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a b s t r a c t 

Widespread adoption of automated decision making by artificial intelligence (AI) is witnessed due to 

specular advances in computation power and improvements in optimization algorithms especially in ma- 

chine learning (ML). Complex ML models provide good prediction accuracy; however, the opacity of ML 

models does not provide sufficient assurance for their adoption in the automation of lending decisions. 

This paper presents an explainable AI decision-support-system to automate the loan underwriting pro- 

cess by belief-rule-base (BRB). This system can accommodate human knowledge and can also learn from 

historical data by supervised learning. The hierarchical structure of BRB can accommodates factual and 

heuristic rules. The system can explain the chain of events leading to a decision for a loan application by 

the importance of an activated rule and the contribution of antecedent attributes in the rule. A business 

case study on automation of mortgage underwriting is demonstrated to show that the BRB system can 

provide a good trade-off between accuracy and explainability. The textual explanation produced by the 

activation of rules could be used as a reason for denial of a loan. The decision-making process for an 

application can be comprehended by the significance of rules in providing the decision and contribution 

of its antecedent attributes. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Underwriting skill is learnt through several months of train-

ng and exchange of knowledge by senior underwriters. This task

equires underwriters to be fairly analytical, very organized, and

ccurate to give informed decision to approve or reject a loan

pplication. Underwriters concurrently analyse a large quantity of

nformation to find affordability, repayment history and collateral.

urthermore, sometimes they are required to change the process

ue to a shift in regulatory and compliance standards, investor re-

uirements, and customer demands ( Krovvidy, 2008 ). 

New technology and strong machine learning (ML) algorithms

ave opened the doors for a straight-through loan application

rocess. Artificial intelligence (AI) systems can execute rules and

rocess customers’ information in a few milliseconds. Financial in-

titutions have recognized the benefits of AI and are using it in

 different subset of the underwriting process and are keen to test
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nd implement newly introduced digital innovation. AI systems are

xpected to replicate human decision-making skills. However, even

oday transformation of various algorithmic concepts into training

ata could be very challenging to solve every instance of the prob-

em for a range of lending products. It may not be able to solve a

iny subset of the problem ( Aggour, Bonissone, Cheetham & Mess-

er, 2006 ). 

.1. Manual underwriting challenges 

Manual underwriting task is a very much paper-based process.

t is an inconvenient process of circulation of loan application files

ithin different departments of a lending institution. Full atten-

ion to details is requisite to give sound judgment on an applica-

ion. Human underwriter evaluates scenarios by analysing a large

mount of dynamic information in a loan application. This could be

 source of inconsistency, inaccuracy, and biases ( Peterson, 2017 ). 

Manual underwriting is often successful in processing non-

tandard loans. Many lenders like high street banks and build-

ng societies follow strict rules and do not offer personalized

nderwriting. However, there are some lenders who exercise com-

on sense lending approaches for assessing both standard and

on-standard cases such as non-standard properties, non-standard
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income/employment, and less than perfect credit scores. The un-

derwriting process of non-standard cases is very detailed and indi-

vidualistic. Common senses lending approaches serve underserved

people 

1.2. Advantages and concerns of automated underwriting systems 

In 1995 Fannie Mae, a US largest mortgage lending company

introduced first Desktop Underwriter that applied both heuristics

and statistics to process mortgage loan in less time, cost, and pa-

perwork ( Cocheo, 1995 ). In the same year, another US lending

company, Freddie Mac introduced an automated underwriting sys-

tem called loan prospector ( Cocheo, 1995 ). Most lenders use an

automated system which contains coded underwriter guidelines

which provide the decision of acceptance or rejection when certain

default rules in the rule base are triggered. Early statistical meth-

ods were limited to a small sample of data, but now data scientists

have access to big data to provide meaningful learning of AI/ML

models. Digital technology advancements have allowed the use of

big data to find the multitudinous ways by which features influ-

ence each other. Linear and non-linear relationships between fea-

tures are found by advanced machine learning algorithms, such as

ensemble methods, neural network, support vector machine, and

random forest. These models have superior ability to classify the

risk status of loan applications. Further, they are far more accu-

rate for conforming loans than manual underwriting as ML mod-

els provides outcome by combining a large number of observations

in the dataset ( Gates, Perry & Zorn, 2002 ). The speedy decision

by an automated AI system provides satisfactory customer expe-

rience ( Krovvidy, 2008 ) ( Gates et al., 2002 ). Though, a manual un-

derwriter may have access to more detailed information for non-

conforming loans. 

Automated AI systems have huge potential for sure; however,

the rapid adoption of AI in decision making also has concerns. The

following questions must be addressed before developing AI-based

decision-making tool: 

1.2.1. Are we accessing the right data to map manual underwriting 

process? 

Automation by advanced AI algorithms raises ethical questions.

The data used to train these models may only contain instances

for a subset of underwriting practices. Learning of AI/ML models

by such data can give a correct decision for only a group of bor-

rowers which exist in the historical data and will disregard bor-

rowers with a rare case or less than a standard application. This,

in turn, can make the automated AI a biased system as it is the

source of unintentional discrimination. It is important to select the

right features to capture the underwriting process. 

1.2.2. Can AI automated underwriting system restore common senses 

in lending decisions? 

Automated AI system consists of codified rules and advanced

AI algorithms. Lending institutions have their predefined standard

rules which revolve around affordability, defaults, loan-to-value,

and loan-to-income. The codification of these rules may not rep-

resent the lending decision of all groups of borrows ( Gates et al.,

2002 ). Minority and low-income borrowers are underrepresented

through these rules. Depending on the type of lending product,

some high street banks give either fully or partially automated de-

cision based on some strict rules which leave no room for looking

at loan applications at a personal level. It can be argued that hu-

man underwriters can make better decisions for exceptional cases

( Glassman & Wilkins, 1997 ) 
.2.3. Can AI incorporate changes in underwriting practices due to a 

hift in some policy? 

Lending institutions change their policy to include traits of high

isk borrowers that were previously approved and add traits of

romising borrowers that were previously rejected. A new policy

equires new data records for a set of attributes or features which

eflect new underwriting rules to train AI algorithm. 

.2.4. How to deal with lack of explainability in the AI model? 

The idea to explain a decision made by an AI model and its in-

er working started in the 1970s to test and engender user trust

n expert systems ( Stein, Preece & Boicu, 2018 ). However, spec-

lar advances in computation power and improvements in op-

imization algorithms shifted the focus towards accuracy, while

he ability to explain decisions has taken a back seat ( Adadi &

errada, 2018 ). In the past, FraudWatch an expert system based on

ADS (Knowledge Acquisition and Documentation Structuring) was

eployed by Barclay Bank to detect fraud in credit card transac-

ions ( Killin, 1992 ). Another system, X-MATE (Expert Mortgage Ar-

ears Threat Advisor) was developed by Hewlett Packard’s Knowl-

dge System centre and AI application institute of the University of

dinburgh for a large UK building society to detect high-risk loan

pplicants ( Kingston, 1991 ). This system was not entirely based on

ADS; it simply adapted its knowledge acquisition and structur-

ng methodology. It assessed loan application by comparing it with

igh-risk application in knowledge-base than an ideal application.

oth XMATE and FraudWatch had IF-THEN rules obtained from ex-

erienced experts; however, parameters like conclusion given by

 rule were not trained by historical data and conclusion in each

ule was certain, which does not give room to accommodate un-

ertainty in cases where experts are not sure about the decisions

iven by the rules. 

Machine learning (ML) is an emerging frontier of AI. Some

achine learning models like decision tree and logistic regression

an explain decisions. High performance ML models such as deep-

eural-network and ensemble methods are very complex and

onsequently, decisions from these models are considered much

ore difficult to explain to end-users and other non-technical

takeholders. In the past years, many studies have presented

arious ML models for credit scoring. Among such ML models,

ome most popular studies are on ensemble classifier ( Xu, Zhang,

 Feng, 2018 ) ( Abellán & Castellano, 2017 ) ( Xiao, Xiao & Wang,

016 ) ( Marqués, García & Sánchez, 2012 ) ( Wang, Ma, Huang &

u, 2012 ) ( Hung & Chen, 2009 ) ( Nanni & Lumini, 2009 ), support

ector machine ( Harris, 2015 ) ( Tomczak & Zi ̨eba, 2015 ) ( Hens &

iwari, 2012 ) ( Chen, Ma & Ma, 2009 ) ( Huang, Chen & Wang, 2007 )

 Li, Shiue & Huang, 2006 ) ( Schebesch & Stecking, 2005 ), neural

etwork ( Luo, Wu & Wu, 2017 ) ( Zhao et al., 2015 ) ( Li et al., 2006 )

 Khashman, 2010 ) ( Bensic, Sarlija & Zekic-Susac, 2005 ) ( Kim &

ohn, 2004 ) ( West, 2000 ), genetic programming ( Metawa, Hassan

 Elhoseny, 2017 ) ( Abdou, 2009 ) ( Ong, Huang & Tzeng, 2005 ),

ayesian network ( Leong, 2016 ) ( Wu, 2011 ) ( Zhu, Beling & Over-

treet, 2002 ) and decision tree ( Bijak & Thomas, 2012 ) ( Yap, Ong

 Husain, 2011 ) ( Zhang, Zhou, Leung & Zheng, 2010 ) ( Bensic et al.,

005 ). 

The concept of explainability of decisions from a ML model is

ot discussed in these studies. The term explainability and inter-

retability are often used interchangeability. Transparency is used

s a synonym for interpretability. Interpretability refers to the

nderstanding of working logic of an AI-based decision-making

ystem and explainability relates to the ability of AI system to

rovide a suitable explanation on how it arrived at a decision

 Montavon, Samek & Müller, 2018 ) ( Lipton, 2016 ). Some ML/AI

odel such as decision tree and logistic regression fall into the

lass of interpretable models. However, these models lack accu-

acies compared to complex black-box models and have nested
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on-linear structure which makes them opaque. Deep-neural-net

nd ensemble models such as random-forest, XGboost and Ad-

boost are most successful black-box models. The need for explain-

bility of a decision depends on the impact of wrong decisions.

he impact varies with the given use case criticality. For example,

he impact of the recommendation of wrong movies and adver-

isements is much less than the lending loan to unpromising cus-

omers, and most importantly misdiagnosis of patients could have

atastrophic consequences. The trust for an AI system diminishes

ith an increase in sensitivity of impact of the decision provided

y the AI system rather than a human expert. 

