when used to pre-

dict fan speed. 

As shown from the discussion of relevant studies above, the

region of thermal comfort that could potentially reap substantial

benefits from AI-based methodologies is that involved with the

provision of individual thermal comfort. Moreover, there are build-

ing energy benefits that could potentially be gained from the em-

ployment of individual comfort models. However, there remain sig-

nificant elements of personal comfort models that are not well

explained in the literature and which need further exploration

in order to convince many in the building industry of the use-

fulness of such models. One of these elements, and perhaps the

most concerning, related to the application of such models in ev-

ery day buildings. While it is understandable how personal comfort

models can be beneficial in circumstances that involve individual-

ized heating/cooling systems (i.e., desk fans), it is still not clear

how these models are beneficial for large buildings, e.g., open-

plan offices that rely on centralized HVAC systems to provide com-

fort. As the application of personalized comfort models may re-

quire some sort of personalized comfort equipment for each oc-

cupant, it is worth noting that there remains a lack of experi-

mental studies that quantify the costs associated with the use and

provision of such equipment as compared with conventional cen-

tralized HVAC or decentralized HVAC systems. Furthermore, dur-

ing operation, predictive models require a consistent in-feed of

data (i.e., input data) about the environment to be controlled in

order to make predictions. For general predictive models, the in-

put data can be obtained from sensors installed within thermal

zones that then send the information to the control/predictive sys-

tem via analog or wireless channels. However, for personal com-

fort models, this process is not clearly described in the literature.

While the usefulness of wearable devices in collecting the occu-

pant personal data necessary in the early stages of model de-

velopment and training is well established in the literature, it is

not clear if the occupants would be required to wear these de-

vices constantly so as to provide input data during the operation

of the models. If this is the case, there remains a need for exten-

sive experimental studies that quantify the energy benefits of de-

ploying comfort models in comparison with the financial costs of

providing occupants with wearable devices. Moreover, the poten-

tial discomfort likely to be experienced by occupants as a result

of constantly wearing monitoring devices requires further research

considerations. 
. Energy implications of AI-based thermal comfort controls 

The primary purpose of studying occupant thermal comfort in

uildings, and of the subsequent theoretical models that arise from

uch studies, is to optimize building energy consumption while

roviding sufficient levels of thermal comfort. For this to happen,

hermal comfort models ought to be integrated into building con-

rol systems. Although there are standards (such as the ASHRAE

5 [79] and ISO 7730 [80] (standard) that have been developed to

olely address the issue of indoor thermal comfort, they are rarely

onsulted when designing building control systems. For example,

t is reported that in North America, 97 % of those involved in

he HVAC industry are not familiar with the ASHRAE standard [79] .

he evidence regarding the significant disconnect between thermal

omfort studies and building control studies is provided in the ex-

ensive review by Park and Nagy [22] . Their online review consid-

ring 5536 publications on both thermal comfort and building con-

rol showed very few cross-citations between the two fields. In the

urrent study, we observed the same disconnect—only a few stud-

es that developed AI-based comfort models go on to analyze the

erformance of the models by fully integrating them into build-

ng control systems. In this section, we discuss those few studies

hat use AI-based thermal comfort models in actual building con-

rol systems and the energy benefits that arise from using such

odels. 

Garnier et al. [48] used simulation methods to demonstrate the

nergy saving and occupant comfort benefits of a neural predic-

ive HVAC control method over two other non-predictive meth-

ds in a multi-zoned non-residential building. The neural predic-

ive method adjusted the HVAC settings based on the predictions

f a low ANN thermal comfort model, whereas one of the non-

redictive methods kept the HVAC system in operation mode con-

inually and the other scheduled system operation based on oc-

upancy levels. The authors reported energy savings between 20

nd 140.5 Wh/day.m 

2 and between 6.4 and 82.3 Wh/day.m 

2 when

sing the predictive controller during the heating season and cool-

ng season, respectively. Similarly, Ferreira et al. [ 81 , 82 ] employed

odel based predictive control (MBPC) methods in the control

f an HVAC system in a university building. The predictive mod-

ls used in the MPBC system were implemented by the RBF NN.

he authors report electric energy savings greater than 50 % while

aintaining comfort levels within an acceptable range. A series of

ther articles [83–85] have also demonstrated the energy saving

nd occupant comfort benefits of MPBC over conventional control

ethods for HVAC systems. 