Explainability can benefit organisations by boosting confidence

n executives accountable for unintended consequences of incor-

ect decision from AI automated systems. It helps them to com-

ly by the regulatory standards for AI such as the General Data

rotection Regulation (GDPR) in Europe. It enables data scientists

nd developers to detect potential weakness and flaws in a model

nd strengthen the trust of customers in decisions made by auto-

ated AI systems. In recent years, several explainability methods

nd strategies have been proposed to unfold the outputs of black-

ox ML models. These methods can be classified into two groups:

odel specific and model agnostic ( Adadi & Berrada, 2018 ). 

Model-specific interpretation methods are limited to a spe-

ific model. For example, tree interpreter for random forest and

eep-taylor-decomposition for the neural network ( Montavon, La-

uschkin, Binder, Samek & Müller, 2017 ). Model-agnostic models

an be applied to any type of ML model. It can be local inter-

retation method such as Local Interpretable Model Agnostic Ex-

lanations (LIME) ( Ribeiro, Singh & Guestrin, 2016 ) and Shapley

 Lundberg & Lee, 2017 ) ( Casalicchio, Molnar & Bischl, 2018 ) that

an explain a specific decision and can be a global interpretation

ethod such as sensitivity analysis to understand entire model be-

avior. These methods provide explanation graphically in the form

f local feature importance by multi-feature perturbation around a

articular decision or by repeating multi-feature perturbation for

 set of random decisions to approximate global feature impor-

ance. However, these methods can not reveal the true decision-

aking process and the chain of events leading to a decision. More

esearch is required to develop strategies to explain ML models

nd develop better ML/AI algorithms to make a shift towards more

ransparent AI. 

In this paper, we aim to address the above problems in the au-

omation of loan underwriting process by belief-rule-base (BRB)

xpert system. It is an extension of traditional IF-THEN rule-

ase-systems. These rules can accommodate the knowledge of

xperts who have extensive experience in the task of assess-

ng loan applications in a lending institution. The rules in BRB

an be trained to learn from historical credit data by captur-

ng the non-linear relationship between antecedent attributes and

onsequence attribute. The rule-base can be given a hierarchi-

al structure which can contain factual and heuristic rules. It is

 transparent decision-making system that can reveal the true

ecision-making process and a chain of events leading to a de-

ision. The main purpose of this paper is to present a detailed

ethodology to design a belief-rule-base system as an explainable

ecision-support-system for automation of loan lending process

nd to present a business case study on automation of mortgage

nderwriting. 

There are two types of credit scoring task ( Khashman, 2010 )

 Li et al., 2006 ). The first type is to classify applicants into classes

uch as ’fund’ or ’reject’ and ’bad’ or ’good’ which can be done ei-

her manually by an underwriter or by an automated underwriting

ystem. In contrast, the second type discovers existing customer

epayment patterns to update future lending policy. In this paper,

e focus on making an automated decision of funding or reject-

ng loan applications by mimicking the underwriting procedure of
 company and extracting the non-linear relationship among at-

ributes (features). 

The rest of paper is organized as follows. Section 2 describes

he methodology to develop BRB based decision-support-system. In

ection 2.1 , the representation of rules is described. In Section 2.2 ,

he procedure for knowledge acquisition and data collection are

xplained. In Section 2.3 , we discuss a detailed methodology for

he transformation of quantitative and qualitative data into a

elief distribution. In Section 2.4 , the hierarchical structure of

nowledge-base is analysed and in Sub- Section 2.5 we explain the

nference of BRB expert system by using the evidential-reasoning

ER) approach and by training BRB system parameters. In Section 3 ,

e demonstrate a business case-study on mortgage lending. The

aper is concluded in Section 4 . 

. Automation of loan underwriting by belief rule-based (BRB) 

ethod 

.1. Knowledge representation using rules 

There are two types of knowledge in an area of expertise, facts

nd heuristics ( Feigenbaum, 1980 ). Facts are widely accepted infor-

ation in any particular domain. Heuristics knowledge is the infor-

ation gained through experience. This type of information leads

o the formation of judgmental rules and rules of plausible rea-

oning. These rules are about one’s ability to evaluate, judge and

uess in a situation. An expert uses heuristic knowledge gathered

hrough years of experience and learning. 

Human knowledge is represented in the form of IF-THEN rules

 Sun, 1995 ). A belief rule is the extension of traditional IF-THEN

ule where domain expert knowledge can be represented as fact

f it is crisp or uncertain if it is heuristic. A belief rule has two

arts, Antecedent part (IF) and consequent part (THEN). The an-

ecedent part contains one or more antecedent attributes, and each

ntecedent attribute takes referential value from a set of referential

alues. The consequent part contains one consequent attribute and

eferential values on consequent attribute are given belief degrees.

Suppose, belief-rule-base (BRB) has A i , i ∈ 1, …, I antecedent

ttributes and one consequence attribute H . The attributes in BRB

odel is represented as: 

RB = 〈 A 1 , . . . , A i , . . . , A I , H〉 
Each antecedent attribute has a set of referential values. The

et of referential values for an antecedent attribute can be repre-

ented as A i = { A v,i ; v = 1, …, V i }. Referential values can be ei-

her numerical for quantitative attribute or categorical for qual-

tative attributes. If there are I total antecedent attributes, then

here are Q qualitative attributes and J quantitative attribute,

ith I = Q + J . There is only one consequence attribute. The set

f referential values for a consequence attribute can be written

s H = { h n ; n = 1 , . . . , N } . Suppose there are K ( k ∈ 1, …, K ) num-

er of rules in the rule-base. Then belief degree (BD) for the con-

equence of each rule can be written as BD = {(h 1 , β1, k ), …, (h n ,

n,k ), …, (h N , βN,k )}, n = 1…N . A rule is the combination of differ-

nt referential values of antecedent attributes in BRB model. The

tructure of k th rule can be written as: 

 k : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

{
IF : 

(
A 1 is A 

k 
v , 1 

)
∧ 

(
A 2 is A 

k 
v , 2 

)
∧ . . . ∧ 

(
A I is A 

k 
v ,I 

)
T HEN : 

{(
h 1 , β1 ,k 

)
, . . . , 

(
h n , βn,k 

)
, . . . , 

(
h N , βN,k 

) }
sum of belief βn,k : 

N ∑ 

n =1 

βn,k = 1 for all k { 1 , . . . , K } 
rule weight : θk ≤ 1 for all k { 1 , . . . , K } 

attribute weight : δk 
i 

for all k { 1 , . . . , K } , i ∈ { 1 , . . . , I } 
(1) 

here ∧ is a logical connective to represent the AND relationship. 
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Fig. 1. Knowledge acquisition and data collection. 
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For example, suppose BRB model has three attributes and one

consequence attribute BRB = 〈 A 1 = Bankruptcy in last 4 years,

A 2 = Credit card arrears in last 18 months, A 3 = monthly afford-

ability, H = Decision 〉 . Each attribute has a set of referential values.

A rule from these attributes can be written as: 

R 1 

⎧ ⎪ ⎨ ⎪ ⎩ 

IF : 
(
Bankruptcy in last 4 years is A 

1 
v , 1 

)
∧ 

(
Credit card arrears in last 18 months is A 

1 
v , 2 

)
∧ 

(
monthly affordability is A 

1 
v , 3 

)
T HEN : { ( Fund , 0 . 20 ) , ( Reject , 0 . 80 ) } 

This rule can be simply rewritten as: IF A 

1 
v , 1 ∧ A 

1 
v , 2 ∧ A 

1 
v , 3 ;

THEN {(Fund, 0.20),(Reject,0.80)}. 

2.2. Knowledge acquisition and data collection 

The task of data extraction demands a good understanding of

data layout and underwriting guidelines. Data model or metadata

can be used to understand the data. Data extraction is designed

by developers. They work in conjunction with knowledge engi-

neers. Knowledge engineers translate the information in the form

of IF-THEN rules in the computer. They elicit information from do-

main experts like experienced underwriters and seniors who de-

sign rules based on regulations. Rules vary by type of lending

product. Baseline rules are defined in all lending institutions, how-

ever, to make manual decision underwriters use their experience

which is beyond the defined rules and guidelines. Both extracted

data and rules should reflect the practical experience of the under-

writers and lending institutions guidelines. Within the field of AI,

knowledge acquisition is considered a challenge for the develop-

ment of an expert system. Knowledge analysis and design structure

(KADS) for expert systems ( Akinyokun, 2015 ) and unstructured in-

terview, structured interview, protocol analysis, psychological scal-
ng and card sorting for an expert system in finance described in

agner, Otto and Chung (2002) can be used for knowledge acqui-

ition. The complexity of domain strongly influences the quality of

nowledge ( Holsapple, Raj & Wagner, 2008 ). 

Credit data is extracted from a credit bureau server. It is then

tored in a primary database of a lending institution. Index or col-

mn names are stored in a file. This file is used in future to re-

rieve the columns which could be used to map the underwriting

uidelines and experience. The process of retrieval of parts of a

arge data file is called subsetting, as shown in Fig. 1 . Credit bu-

eaus compile more than 20 0 0 variables or columns for each indi-

idual. They have access to multiple sources of information such as

anks, telecom, utility, electoral commission, county court (in Eng-

and and Wales) judgments related to unpaid debt, parking, driv-

ng and council tax. Traditionally, lending institutions use credit

ureau, loan application, and lenders own loan criteria and exist-

ng customer’s data. Alternative data sources like transaction data,

ocial network data, and clickstream data are getting a lot of at-

ention to enhance the accuracy and judgement power of machine

earning models ( Wei, Yildirim, Van den Bulte & Dellarocas, 2015 )

 Aitken, 2017 ). 

The subset of credit data is preprocessed, which includes clean-

ng and treatment. The missing values are given label ‘unknown’;

 missing piece of credit information can be used as evidence.

ufficient credit information of a customer helps in effective de-

ision making. A missing important piece of information or al-

ost no credit history could lead to rejection of a loan application.

or data treatment, some of the columns could be aggregated to-

ether by average, maximum, minimum, and sum operation. For

xample, data for the rule ‘ worst status of fixed-term account in

he last 12 months ’ would be maximum of worst status columns

or the current address, previous address, and linking address.
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ikewise, data for rule ‘ Number of bankruptcy in the last 6 years ’

ould be the sum of columns for the number of satisfied and un-

atisfied bankruptcy in the last 6 years. Preprocessed data is stored

n a secondary database where data from the electronic applica-

ion is also extracted and stored. The data extracted from the elec-

ronic application can be used to calculate the affordability, debt-

o-asset ratio, and loan-to-value ratio. It will be explained in detail

n the case study. Both processed credit data and electronic ap-

lication data is merged together by application ID as a primary

ey. 

Merged data set is then transformed in the form of belief

tructure over the referential values of antecedent attributes. Data

ransformation is explained in detail in Section 2.3 . The referen-

ial values of transformed data are matched with the values in

F-THEN rule. In inference engine, rules activated by matching of

ransformed data and IF-THEN rules are used to calculate the acti-

ation weight of each rule at a data point. All activated rules are

hen aggregated together to generate final inference output. The

nference output is utilized by the underwriter (user) to make a

ecision. 

.3. Data transformation 

BRB framework can be implemented on precise data and sub-

ective judgment with either uncertainty or certainty. Both cer-

ainty and uncertainty are incorporated by transforming data into

elief structure over the referential values of antecedent attributes.

he belief distribution of each data point is used to calculate the

ctivation weight of a rule. Additionally, the inference engine in

RB is the evidential reasoning approach, which works with data

n the format of belief distribution. Input data can have two types

f antecedent attributes, quantitative and qualitative. The quanti-

ative attribute contains continuous data and qualitative attribute

ontains categorical data. 

Suppose X denotes the full dataset. It contains x m,i data sample

here m ∈ {1, …, M } is the number of data points and i ∈ {1, …, I }

s the number of attributes. The input dataset is shown in Table 1 .

t has I − 1 antecedent attributes and one consequence attribute

 A I ). 

The data point x m,i transformed into a belief distribution can be

epresented as: 

 ( x m,i ) = 

{ 

( A v ,i , αv ,i ( x m,i ) ) , v ∈ 1 , . . . , V i , 

V ∑ 

v =1 

αv ,i ( x m,i ) = 1 

} 

(2) 

here, A v,i is the v th referential value of the i th antecedent at-

ribute. The set of referential values for antecedent attribute is

 i = { A v,i , v ∈ 1, …, V i }. Here V i is the number of referential val-

es of an antecedent attribute A i . αv,i ( x m,i ) is the matching de-

ree which measures the matching degree of the m 

th data point to

he v th referential value of the i th antecedent attribute. Method to

btain αv,i ( x m,i ) depends on the data type of antecedent attribute

 i . Data transformation for quantitative attributes (continuous) and

ualitative attributes (categorical) is summarized below. 
Table 1 

Dataset. 

Number of data 

points 

Antecedent attributes Consequence 

attribute 

A 1 ��� A i ��� A I − 1 A I 

1 x 1,1 x 1, i x 1, I − 1 x 1, I 

� � � � �

m x m ,1 ��� x m,i ��� x m,I − 1 x m,I 

� � � � �

M x M ,1 x M,i x M,I − 1 x M,I 

T

E

.3.1. Quantitative attribute 

If A i is quantitative attribute then αv,i for x m,i can be obtained

y referential values A v,i and A v + 1, i if x m,i lies between these two

eferential values. 

v ,i ( x m,i ) = 

A v +1 ,i − x m,i 

A v +1 ,i − A v ,i 
and αv +1 ,i ( x m,i ) = 1 − αv ,i ( x m,i ) (2a) 

f A v ,i ≤ x m,i ≤ A v +1 ,i with αv ,i ( x m,i ) + αv +1 ,i ( x m,i ) = 1 

v ′ ,i ( x m,i ) = 0 for v ′ = 1 , . . . , V i and v ′ 	 = v , v + 1 (2b)

For intuitive illustration, suppose a set of referential values

or antecedent attribute called credit score is A 1 = {0, 100, 300,

00} and we want to transform the 1st and the 2nd data point

n the dataset, x 1,1 = 33 and x 2,1 = 456, respectively. For data

ransformation we need two successive referential values such

hat x 1,1 and x 2,1 lies between them. The 1st data point x 1 , 1 = 33

ies between A 1 , 1 = 0 and A 2 , 1 = 100 so α1 , 1 ( x 1 , 1 ) = 

100 −33 
100 −0 = 0 . 67

nd α2 , 1 ( x 1 , 1 ) = 1 − α1 , 1 ( x 1 , 1 ) = 1 − 0 . 67 = 0 . 33 . Similarly, the 2nd

ata point x 1 , 2 = 456 lies between A 3 , 1 = 300 and A 4 , 1 = 600

hen α3 , 1 ( x 2 , 1 ) = 

600 −456 
60 0 −30 0 = 0 . 48 and α4 , 1 ( x 2 , 1 ) = 1 − 0 . 48 = 0 . 52 .

able 2 shows the transformed data of a quantitative attribute. 

.3.2. Qualitative attribute 

Transformation into belief structure over the referential values

f qualitative attributes : The referential value of a qualitative an-

ecedent attribute is described by a set of linguistic value. It can

lso be called categorical levels. The qualitative value of an at-

ribute belongs only to one of the categories in a set of referen-

ial values. This implies that the qualitative data point will have

00% membership to one of the referential values. For example,

uppose credit score ( A 1 ) is a qualitative attribute and its set of

eferential value is A 1 = { excellent , good , averge , poor }. If the 1st

ata point in credit score attribute is ‘ good ’ and the 2nd is ‘ aver-

ge ’ then, αgood ,1 ( x 1,1 ) = 1 and αaverage ,1 ( x 2,1 ) = 1. Table 3 shows

he transformed data of a qualitative attribute. 

Data fusion – maximum likelihood evidence reasoning : The BRB

ramework has shown the advantage of finding non-linear relation-

hips between inputs and output in a probabilistic manner and

as the ability to handle inaccurate and ambiguous data by giv-

ng weights to rules and attributes in each rule ( Yang, Liu, Wang,

ii & Wang, 2006 ). However, in the BRB framework, the number

f rules can increase exponentially with the number of antecedent

ttributes and the number of referential values in each antecedent

ttribute. The number of rules in BRB is: 

 = 

I ∏ 

i =1 

V i (3) 

Credit data has a large volume : Each applicant can have several

undreds of columns and credit data is combined with other data

ources as well, as described in Section 2.2 . Several columns can
Table 2 

Example of quantitative data transformation. 

# data points A 1 : Credit score Transformed data 

1 33 {(0,0.67), (100,0.33), (300,0), (600,0)} 

2 456 {(0,0), (100,0), (300,0.48), (600,0.52)} 

able 3 

xample of qualitative data transformation. 

# data points A 1 : Credit score Transformed data 

1 good {( excellent , 0), ( good , 1), ( averge , 0), ( poor , 0)} 

2 average {( excellent , 0), ( good , 0), ( averge , 1), ( poor , 0)} 
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Fig. 2. Example of complete data. 
be selected to map a lending organization’s rules and reflect un-

derwriter knowledge. Increase in the number of columns or at-

tributes increase the number of rules; consequently, this increases

the number of training parameters in the BRB model. This chal-

lenge could be overcome by fusing qualitative attributes (categori-

cal data) by ma ximum li k elihood e vidence r easoning (MAKER).

The MAKER framework combines evidence to fuse qualitative at-

tributes. It is a data-driven inference modelling approach, which

was introduced in Yang and Xu (2017) , and extends Bayesian in-

ference. The core of Bayesian inference is Bayes’ rule that is used

to combine prior evidence with new one. Prior evidence is pro-

filed as a probability distribution over a set of hypotheses, while

new evidence is characterized by the likelihood that the evidence

is observed for each given hypothesis. Bayes’ rule updates knowl-

edge once new evidence is available. Unlike Bayes’ rule, the MAKER

framework does not depend on prior probability and can handle

ambiguous information for inference. In MAKER, prior is treated

as an independent piece of evidence and added to evidence set if

available; otherwise, it is treated as completely unknown. MAKER

is introduced briefly in this section. 

Suppose H = { h 1 ,…, h n ,…, h N , n ∈ {1, …, N }} is a set of mutually

exclusive and collectively exhaustive hypotheses, or h q ∩ h q ′ 	 = ∅ for

any q, q ′ ∈ {1, …, N } and i 	 = j , where ∅ is the empty set. H can be

referred as frame of discernment ( Shafer, 1976 ) . The power set of

H consists of 2 N subsets of H , denoted by P ( H ), as follows: 

P ( H ) = { ∅ , { h 1 } , . . . , { h n } , { h 1 , h 2 } , . . . , { h 1 , h N } , . . . , 
{ h 1 , . . . , h N−1 } , H } (4)

The set of categorical or qualitative attributes can be repre-

sented in the following way: 

A 

′ = 

{
A 

′ 
1 , . . . , A 

′ 
q , . . . , A 

′ 
Q 

}
, q ∈ { 1 , . . . , Q } (5)

A piece of evidence is denoted by e . Each categorical attribute

has V q ( q ∈ {1, …, Q }) linguistic referential values. The referential

value of a categorical attribute A 

′ 
q is given by A 

′ 
v q ( v ∈ {1, …, V q }).