Fuzzy logic controllers have also been extensively employed

n HVAC optimization control in relation to thermal comfort. For

xample, Ciabattoni et al. [86] conducted a field experiment to

ompare the energy consumption of an HVAC system controlled

ia fuzzy logic schemes with that of one controlled by conven-

ional PID methods. They reported better performance for the

uzzy control system than for the PID system. Similarly, Hussain

t al. [87] used simulation studies to compare the energy saving

otential and thermal comfort implications of an HVAC system uti-

izing a comfort-based fuzzy control system with those of a tradi-

ional ON/OFF control system. They reported decreases in energy

onsumption of 16.1 % and 18.1 % in the cooling and heating sea-

ons, respectively, when using the fuzzy controller. Collotta et al.

88] proposed a neural-fuzzy network system that automatically

egulated indoor air temperature. The actual energy savings of the

ystems were not quantified but the authors reported the better

erformance of the network system over the conventional methods

hen maintaining the thermal comfort levels within an acceptable

ange. Sung et al. [89] , proposed an advanced smart system that

onsisted of IoT network sensors and a fuzzy logic controller de-

eloped using a multi-input multi-output mathematical model. The
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Table 3 

Summary of studies on thermal comfort control and energy savings. 

Reference Control method Comfort element 

Verification 

method Energy savings/benefits 

[91] MPC temperature range experiment 20 % reductions cooling season 

70 % reductions in heating season 

[92] MPC/linear 

stochastic 

functions 

temperature range simulation 13.7 % reductions in total energy usage 

[93] MPC/linear 

functions 

simulation 16 % energy reductions compared to PI-based controls 

[94] MPC temperature range simulation -0 % reductions in heating season 

-20 % reductions in cooling season 

[95] MPC PPD simulation 18 % compared to PI controllers 

[96] PI/genetic 

algorithm 

temperature range simulation - 

[97] Fuzzy controller Actual vote simulation 39 % reduction in daily average airflow 

[98] Fuzzy controller Actual vote simulation 12.08 % reductions in daily average airflow 

[99] Fuzzy 

controller/gausian 

adaptive theorem 

temperature range experiment - 

[87] Fuzzy 

controller/genetic 

algorithm 

PMV-PPD simulation 16.2 % reductions in cooling 

18.1 % reductions in heating 

[100] Fuzzy controller temperature simulation 

[101] MPC PMV experiment 4 % - 9.1 % reductions in total energy usage compared to PI 

controllers 

[102] MPC/particle swan 

optimization 

elements 

temperature experiment -NA 

[103] MPC temperature range experiment 15 % reduction in electricity consumption 

[104] MPC PMV-PPD experiment - 

[105] MPC/NARX temperature experiment 30.95 % savings in energy costs 

[106] MPC PMV-PPD experiment NA 

[107] MPC temperature range simulation 17 % reductions in energy use 
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roposed smart system was developed with three comfort mode

ettings (1) PMV = 0, (2) PMV = 0.5 and, (3) PMV = 0.7, with

he 3 rd mode setting as the energy saving mode. They estimated

he optimum energy savings of the 3 rd mode, which strikes a bal-

nce between thermal comfort provision and energy savings. Sev-

ral other studies discuss the potential energy savings associated

ith the use of fuzzy-logic systems in building control for thermal

omfort and energy savings [ Table 3 ]. 

As demonstrated above, there is a near consensus that favors

he use of “intelligent” control methods (e.g., MBPC and neuro-

uzzy logic systems) compared with conventional controllers (e.g.,

I and PID controllers). This is primarily because conventional

ethods tend to perform poorly when dealing with dynamic,

on-linear processes with large time delays [ 23 , 24 , 90 ]. However,

he literature evidence regarding the benefits of intelligent con-

rollers over conventional controllers for thermal comfort control

nd building energy optimization is barely sufficient to sway the

uilding industry toward the replacement of conventional con-

rollers with intelligent controllers. Much knowledge from exper-

mental and actual field studies is still required to better quantify

he benefits of intelligent controllers over conventional controllers

n building control. Moreover, from a control engineer’s point of

iew, conventional controllers may prove to be better tools than

ntelligent controllers given their simplicity and ease of deploy-

ent. 