A piece of evidence e v,q is obtained from the v th referential value

of the q th categorical attribute and e v,q ( h ) is evidence e v,q pointing

exactly to a proposition h . In the MAKER framework, pieces of evi-

dence obtained from a set of input variables are combined to gen-

erate combined support for a proposition h . One piece of evidence

is combined with another piece of evidence by taking account of

four elements – basic probability, the interrelation between two

pieces of evidence, the reliability and weight of each piece of ev-

idence. A piece of evidence e v,q is profiled by a belief distribution

or basic probability distribution as follows: 

e v ,q = 

{ (
e v ,q ( h ) , p h, v ,q 

)
, ∀ h ∈ P ( H ) and 

∑ 

h ∈ P ( H ) 
αh, v ,q = 1 

} 

(6)

The basic probability αh,v, q is obtained from data collected for

attribute A 

′ 
q . The evidence from single input variable A 

′ 
q can be

transformed to a basic probability distribution for all h ∈ P ( H ). This

is called one-dimensional evidence acquisition process. It can be

obtained from Eq. (7) . The basic probability is obtained from the

normalized likelihood. The likelihood is obtained by generating a

contingency table. Let C h,v, q be the likelihood of observing the v th 

referential value of an attribute A 

′ 
q for given proposition h . The ba-

sic probability is then generated by the following normalised like-

lihood: 

p h, v ,q = 

C h, v ,q ∑ 

g∈ P ( H ) C g, v ,q 
∀ h ∈ P ( H ) (7)

Similarly, joint basic probability can be acquired from joint

likelihood function. Suppose, we want to combine two cate-

gorical attribute A 

′ 
q and A 

′ 
q ′ , their set of referential values is
 

′ 
v ,q ( v ∈ { 1 , . . . , V q } ) and A 

′ 
v ′ , q ′ ( v 

′ ∈ { 1 , . . . , V ′ q } ) , respectively. Sup-

ose two pieces of evidence e v,q and e v ′ , q ′ are acquired from at-

ributes A 

′ 
q and A 

′ 
q ′ , respectively. If C h,vq, v ′ q ′ is the joint likelihood

f observing A 

′ 
v ,q and A 

′ 
v ′ , q ′ for given proposition h , then the joint

asic probability that both evidence e v,q and e v ′ , q ′ point to proposi-

ion h is given by: 

p h, v q, v ′ q ′ = 

C h, v q, v ′ q ′ ∑ 

g⊆P ( H ) C g, v q, v ′ q ′ 
∀ h ∈ P ( H ) (8)

.3.2.1. Interrelation between two pieces of evidence. Interrelation

etween two pieces of evidence is obtained from single and joint

asic probabilities. The degree of interdependence between evi-

ence e v,q ( Z 1) and evidence e v ′ , q ′ ( Z 2), Z 1 ∩ Z 2 = h , ∀ h ∈ P ( H ) is

iven by: 

 h, v q, v ′ q ′ = 

{
0 if p Z1 , v ,q = 0 or p Z2 , v ′ ,q ′ = 0 

p h, v q, v ′ q ′ 
p z1 , v ,q , p z2 , v ′ ,q ′ 

otherwise 
(9a)

here, ψ h,vq, v ′ q ′ is interdependence index. It has the following

roperty: 

 h, v q, v ′ q ′ = 

{
0 if e v ,q ( Z1 ) and e v ′ ,q ′ ( Z2 ) are disjoint 
1 if e v ,q ( Z1 ) and e v ′ ,q ′ ( Z2 ) are independent 

(9b)

.3.2.2. Complete and incomplete data. The MAKER framework can

e implemented on complete, incomplete or ambiguous datasets.

 complete dataset has records of all input attributes. For example,

n Fig. 2 both attribute A 

′ 
q and A 

′ 
q ′ are available, and none of them

s missing. It has missing output, labelled as ‘unknown’, where un-

nown = H = { h 1 ,…, h n ,…, h N ; n ∈ {1, …, N }}. This type of dataset

s called complete and ambiguous. The data could be unambigu-

us if all outputs are available. Most conventional methods utilize

omplete input and unambiguous output data or use imputation

ethods to make up missing data. However, this kind of approach

ould lead to loss of information and misleading results. An incom-

lete and ambiguous dataset has missing input and missing output,

espectively. Fig. 3 shows an example of an incomplete and am-

iguous dataset. This dataset contains complete records for both

ttributes, missing records for one of the attributes and missing

ecords for both attributes. This incomplete dataset is partitioned

nto three sub-tables to utilize all data records for inference. Sub-

able 1 and sub- Table 2 contain separate complete records for at-

ributes A 

′ 
q and A 

′ 
q ′ , respectively. Both tables are used to find the

asic probability by Eq. (7) . Sub- Table 3 contains complete records
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Fig. 3. Example of incomplete data. 
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or both attributes A 

′ 
q and A 

′ 
q ′ and is used to obtain joint basic

robability by Eq. (8) . A complete data in Fig. 2 does not require

eparation into sub-tables. The first column for A 

′ 
q and the sec-

nd column for A 

′ 
q ′ is used to calculate basic probability and both

olumns are used to calculate the joint probability. The joint ba-

ic probability and the one-dimensional basic probability is used

o obtain interrelation by Eq. (9a) . 

.3.2.3. Reliability and weight of evidence. Joint probability given by

q. (8) combines independent evidence under the assumption that

ll evidence is fully reliable. It does not consider the weight and

eliability of the evidence and ignore the interrelation between

ieces of evidence. Reliability represents the ability of the infor-

ation source to point to a correct assessment of a given prob-

em ( Smarandache, Dezert & Tacnet, 2010 ). The reliability measures

he degree of support for proposition h , given that evidence points

o proposition h . The importance of information is indicated by

he weight of evidence. Let the weight of evidence e v,q pointing

o proposition h be denoted by w h, v ,q . The probability mass that

roposition h is supported by evidence e v,q is: 

 h, v ,q = w h, v ,q p h, v ,q (10) 

Let the reliability of evidence e v,q pointing to proposition h be

enoted by r h,v, q . The reliability of evidence is: 

 v ,q = 

∑ 

h ∈ P ( H ) 
r h, v ,q p h, v ,q (11) 

nitial values of r h,v, q and w h, v ,q is assumed to be equal to 1. These

alues are trained through supervised learning to estimate com-

ined probability as close as possible to expected probability. 
.3.2.4. Combine two pieces of evidence from two different attributes.

wo pieces of evidence from two different attributes are combined

ogether by probability mass of each evidence, interrelation be-

ween evidence, joint support of evidence, weight and reliability

f evidence. Suppose two pieces of evidence e v,q and e v ′ , q ′ are from

ttribute A 

′ 
q and attribute A 

′ 
q ′ , respectively. The combined probabil-

ty αh, v q, v ′ q ′ that proposition h is supported by evidence e v,q and

vidence e v ′ , q ′ is given by: 

= 

{
0 h = ∅ 

αh, v q, v ′ q ′ = 

˜ m h, v q, v ′ q ′ ∑ 

h ∈ P ( H ) ˜ m h, v q, v ′ q ′ + ̃ m P ( H ) , v q, v ′ q ′ 
∀ h ∈ P ( H ) , h 	 = ∅ (12a) 

˜ 
 h, v q, v ′ q ′ = 

[(
1 − r v ′ ,q ′ 

)
m h, v ,q + ( 1 − r v ,q ) m h, v ′ ,q ′ 

]
+ 

∑ 

Z 1 ∩ Z 2= h 
γZ 1 ,Z 2 , v q, v ′ q ′ ψ Z 1 ,Z 2 , v q, v ′ q ′ m Z1 , v ,q m Z2 , v ′ ,q ′ (12b) 

he residual support, which is earmarked to the power set, is given

y 

˜ 
 P ( H ) , v q, v ′ q ′ = m H, v ,q m H, v ′ q ′ (12c) 

The combined probability mass of evidence e v,q and evidence

 v ′ , q ′ is given by Eq. (12b) . The parameter γ Z 1, Z 2, vq, vq ′ is the ratio

f the joint reliability of the two pieces of evidence and the prod-

ct of their individual reliabilities, referred to as reliability ratio

or short. Z 1 and Z 2 show that both pieces of evidence from two

ifferent attributes point to a common proposition h in power set

 ( H ). The values of r h,v, q , r h,v ′ , q ′ , w h, v ′ ,q ′ , w h, v ′ ,q ′ and γ Z 1, Z 2, vq, v ′ q ′ 
re trained from input-output dataset. 

.3.2.5. Combine multiple pieces of evidence. This framework can

ombine evidence from any number of attributes. Two pieces of
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evidence pointing to proposition h are first combined before com-

bining it with the third one and so on. Independent attributes can

be combined in any order, while dependent attributes are com-

bined on the basis of their interrelationships. Suppose we want

to combine Q attributes A 

′ 
1 , . . . , A 

′ 
q , . . . , A 

′ 
Q , ( q ∈ {1, …, Q }) each

with V q pieces of evidence. Single probability, i.e. p h,v , 1 ,…, p h,v, q ,…,

p h,v, Q ( v ∈ {1, …, V q }, ∀ h ∈ P ( H )), is obtained using Eq. (7) . Sim-

ilarly, joint probability, i.e. p h,v 1, v 2 ,…, p h,v 1, …, vq ,…, p h,v 1, …, VQ , is

obtained using Eq. (8) . The interrelation between evidence, i.e.

ψ h,v 1, v 2 ,…, ψ h,v 1, …, vq ,…, ψ h,v 1, …, VQ , is obtained from Eq. (9) . Sin-

gle probability mass, i.e. m h,v , 1 , …, m h,v, q , …, m h,v, Q ( v ∈ {1, …,

V q }, ∀ h ∈ P ( H )), is obtained from Eq. (10) . Combined probability

mass is calculated iteratively once single probability, joint proba-

bility, and interrelation are calculated from the data. The degree of

the combined support ˜ m h, v 1 , v 2 of evidence e v ,1 and evidence e v ,2 
for proposition h for all h ∈ P ( H ) is: 

˜ m h, v 1 , v 2 = 

[
( 1 − r v , 2 ) m h, v , 1 + ( 1 − r v , 1 ) m h, v , 2 

]
+ 

∑ 

Z 1 ∩ Z 2= h 
γZ 1 ,Z 2 , v 1 , v 2 ψ Z 1 ,Z 2 , v 1 , v 2 m Z1 , v , 1 m Z2 , v , 2 (13)

The degrees of the combined support from evidence e v 1, v 2 and

evidence e v ,3 pointing to preposition h are then given by: 

˜ m h, v 1 , v 2 , v 3 = 

[
( 1 − r v , 3 ) m h, v 1 , v 2 + m P ( H ) , v 1 , v 2 m h, v , 3 

]
+ 

∑ 

Z 1 ∩ Z 2= h 
γZ 1 ,Z 2 , v 1 , v 2 , v 3 ψ Z 1 ,Z 2 , v 1 , v 2 , v 3 m Z1 , v 1 , v 2 m Z2 , v , 3 (14)

The above process is repeated until all pieces of evidence

are combined, to generate the degree of the combined support

˜ m h, v 1 , ... ,V Q . It is then finally normalized ( Eq. 12(a) ) to obtain the

combined probability αh,v 1, …, VQ . The combined probability mass

˜ m h, v 1 , ... ,V Q pointing to proposition h is given by: 

˜ m h, v 1 , ... ,V Q = 

[
( 1 − r v ,Q ) m h, v 1 , ... ,V Q−1 + m P ( H ) , v 1 , ... , v Q−1 m h, v ,Q 

]
+ 

∑ 

Z 1 ∩ Z 2= h 
γZ 1 ,Z 2 , v 1 , ... , v Q ψ Z 1 ,Z 2 , v 1 , ... , v Q m Z1 , v 1 , ... ,V Q−1 m Z2 , v ,Q (15a)

The combined probability mass left for the power set

˜ m P(H) , v 1 , ... ,V Q is given by: 

˜ m P ( H ) , v 1 , ... ,V Q = m P ( H ) , v 1 , ... ,V Q−1 m P ( H ) , v ,Q (15b)

The combined probability αh,v 1, …, VQ after normalization of

combined probability mass is: 

αh, v 1 , ... ,V Q = 

˜ m h, v 1 , ... ,V Q ∑ 

g∈ P ( H ) ˜ m g, v 1 , ... ,V Q + 

˜ m P ( H ) , v 1 , ... ,V Q 
∀ h ∈ P ( H ) and 

αP ( H ) , v 1 , ... ,V Q = 

˜ m P ( H ) , v 1 , ... ,V Q ∑ 

g∈ P ( H ) ˜ m g, v 1 , ... ,V Q + 

˜ m P ( H ) , v 1 , ... ,V Q 
(15c)

2.3.2.6. Training of maker model. The MAKER framework has three

types of parameters – reliability, weight, and reliability ratio. The
Table 4 

Contingency table of an attribute. 

Debt Searches A 1 B 1 C 1 D 1 C

F 0 38 409 2067 F

R 1 48 251 685 R

Table 5 

Contingency table of two attributes. 

Debt Searches A 1 B 1 

Credit Searches A 2 B 2 C 2 D 2 A 2 B 2 C 2 D

F 0 0 0 0 0 18 8 1

R 0 1 0 0 1 21 13 1

∗Some joint evidences such as ( A 1, A 2), ( A 1, C 2) and ( A 1, D 2) does n
arameters are optimized by maximizing the likelihood of the true

tate. 

.3.2.7. Objective function. 

inimize : f ( parameter ) = 

1 

2 M 

M ∑ 

m =1 

∑ 

h ∈ P ( H ) 
( α − α( parameters ) ) 

2

(16)

where , parameters = 

parameters 

( 

Reliability : r h, v , 1 , . . . , r h, v ,q , . . . , r h, v ,Q , r h, v 1 , v 2 , . . . , r h, v 1 ,.., v Q 
Weight : w h, v , 1 , . . . , w h, v ,q , . . . , w h, v ,Q , w h, v 1 , v 2 , . . . , h, v 1 ,.., v Q 

Reliability ratios : γZ 1 ,Z 2 , v 1 , v 2 , . . . , γZ 1 ,Z 2 , v 1 , ... , v Q 

) 

.3.2.8. Constraint. 

 ≤ r h, v , 1 ≤ 1 , . . . , 0 ≤ r h, v ,q ≤ 1 , . . . , 0 ≤ r h, v ,Q ≤ 1 , 

 ≤ r h, v 1 , v 2 ≤ 1 , . . . , 0 ≤ r h, v 1 ,.., v Q ≤ 1 

 ≤ w h, v , 1 ≤ 1 , . . . , 0 ≤ w h, v ,q ≤ 1 , . . . , 0 ≤ w h, v ,Q ≤ 1 , 

 ≤ w h, v 1 , v 2 ≤ 1 , . . . , 0 ≤ w h, v 1 ,.., v Q ≤ 1 

 ≤ γZ 1 ,Z 2 , v 1 , v 2 , . . . , 0 ≤ γZ 1 ,Z 2 , v 1 , ... , v Q 

Example : Two attributes: debt searches and credit searches

re taken from a business case study in this paper to demon-

trate the MAKER framework for data transformation and data

usion. There are two sets of quantitative attributes A 

′ =
 A 

′ 
1 

= debt searches, A 

′ 
2 

= credit searches } . The frame of discern-

ent is H = { F, R } where F is fund and R is reject. It is a complete

ata set. In this case, the power set is P ( H ) = { ϕ, F, R, H }. Note

hat, for incomplete data, power set would be P ( H ) = { ϕ, F, R, un-

own }, where unkown = H = { F, R }. Both debt searches and credit

earches have four referential values { A 1, B 1, C 1, D 1} and { A 2, B 2,

 2, D 2}, respectively. The categories A to B range from poor to ex-

ellent status. 

STEP 1: Contingency-table 

Make contingency table for single attribute debt searches

nd credit searches and the attributes. Table 4 shows the

ontingency-table (frequency) of debt searches and credit searches.

able 5 shows the contingency-table of both debt and credit

earches. 

STEP 2: One-dimensional basic probability and joint basic prob-

bility 

The likelihood table C is obtained by the division of each value

n the contingency table by its row sum. One-dimensional basic

robability and joint basic probability are obtained by performing

ivision operation in each column of likelihood by sum of column

y using Eq. (7) and (8) . Table 6 shows the One-dimensional prob-

bility for debt and credit searches and Table 7 shows joint basic

robability for both debt and credit searches. 
redit Searches A 2 B 2 C 2 D 2 

 7 1206 647 654 

 9 447 235 294 

C 1 D 1 

 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

2 1 206 113 89 6 982 526 553 

3 1 120 59 71 7 305 163 210 

ot exist in the data set. 
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Table 6 

One-dimensional probability ( p h,v , 1 and p h,v , 2 ). 

Debt Searches A 1 B 1 C 1 D 1 Credit Searches A 2 B 2 C 2 D 2 

F 0.0 0.23 0.38 0.54 F 0.23 0.51 0.51 0.46 

R 1.0 0.77 0.62 0.46 R 0.77 0.49 0.49 0.54 

Table 7 

Joint Probability ( p h,v 1, v 2 ). 

Debt Searches A 1 B 1 C 1 D 1 

Credit Searches A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

F 0.0 0.0 0.0 0.0 0.0 0.25 0.20 0.26 0.28 0.40 0.42 0.32 0.25 0.55 0.55 0.50 

R 0.0 1.0 0.0 0.0 1.0 0.75 0.80 0.74 0.71 0.60 0.58 0.67 0.76 0.45 0.45 0.50 

∗Joint probability in Table 7 , interrelation in Table 8 and combined probability in Table 9 are zero for missing joint evidences in the data set. 

Table 8 

Interrelation ( ψ h,v 1, v 2 ). 

Debt Searches A 1 B 1 C 1 D 1 

Credit Searches A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

F 0.0 0.0 0.0 0.0 0.00 2.07 1.58 2.40 3.09 2.00 2.12 1.82 1.98 2.00 1.98 2.01 

R 0.0 2.05 0.0 0.0 1.71 2.02 2.19 1.80 1.53 2.01 1.94 2.06 2.13 1.98 2.00 2.01 

Table 9 

Combined probability ( αh,v 1, v 2 ): Before training. 

Debt Searches A 1 B 1 C 1 D 1 

Credit Searches A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

F 0.0 0.0 0.0 0.0 0.0 0.25 0.19 0.25 0.28 0.41 0.42 0.32 0.26 0.55 0.55 0.51 

R 0.0 1.0 0.0 0.0 1.0 0.75 0.81 0.75 0.71 0.59 0.58 0.67 0.74 0.45 0.45 0.49 

Table 10 

Combined probability ( αh,v 1, v 2 ): After training. 

Debt Searches A 1 B 1 C 1 D 1 

Credit Searches A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

F 0.23 0.13 0.59 0.53 0.01 0.40 0.28 0.34 0.36 0.62 0.59 0.52 0.51 0.81 0.78 0.76 

R 0.77 0.87 0.41 0.41 0.99 0.60 0.72 0.66 0.64 0.38 0.41 0.48 0.49 0.19 0.22 0.24 

 

E  

p

 

a  

r  

T  

fi  

t  

T  

t

 

t  

t  

d  

i  

p

 

F  

c  

a  

s  

T

 

v  

T  

j  

w  

p  

t  

b  

o  

f  

p

 

d  

f  

v  

t  

i  
STEP 3: Interrelation 

Interrelation between two pieces of evidence is calculated from

q. (9a and 9b ). Table 8 shows the interrelation between two

ieces of evidence from debt and credit search attribute. 

STEP 4: Set Initial value of parameters 

All initial values of weight, reliability and reliability ratios are

ssumed to be equal to 1. The table for initial weight and initial

eliability of single and joint evidence has the same structure as in

ables 6 and 7 and the only difference is that they are initially

lled with 1 (see Appendix B : Table 20 to Table 23 ). Similarly,

he structure of the table for initial reliability ratios is similar to

able 7 , and the only difference is that it is filled with 1 before

raining (see Appendix B : Table 24 ). 