. Future research directions 

To effectively discuss gaps in the current use of AI methods for

he provision of thermal comfort in buildings, we show the main

teps taken ( Fig. 2 ) in the development of thermal comfort pre-

ictive models and the implementation of such models in building
ontrol systems. We then discuss each step and its potential im-

rovements. 

Step 1 —Lack of AI-based modeling in residential buildings and

on-waking occupants 

Existing studies on the use of AI methods in thermal comfort

rediction and control mostly deal with non-residential buildings.

n our review, we found only a few studies that deal with resi-

ential buildings. This is primarily because of the difficulty in col-

ecting data and obtaining sufficient thermal comfort-related feed-

ack from people in a home setting. AI-based methods such as ML

redictive algorithms often work best on copious amounts of data,

hich can be difficult to gather in residential settings. In addition,

actors such as clothing insulation levels and activity are likely to

e similar in, e.g., an office building owing to dress codes or uni-

orms and similarities in the type of work being conducted. This

akes it less tedious to compute thermal comfort levels in non-

esidential buildings than in residential buildings. Similarly, most

I comfort models have been developed for waking people, ne-

lecting the necessity of thermal comfort for sleeping people. This

s again possibly due to the difficulties associated with collecting

omfort-related feedback from sleeping individuals. However, as

e explained earlier, and as illustrated through some of the ar-

icles summarized in the present study, recent advancements in

oT devices and wireless technologies have made it possible to col-

ect physiological data in a non-intrusive manner. By using such

evices for data collection, it would be interesting to see how (i)

he current use of advanced analytical methods for the modeling

nd control of thermal comfort extend to residential buildings, in

articular to sleeping occupants, and (ii) the subsequent implica-

ions of using these methods in regards to occupant satisfaction

nd building energy use. 

Step 2 —Lack of sufficient amounts of data and biases in

atasets 
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Fig. 2. Development and implementation of thermal comfort models. 
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m  
Although AI-based modeling and control of thermal comfort has

picked up pace in the building industry, it is still difficult to envis-

age such systems being widely employed. This is because training

ML models require copious amounts of data for effective learning.

While data collection methods in many fields have improved sig-

nificantly over the last few years, data related to building usage,

occupant-building interaction, etc., is still difficult to gather. Where

such data is available, it is collected by government agencies and is

usually large scale data; for example, a block of buildings within a

district rather than individual buildings. A possible solution to this

is the incorporation of new technologies such as in-stream super-

vision [108] , where streaming data is inherently labeled and used

for predictions, into buildings. 

Moreover, biases are inevitable when dealing with large

datasets. Such biases may result in inaccurate outcomes from the

developed models. For instance, a model that seemingly demon-

strates good performance may be picking up and ultimately con-

sidering noise in the data during model training. The problem with

noisy data is further exacerbated by a lack of neutrality in the

training dataset. To mitigate this problem, future research should

endeavor to establish a means to collect building-usage data that

are genuine and heterogeneous. 

Step 3 —High dependency on “supervised learning” methods 

Most ML techniques used in this field have mainly relied on

supervised learning methods. Supervised learning methods involve

the use of labeled data (i.e., input variables and the correspond-

ing output variables) for model training [29] . However, labeled

databases for buildings are rarely available, making the process

of data acquisition and labeling prior to modeling quite tedious.

This lack of readily available labeled data for buildings discour-

ages the application of ML techniques in building control and op-

timization. A possible solution to this problem is to encourage the

use of semi-supervised [109] or unsupervised [26] learning meth-

ods, which do not rely entirely on labeled data to train the re-

quired predictive models. Similarly, the use of reinforcement learn-

ing [110] , which trains the model through a trial and error ap-

proach as opposed to via example, should be further explored to

overcome the shortcomings of supervised learning methods in the

building sector. There have been recent efforts to employ reinforce-

ment learning methods in the modeling and control of thermal

comfort [ 111 , 112 ]. However, these studies are still relatively few
nd are mostly validated via simulation programs, for example,

ao et al. [111] . Many of such studies, conducted in actual build-

ngs are still necessary to solidify the benefits of reinforcement

earning methods in accurately modeling thermal comfort while

t the same time reducing building energy consumption. More-

ver, Future studies should also look into the complex and specific

echanisms of how diverse machine learning algorithms work and

ow these mechanisms would translate into the application of ML

n the modeling of thermal comfort and thermal control in build-

ngs. A clear and detailed analysis of such mechanisms would make

t less challenging when choosing which algorithm to employ in

hermal comfort modeling. 