STEP 5: Initial probability mass 

In this case, probability mass is obtained by Eq. (10) as the mul-

iplication of basic probability and weight of evidence. Before op-

imization, the initial value of probability mass for single evidence,

ebt searches or credit searches, is the same as the basic probabil-

ty because the initial value of weight is equal to 1 that is multi-

lied by basic probability. 

STEP 6: Calculate combined probability before training 

The combined probability is obtained from Eq. (12a) to ( 12c ).

irst, use Eq. (12b) to calculate probability mass and Eq. (12c) to
alculate residual support. Then, calculate the combined prob-

bility by Eq. (12a) , which normalizes probability mass by the

um of all probability mass of all evidence and residual support.

able 9 shows the combined probability before training. 

STEP 7: Training/optimization of MAKER 

Table 10 shows the combined probability after training. The

alue of trained parameters is shown in Appendix B : Table 25 to

able 29 . The dataset has missing joint probability due to missing

oint evidence in the dataset, shown in Table 5 . All single evidence

as available, shown in Table 4 . After optimization, the combined

robability of supporting each state is predicted. It can be seen

hat zero joint probabilities in Table 9 are also filled with the com-

ined probabilities after training in Table 10 . This is because none

f the variables is fully reliable and the joint probability is not

ully reliability either in deciding whether the two variables sup-

ort each state or not. 

STEP 8: Data Transformation 

The belief-rule-based system takes input in the form of belief-

istribution. The combined probability obtained from the MAKER

ramework is used to transform data of one or more attributes (or

ariables) into belief-distribution. Table 11 shows an example of

ransformation data from two attributes debt and credit searches

nto a belief-distribution by using trained combined probability in
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Table 11 

Example of data transformation by MAKER. 

# data points Debt Searches Credit Searches Transformed data (Fund, Reject) 

1 A 1 B 2 {( F , 0.13), ( R , 0.87)} 

2 C 1 B 2 {( F , 0.62), ( R , 0.38)} 

3 B 1 B 2 {( F , 0.40), ( R , 0.60)} 

4 D 1 A 2 {( F , 0.51), ( R , 0.49)} 

� � � �
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Table 10 . The belief-distribution add explainability in the BRB sys-

tem. For example, in Table 11 probability of fund and reject of first

loan application (debt searches = A1 and credit searches = B2)

is 0.13 and 0.87, respectively. Similarly, probability of fund and

reject of second loan application (debt searches = C1 and credit

searches = B2) is 0.62 and 0.38, respectively and so on. The data

transformed by MAKER is fed into the BRB system. The trans-

formed data activates multiple rules in the BRB system and belief-

degree of activated rules are combined by an inference engine. 

2.12. Hierarchical structure of knowledge-base 

The underwriting decision-making process is complex and re-

quires a large number of input variables to reflect the underwriter

knowledge and guidelines. The number of rules increases exponen-

tially with the numbers of attributes and their referential values,

as explained in para Data fusion – Maximum Likelihood Evidence

Reasoning . Rules in the knowledge base are all possible combina-

tions of referential values of attributes. The number of training pa-

rameters increases with the increase in the number of rules. A hi-

erarchical knowledge base can be used to reduce the number of

training parameters in the BRB model by focusing on modeling the

parts of the relationship between inputs and output, which are re-

vealed by data. It is a bottom-up approach. The pieces of evidence

at the lower sub-rule-base are aggregated first and then used as

the evidence at a higher sub-rule-base. In each sub-rule base, at-
Fig. 4. Example of hierarchical st
ributes similar in context or highly interrelated can be fused to-

ether by the MAKER framework to make the most of data for like-

ihood analysis of data and also to reduce the number of attributes

n each sub-rule-base. 

For underwriting decision making, a lower sub-rule-base can

ave factual rules. Factual rules are hard knowledge and do not

ollow any heuristic principles. Facts can be assessed first be-

ore moving up to the higher sub-rule-base consisting of heuris-

ic knowledge. It has rules which do not obey strict or hard rules;

hey depend on approaches by which humans solve the problem

 Gomez, Hull, Karr, Hosken & Verhagen, 1992 ). 

Fig. 4 shows an example of a hierarchical knowledge base. It

as three sub-rule-bases, with the MAKER framework as the first

ayer to fuse the attributes that are closely related. Sub-rule-base 1

ontains only factual rules; it is at the lower level of the hierarchy.

ll facts are tested before moving up to sub-rule-base 3. Sub-rule-

ase 2 contains both facts and heuristic rules. It is independent of

ub-rule-base 1. Information is processed separately in both sub-

ule-bases 1 and 2 before propagating from the lower level to the

igher level. Sub-rule-base 1 does not require training or learn-

ng by optimization since it only contains facts or hard knowledge.

 factual rule has 100% degree of belief for a value in the set of

onsequence. For example, suppose there are factual rules “IF num-

er of bankruptcy in the last 3 year ≥ 2 and affordability = fail,

HEN [(fund,0),(reject,1)]” and “IF number of bankruptcy in the last

 year ≥ 2 and affordability = pass, THEN [(fund,0),(reject,1)]”. If
ructure of knowledge base. 
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Table 12 

Rules in knowledge base. 

Rules Number Rules Belief Degree 

A 1 ��� A i ��� A I β1 ��� βn βN 

1 A 1 v , 1 A 1 v ,i A 1 v ,I 0.10 ��� 0.90 ��� 0.00 

� � � �

k A k v , 1 ��� A k v ,i ��� A k v ,I 0.00 ��� 1.00 ��� 0.00 

� � � �

K A K v , 1 A K v ,i A K v ,I 0.80 ��� 0.10 ��� 0.10 
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ny of the conditions are not satisfied, then the degree of belief for

ejection is 1 (or 100%). In this example, “number of bankruptcy

n the last 3 years ≥ 2 ′′ in both rules does not satisfy the fund-

ng decision. Note that the implementation of the MAKER frame-

ork to combine attributes is optional, depending upon whether

here is sufficient data for likelihood data analysis. If all attributes

n factual-rule-base are qualitative attributes, it will activate only

ne rule. More than one rule is activated if a rule-base contain one

r more quantitative attributes. 

.13. Inference 

The transformed data is stored in a primary database. A data

oint is a vector x m 

= { x m 1 ,…, x mi ,…, x mI } containing values of

ach attribute, shown in Table 1 . A data set has M data points,

 ∈ 1, …, M for I attributes, i ∈ 1, …, I . The set of attributes

as Q qualitative attributes and J quantitative attribute, I = Q + J .

ach attribute has V i referential values, where v ∈ 1, …, V i .

 transformed data point x m 

= { [( A 1 , 1 , α1 , 1 ) , . . . , ( A v 1 , 1 , αv 1 , 1 )] , . . . ,

( A 1 ,i , α1 ,i ) , . . . , ( A v i ,i , αv i ,i )] , . . . , } contains the matching degree of

ach referential value of an antecedent attribute. The transformed

ata is sent to the inference engine where the referential values of

ach antecedent attribute are matched with the referential values

f the IF-THEN rules in the knowledge base, shown in Fig. 1 . Rules

n knowledge-base are illustrated in Table 12 . The degrees of be-

ief for each rule can be given by experts initially. If expert opin-

on is not available, then the degrees of beliefs are set randomly

nd trained later. Rules in knowledge-base represent the conse-

uent distributions for the combinations of the set of referential

alues ( A v,i ) of each attribute A i , i ∈ 1, …, I . The number of rules in

 knowledge-base is given by Eq. (3) . 

At least one rule is activated by the transformed vector of input

ata point x m 

. The activation weight of k th rule by input data point

 m 

is given by 

 k ( x m 

) = 

θk 

∏ I 
i =1 ( αv ,i ) 

δk 
i ∑ K 

k =1 

[ 
θk 

∏ I 
i =1 ( αv ,i ) 

δk 
i 

] and 

δk 
i = 

δk 
i 

ma x i ∈ { 1 ,...,I } 
{
δk 

i 

} ∀ k ∈ { 1 , . . . , K } (17) 

here θ k ∈ [0, 1] ( k ∈ {1, …, K }) is rule weight. δk 
i 

∈ [ 0 , 1 ] ( i ∈
1, …, I }) is the weight of antecedent attribute in the k th rule.

he matching degree of each attribute is denoted by αv,i and
I ∏ 

 =1 

( αv ,i ) 
δk 

i is the combined matching degree. The final inference

utput o( ̂  y m 

) is generated by aggregating all the rules activated by

he transformed input data x m 

. The inference output o( ̂  y m 

) gener-

ted by x m 

can be represented in the following way: 

 ( ̂  y m 

) = { ( h n , βn ( x m 

) ) , n ∈ { 1 , . . . , N } } (18) 

Since the rules are generated independently, the analytical ev-

dential reasoning (ER) approach can be used for the inference of

utput. The aggregated degree of belief by the ER approach is cal-

ulated by the following expression: 
n ( x m 

) = μ ×
[ 

K ∏ 

k =1 

( 

W k ( x m 

) βn,k + 1 − W k ( x m 

) 

N ∑ 

n =1 

βn,k 

) 

−
K ∏ 

k =1 

( 

1 − W k ( x m 

) 

N ∑ 

n =1 

βn,k 

) ] 

(19) 

here 

= 

[ 

N ∑ 

n =1 

K ∏ 

k =1 

( 

W k ( x m 

) βn,k + 1 − W k ( x m 

) 

N ∑ 

n =1 

βn,k 

) 

− ( N − 1 ) 

K ∏ 

k =1 

( 

1 − W k ( x m 

) 

N ∑ 

n =1 

βn,k 

) 

−
K ∏ 

k =1 

( 1 − W k ( x m 

) ) 

] −1

The derivation of activation weight and aggregated belief degree

s shown in Yang et al. (2006) . 

.14. Explainability of brb 

Each data point x m 

= { x m 1 ,…, x mi ,…, x mI } indicates a unique

ntity which contains different values in each attribute. The data

oint x m 

transformed over different referential values of the at-

ributes contains different matching degree αv,i ( x m,i ). Therefore,

ules activated by a data point x m 

have different activation weight.

he importance of rule can be measured by activation weight of

he rule. In other words, the importance of an activated rule is

qual to the activation weight of the rule. The importance of an

ctivated rule is given by 

 

( x m 

) = W k ( x m 

) (20a) 

K 
 

k =1 

I k ( x m 

) = 1 (20b) 

here, I k ( x m 

) is the importance of k th rule activated by data point

 m 

. The sum of importance of all rules activated by a data point x m 

s equal to one, shown in Eq. (20b) . 

In BRB model, the contribution of an attribute in an activated

ule can be found by the weight of the attribute in the rule and

heir matching degree. The contribution of referential value of an-

ecedent attributes in an activated rule is given by 

k 
v ,i ( x m 

) = δk 
i × αv ,i (21a) 


 k 

v ,i ( x m 

) = 

	k 
v ,i ( x m 

) ∑ I 
i =1 	

k 
v ,i ( x m 

) 
(21b) 

I 
 

i =1 


 

	
k 

v ,i ( x m 

) = 1 (21c) 

here, 	k 
v ,i ( x m 

) is importance of v th referential value of the i th an-

ecedent attribute in the k th rule activated by a transformed data

oint ( x m 

). The importance of attributes in the k th rule are normal-

zed to one ( Eq. (21b) and ( 21c )). 
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2.15. Training of BRB model 

There are four types of parameters – rule weight ( θ k ), attribute

weight ( δk 
i 
), belief degree ( βn,k ), and referential value of quantita-

tive attribute ( A v,j ). The initial belief degrees and referential val-

ues of quantitative attributes can be given by experts. The initial

rule weighs and attribute weights are assumed to 1. If expert opin-

ions are not available, random belief degrees for each rule can be

used as the initial start point for optimization. The training process

improves the accuracy of the BRB model. The objective function

minimizes the distance between the observed value y m 

and the

expected value ˆ y m 

. The expected value ˆ y m 

is a function of param-

eters ( βn,k , θk , δ
k 
i 
, A v , j ) . De tails about training and inference for

BRB models can be found in the literature ( Chen, Yang, Xu, Zhou

& Tang, 2011 ). The objective function and constraints are shown

below. 

2.16. Objective function 

Minimize f ( parameter ) = 

1 

M 

M ∑ 

m =1 

(
y m 

− ˆ y m 

( parameters ) 
)2 

(22)

where, parameters = parameters ( βn,k , θk , δ
k 
i 
, A v , j ) 

Constraints : Number of 

constraints 

Bound Constraints 

0 ≤ βn,k ≤ 1 N × K 

0 ≤ θ k ≤ 1 K 

0 ≤ δk 
i 

≤ 1 I × K 

Equality Constraints 
N ∑ 

n =1 

βn,k = 1 K 

Fixed Parameters 

-first referential value of quantitative attribute 

A 1 , j = l owest _ v al u e 1 , j J 

-Last referential value of quantitative attribute 

A V j , j = highest _ v alu e V j , j J 

Inequality Constraints 

A v,j < A v + 1, j 

for all numerical attributes j, v = 2, …, V j − 1 

J ∑ 

j=1 

V j − 2 

3. Case study: first charge residential mortgage loans 

This case study demonstrates the application of the decision

support system to a financial product - first charge residential

mortgage loan of Together Financial Sevices, UK. Together Financial

Services specialize in offering a ‘common sense lending’ approach

for assessing both standard and non-standard cases such as non-

standard properties, non-standard income/employment, and less

than perfect credit score. The underwriting process at Together Fi-

nancial Services is very detailed and individualistic. It requires un-

derwriters to follow underwriting process guidelines and analyze

a large amount of information provided in a loan application and

credit history – repayments and defaults of each applicant in a

loan application. This research was conducted for Together Finance

Services to support their options in future to rely more on technol-

ogy to improve the quality of decision and decision cycle time. 

3.1. BRB decision support system for mortgage lending 

Together Financial Services rely on external credit reporting

agencies to obtain the credit history of each applicant in a

loan application. They have two data sources: credit bureau and

electronic-application. The electronic-application contains personal

information about applicants in a loan application. Credit dataset
ad 1800 columns and each row is a unique search for an appli-

ant in a loan application. Each row has a unique ID called ‘Ap-

licantID’ as the primary key and each unique loan application is

iven a unique number called ‘Account_ID’ as a foreign key. To-

ether Financial Services receive all online applications and aim to

rocess an application in a couple of days. The data in a loan ap-

lication related to monthly expenditures, income, and loan infor-

ation with property details are extracted from the electronic ap-

lication. At Together Financial Services, manual underwriting task

s initiated only when a loan application passes the affordability

est as shown in Fig. 5 . Affordability calculator assesses income

joint income for more than one applicant in an application) and

onthly expenditure against minimum expected value for an ap-

licant. The minimum value for expenditure depends on the num-

er of dependents and minimum acceptable values for monthly ex-

enditures is defined by a financial institution. All expenditures,

ncome (income after retirement in case loan repayment extends

nto retirement period), and loan amount are used to adjust the

tressed Maximum Affordability Monthly Repayment (MAMR) fac-

or. A negative MAMR and/or one or more expenditure below min-

mum value result in failed affordability criteria, which causes the

utomatic decline of an application. 

The hierarchical structure of the decision support system is

hown in Fig. 5 . The lower sub-rule base has factual rules. This

ule base is deployed to automate the acceptance or decline of

oan application. There are four attributes in factual-rule-base –

ffordability test, number of bankruptcy > = X and/or amount of

ankruptcy > = £X , number of individual voluntary arrangements

IVA) and county court judgments (CCJ) > X , and number of pay-

ay loans in past Y years > X . The affordability test from afford-

bility calculator provide result in either ‘pass’ or ‘fail’ and other

hree attributes are obtained from credit data either ‘NONE’ or

 > = 1 ′ , where ‘NONE’ means that none of the applicants had these

redit default in the past and ‘ > = 1 ′ means that one or more than

ne applicant in a loan application had these credit default in the

ast. Together Financial Services accept an application for decision

aking by their underwriters only when all the applicants satisfy

hese rules. An application is declined if the affordability test is

fail’ or other three attributes on bankruptcy, CCJ, and payday loan

s ‘ > = 1 ′ . A loan application is accepted only when the affordability

est is ‘pass’ and other attributes are ‘NONE’. The factual-rule-base

as 16 rules (2 4 = 16 rules, as each attribute has two categories

nd there are four attributes), and the rules in this rule-base do

ot require training (optimization) as they are facts. 

The higher sub-rule-base contains heuristic knowledge. The

euristic-rule-base maps the decision-making strategy of under-

riters. The underwriter’s knowledge acquisition and data collec-

ion process are explained in Section 2.4 . The knowledge acqui-

ition process in this research requires a thorough understanding

f underwriting guidelines to select attributes from credit data as

ell as recommendations from several experienced underwriters

t Together Financial Services. Each underwriter demonstrated a

ew case studies, which were used to exemplify the underwriting

rocess and decision-making strategy for different cases. The at-

ributes A 1 , A 2 ,…, A 12 in Fig. 5 are fused and transformed by the

AKER framework described in para Data fusion – Maximum Like-

ihood Evidence Reasoning . The MAKER framework provides six ag-

regated attributes MK 1 , MK 2 ,…, MK 6 . The heuristic-rule-base has

4 rules (2 6 = 64 rules, each attribute has two categories ( F, R ) and

here are six attributes). The rule weights, attribute weights and

elief degrees in the heuristic-rule-base are trained by the train-

ng dataset. The loan criteria checker (attribute A10) assures that

oan fits within the loan plans established by Together Financial

ervices based on property type, property valuation, and the total

umber of defaults in the past. The attributes names are not re-

ealed to maintain data and business confidentiality; however, this
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Fig. 5. Structure of decision support system. 
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Fig. 6. Combine the credit history of two or more applicants. 
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ase study has revealed the types of attributes used to develop this

utomated loan lending system for this company. The attributes

sed in this system are related to affordability, unsecured loans, se-

ured loans, bankruptcy, searches, credit score, property, and loan

riteria. 

The system evaluates the creditworthiness of an applicant

ased on her past records on unsecured loans, secured loans,

earches (debt and credit), credit score and CCJ, IVA, bankruptcy

nd payday loans. A loan application is assessed as a whole by se-

uritizing the credit history of each applicant in an application. The

ieces of evidence for each evaluation factor can be aggregated to

btain joint evidence for each evaluation factor to assess the entire

oan application, as shown in Fig. 6 . The aggregation of each cred-

tworthiness evaluation factor is done by the evidential reasoning

ule ( Yang & Xu, 2013 ). This approach is also used in BRB to aggre-

ate the belief degrees of activated rules. In this research, appli-

ants are given the same weight. To consider special cases, some

pplicants can be given higher weights than other applicants. For

xample, only the main applicant is employed in a loan applica-

ion, or one of the applicants is retired. Some of the attributes are

nalyzed by affordability calculator to compute MAMR. These at-

ributes can be accommodated in a rule-base in absence of afford-

bility calculator in similar implementations by other businesses. 

.2. Training and validation 

The rules in factual-rule-base are shown in Table 17 of

ppendix A . These rules are facts and do not require training. In

his case study, all attributes in factual-rule-base are qualitative at-

ributes, it will activate one rule for each loan application. More

han one rule is activated if rule-base contains one or more quan-

itative attributes. The rule weight, attribute weight, and degree of

elief of rules in the heuristic-rule-base are tuned by training data.
t is not mandatory to train all the rules or all parameters of a rule

n heuristic-rule-base. The belief degree, attribute weight and rule

eight provided by experts in a rule can be kept constant. 