Step 4 —Lack of generalization, transparency, and deterministic

onclusions 

While ML techniques have reached impressive milestones over

he years, most ML models still lack the ability to generalize condi-

ions. For example, a thermal comfort predictive model developed

sing data from one building and which performs quite adequately

ay perform poorly when utilized to predict thermal comfort us-

ng a new dataset from a different building, despite the new set of

ata being similar to the data used in training the model. Problems

ssociated with the lack of generalization of ML models require

hat several ML models be developed for each specific case that ex-

sts (e.g., for each building). This individualistic approach in mod-

ling incurs huge burdens in terms of costs, computational loads,

ata collection, personnel, etc., An alternative is the use of trans-

er learning [113] , which involves using knowledge gained from

re-trained models to solve new tasks. Transfer learning methods

ave been successfully employed, e.g., in tasks dealing with web-

ocumenting [ 114 , 115 ]. Therefore, future studies should explore the

se of transfer learning techniques in developing ML models for

uilding operation purposes. Also, to further understand the cur-

ent limitations of ML applications in the building sector, especially

n thermal comfort modeling and thermal control of indoor envi-

onments, future studies should further explore limitations of em-

loying ML methods in the modeling of occupant thermal comfort

t different stages of modeling, for instance, at each step presented

n Fig. 2 and subsequently, propose practical solutions to address

he said limitations. 

In addition, most AI-based predictive models are black-box

odels and thus lack an element of transparency. While we are
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ble to judge the performance of the model as good or bad, it

s nearly impossible to understand why a given model makes the

hoices that it does. There are simplified statistical methods such

s path analysis that have been used in comfort studies to improve

hermal modeling [116] . However, it is should be noted that while

ath analysis methods are certainly more informative than tradi-

ional statistical methods (e.g. multiple linear regression) in, for in-

tance identifying, optimum models in cases where we have mul-

iple models developed using many variables, it is still difficult to

rove causality between variables using path analysis [117] .How-

ver, of late, there have been attempts to solve this issue using

ovel techniques such as the local interpretable model-agnostic ex-

lanations (LIME) [118] . LIME attempts to identify which parts of

he training dataset are responsible for most of the predictions

ade by the developed model. It does this by feeding developed

odel inputs similar to those used in the training and observing

ariances in the predicted outcome. Consequently, future studies

n this area should explore the use of such novel techniques in ML

odels developed for building-related purposes. Such techniques

ould provide further insights into how different factors interact

ith a building or space;this would have significant implications

n terms of space design, building regulations, policies, etc. 

Additionally, the insights provided by most ML-based models

re exploratory as opposed to deterministic. They merely inform

hether certain attributes are correlated with an observed out-

ome; they are unable to shine light on the cause–effect relation-

hip between variables [119] . Current research effort s leantoward

sing ML to discover cause–effect relationships in data sets. For ex-

mple, Athey and Imbens [120] proposed several methods to use a

ross-validation technique with supervised learning to solve cause–

ffect tasks. Consequently, future research should explore ways of

dapting such novel technologies to building science. For exam-

le, through ML technologies, designers should be able to explore

hich physical or non-physical elements are likely to result in oc-

upant discomfort and how they can be properly controlled to

rovide thermally comfortable conditions while minimizing energy

se. 

Step 5 —Tuning, parameters, and model optimization techniques

While the variety of parameter tuning techniques and optimiza-

ion techniques that exist for ML models are beneficial overall, they

an also lead to inaccurate and unnecessarily computationally-

xpensive models when improperly employed. There remains a

eed for studies that explore optimum parameter tuning and op-

imization techniques that consider both accuracy and computa-

ional costs simultaneously. 

Step 6 —Deployment of comfort models in building control sys-

ems 

As explained earlier, most existing studies on the use of AI-

ased techniques in thermal comfort modeling report on the abil-

ty of AI-based techniques to predict comfort levels in comparison

ith traditional models such as the PMV/PPD model [11] . The de-

loyment of the developed comfort predictive models is often not

iscussed or at times neglected. It would be beneficial for future

tudies to place more emphasis on discussions regarding the in-

egration of AI-based predictive models into building energy man-

gement systems (BEMS). Below ( Fig. 3 ), we show a simple exam-

le of how a comfort predictive model can be integrated into a

EMS system for comfort control. 

Step 7 —Quantifying the benefits of AI-based comfort control

ystems 

There are few studies that discuss the implications of using

I-based methods for the control of thermal comfort on building

nergy use and occupant thermal satisfaction. Moreover, most of

hose few studies rely on simulation results to quantify the ben-

fits of AI-based thermal comfort control methods. While the use

f computer simulation software is beneficial to study such com-
lex tasks in terms of time, this approach is prone to many errors,

nd studies that explore the benefits of AI-based thermal comfort

ontrol systems through actual field and experimental studies are

ecessary. 

. Conclusions 

AI methods, particularly those based on ML algorithms, offer

nhanced opportunity to analyze data that is dynamic and highly

ariable. Subsequently, they are better suited for the analysis of

he non-linear nature of the interactions between buildings and

heir occupants. The current review shows theoretical evidence,

rising from several field and experimental studies, illustrating the

otential benefits (i.e., in terms of accuracy) of ML algorithms in

he prediction of occupant thermal comfort compared with tradi-

ional methods such as the PMV/PPD. Moreover, the advances in

oT wireless technologies offer simplified methods to collect the

ccupant-related data necessary to develop thermal comfort pre-

ictive models. Via building control techniques, the combination of

he accuracy offered by machine algorithms and the ease of data

ollection from IoT-based devices makes predictive modeling the

deal approach for optimizing building energy performance with-

ut sacrificing occupant thermal comfort. However, while the idea

s promising, there are still significant challenges that are likely to

elay the adoption of AI-based methodologies in the building in-

ustry. For instance, there remains a lack of solid evidence demon-

trating the usefulness of AI-based thermal comfort control based

n in-situ experiments. While there is strong theoretical evidence

egarding the potential usefulness of artificial intelligence-based

redictive modeling on occupant thermal comfort and the asso-

iated building energy benefits, there is a lack of field and ex-

erimental studies to quantify the benefits of AI-based methods

ver traditional building control methods in terms of both thermal

omfort and building energy use. Furthermore, we found that the

I methods currently being used in the building sector are lack-

ng in several aspects, e.g., in the type of learning methods being

mployed; this may further prevent the transition from the tradi-

ional approach to thermal comfort and building control to mod-

rnized and potentially more beneficial methods based on AI. We

ave discussed several approaches that we believe can help in the

ntegration of AI into buildings; these could potentially result in

he provision of adequate comfort levels while minimizing energy

se. 

A further important discussion that has been largely ignored

n the literature is that dealing with the financial costs associ-

ted with the development of AI-based thermal comfort predictive

odels and their deployment in building control systems. This is-

ue is even more pronounced for personal comfort models as they

re likely to require personalized devices for data collection dur-

ng the development and training of the models and later during

he deployment of said models in thermal control systems. Conse-

uently, studies addressing the initial costs associated with the de-

elopment and deployment of AI-based thermal comfort models in

omparison with the long-term benefits in terms of costs through

educed energy usage, occupant thermal satisfaction, and reduced

O 2 emissions, would go a long way toward encouraging the use

f AI-based methodologies for thermal control in buildings. 

Besides the lack of studies discussing the benefits and finan-

ial costs of AI-based thermal comfort control, the lack of multi-

isciplinary collaboration in building research is also likely to re-

ult in unnecessary delays in the adoption of AI-based thermal

omfort control methodologies. Most research in the built envi-

onment field is conducted by researchers in the hard engineering

elds (e.g., civil and architectural engineering). However, the study

f AI and its deployment in built environments requires the adop-

ion of concepts and methodologies from many other academic
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Fig. 3. Implementation of thermal comfort models in BEMS (building energy management system). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

disciplines, primarily the computer science field. Consequently,

this limited collaboration between these two disciplines (i.e., built

environment engineering and computer science) is likely to fur-

ther stunt the chances of discovering less complex and cheaper

means of integrating AI-based thermal comfort control schemes

into building control systems. 
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