Lending institutions change their lending policy from time to

ime. In finance, AI/ML decision making primarily depends on

upervised learning model. However, change in policy and prac-

ices impacts the adoption of such models. A change in a policy

iscards some of the attributes in the data which reflect the prac-

ices under the preceding policy. This circumstance could be miti-

ated by updating training data if a referential value of attributes

s turned into a strict policy. For example, rejection of all loan
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Table 13 

3-Fold cross-validation of heuristic-rule-base. 

Fold number Size of training 

data in a fold 

Size of test 

data in a fold 

Accuracy Precision True positive (fund) 

rate or Recall 

True negative 

(reject) rate 

F-Score 

1 2110 1055 0.956 0.956 0.9906 0.8282 0.9729 

2 2110 1055 0.957 0.9549 0.9906 0.8434 0.9750 

3 2110 1055 0.952 0.9600 0.9867 0.8232 0.9705 

∗Total number of instances were 3498. The factual-rule-base declined 333 applications. The heuristic-rule-base is trained with the 

remaining 3165 instances. 

Table 14 

Bias and variance of test and training set in each fold of cross-validation set. 

Fold number Training set error Test set error Bias Variance 

1 0.040 0.044 Low Low 

2 0.035 0.040 Low Low 

3 0.041 0.045 Low Low 

Average 0.038 0.043 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. ROC curves. 
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applications with more than 2 defaults in unsecured loan in past

1 year is a stringent criterion. The training data can be updated

by modifying labels of such instances as rejected (R) and then

a supervised learning model can be retrained. In BRB referential

value of such attribute can be used as factual rules; if not then

heuristic-rule-base can be retrained by newly labelled data. The

heuristic-rule-base reflects underwriter judgment. If underwriting

practices change dramatically over a short period of time, then

heuristic-rule-based with expert underwriter opinion can be used

for decision-making until adequate data is available for parameter

training. 

The untrained or initial parameters of the rules in the heuristic-

rule-base are shown in Table 16 . Table 17 shows the parame-

ters of the trained heuristic-rule-base. The initial degrees of be-

lief in Table 16 are assessed by underwriters, which is a good

starting point for the optimization of BRB parameters. The heuris-

tic rules in the BRB system used for the operation are trained

by all available data and performance was evaluated by k-fold

cross-validation. The method for validation of a supervised learn-

ing model is discussed by Cawley and Talbot (2010) . The dataset

had 3498 instances of past loan application data. The factual-rule-

base declined 333 applications and accepted 3165 applications. All

parameters in heuristic-rule-base were trained by these 3165 in-

stances. In this case-study, 3-fold of the dataset was used for cross-

validation. The data is shuffled and partitioned into three groups.

In each fold, 2/3 of data was utilized for training and 1/3 was uti-

lized to evaluate the performance of the test set. The performance

of the model was evaluated by bias and variance. Bias is the error

in fitting the model by learning algorithm. Variance is the change

in error when it is tested with unseen data compared to train-

ing data. Ideally, a model should have low bias and low variance,

which suggests that the model has captured the underlying pat-

tern of the data and model performance does not vary consider-

ably compared to its performance for training dataset, respectively.

Table 13 shows the result of 3-fold cross-validation of heuristic-

rule-base. It can be seen that the accuracy 3-folds does not vary

a lot. The second fold has good performance, especially for true

rejection rate. In each fold, test data had 198 rejection instances,

the heuristic-rule-base has 166 (83.83%) true average rejection rate.

The combined rejection rate of factual and heuristic rule base is

around 88.43%. 

Table 14 show that all 3-folds has low bias and low variance as

a consequence of low error and low variance of error between test

and training data, respectively. The over-all model bias is evaluated

by finding the mean error of k-fold test dataset. The average test

data error of 0.043 ensures that the model is trained well, and data

is precise enough to capture pertinent patterns into the rules. The
ariance of k-fold test error is equal to 4.67 × 10 −6 . Low variance

etween training and test folds and low variance in test error as-

ertain that model performance would not vary when it is trained

ith all available data set. 

The ROC curve of the test data of 3-fold cross-validation is

hown in Fig. 7 . As discussed before, the system in operation is

rained with all available data. The visualization of the confusion

atrix is shown in Fig. 8 , where the x-axis is the degree of belief

t which “Fund” decision is made and y-axis represents the num-

er of decisions made at a particular degree of belief. It shows that

33 applications were automatically declined in the early stage by

he factual-rule-base and other applications were processed by the

euristic-rule-base. The frequency of true fund and true rejection

as the degree of beliefs ranging from 0.85 to 1 and 0.04 to 0.15,

espectively. Some of the rejection reasons that this system can-

ot predict to reject loan applications are inconsistency in a file,

hange in customer circumstances, customer integrity concerns,

oan no longer customers best interest. The system gives false-fund

ecisions due to the inability to predict these rejection reasons. 

.3. Performance comparison 

The performance of the BRB system was compared with five

ifferent machine learning models. The performance of the clas-

ifiers was tested with 3-fold cross-validation method. The data

ample in each fold was the same as the data in each fold used

or evaluation of BRB model in Table 13 . An efficient architec-

ure or design of each machine learning model was selected by

uning its hyper-parameters. The average performance metrics of

-fold cross-validation for these machine learning models is shown

n Table 15 . It can be seen that the accuracy and F-score of BRB

odel is slightly higher than deep-neural-network (DNN). Preci-

ion in DNN is 0.090% higher than BRB; however, recall is 0.66%

igher in BRB. Recall measures the cost of rejecting potential loan

pplications whereas precision measures the cost of funding a poor

oan application. F-score is the balance between precision and re-
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Fig. 8. Visualization of confusion matrix. 

Table 15 

Performance comparison. 

Machine learning Model Accuracy Precision Recall F-Score 

Decision Tree 0.8767 0.9900 0.8747 0.9288 

Random Forest 0.9303 0.9883 0.9302 0.9584 

XGBoost (Extreme Gradient Boosting) 0.9471 0.9883 0.9487 0.9681 

SVM (Support Vector Machine) 0.9460 0.9893 0.9466 0.9675 

DNN (Deep Neural Network) 0.9527 0.9902 0.9504 0.9714 

BRB (Belief-Rule-Base) 0.9550 0.9893 0.9568 0.9728 

Table 16 

Data transformed of searches attribute by MAKER for application 3 to 6 in 

Fig. 9 . 

Application Debt Searches Credit Searches MK4: (Fund, Reject) 

3 D 1 C 2 {( F , 0.78), ( R , 0.22)} 

4 D 1 D 2 {( F , 0.76), ( R , 0.24)} 

5 D 1 B 2 {( F , 0.81), ( R , 0.19)} 

6 C 1 B 2 {( F , 0.62), ( R , 0.38)} 
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all. Among all models, it is the highest in BRB and the lowest in

he decision tree. The tree-based ensemble methods, random for-

st and XGBoost performed better than the decision tree but lower

han BRB and DNN. 

.4. Explainability of BRB for mortgage lending 

Fig. 9 illustrates the explanation provided by the BRB system for

ome of the applications. Figs. 10–17 show the importance of rules

nd contribution of attributes in the activated rules. 

The MAKER framework was used to combine and transform at-

ributes, related to unsecured loans, secured loans, bankruptcy &

ayday loans, searches, credit score, and property & loan criteria.

t transforms attributes to belief-distribution over a set of referen-

ial values of consequence attribute. The referential values of con-

equence attribute are fund (F) and reject (R). Table 10 in para

 Data fusion – Maximum Likelihood Evidence Reasoning) shows the

robability to fund and reject loan applications based on joint ev-

dence from two attributes, debt search and credit search. This ta-

le was used to transform the attribute searches for heuristic-rule-

ase. Similarly, all other attributes were combined and then trans-

ormed by MAKER framework. In Fig. 9 , application 1 and appli-

ation 2 were rejected by factual rules whereas application 3 to

 passed the strict rules in factual-rule-base. Table 16 shows the

ransformed data of the attribute searches ( MK 4) for application 3

o 6. The values in Fig. 9 are matching degrees. The BRB system

esigned in this case study can be explained, first by the rules ac-

ivated in the factual-rule-base, second by the data transformed by

ombined probability obtained from the MAKER framework, and
hird by the importance of activated rules in the heuristic-rule-

ase and the contribution of attributes in activated rules. Different

ypes of statement for textual explanation are added in the sys-

em for different outcomes of the MAKER framework and impor-

ant rules and its attributes in the BRB. 

• Application 1 & 2: Application 1 had automated rejection

due to failed affordability test and application 2 had auto-

mated rejection due to an inadequate number & amount of

bankruptcy and an inadequate number of payday loans. 
• Application 3: 

- Factual-rules-base: passed all rules 

- Level 1 MAKER in heuristic-rule-base: In Fig. 9 , all at-

tributes point towards the high probability of funding

this loan application. 

- Level 2 BRB in Heuristic-rule-base: Among all rules, rule

1 had the highest importance in providing the decision,

shown in Fig. 10 . It has F code (fund) in all the attributes

(rules shown in Table 19 ). In this rule, property & loan

criteria ( MK 6) has the highest contribution of 0.28 fol-

lowed by unsecured loans ( MK 1), shown in Fig. 11 . 
• Application 4: 

- Factual-rules-base: passed all rules 

- Level 1 MAKER in heuristic-rule-base: In Fig. 9 , property

& loan criteria point towards rejection and all other at-

tributes point towards the funding of this loan applica-

tion. 

- Level 2 BRB in heuristic-rule-base: Rule 33 has the high-

est importance, then rules 49, 34 and 37, shown in

Fig. 12 . All rules have R code in loan criteria & property

attributes. In rules 33, 49, 34, and 37 property & loan cri-

teria ( MK 6) has the highest contribution towards rejec-

tion of about 0.219, 0.231, 0.233, and 0.236, respectively,

shown in Fig. 13 . The R code also exits in credit score

( MK 5), unsecured loans ( MK 1) and CCJ, IVA& bankruptcy

( MK 3) in rules 49, 34, and 37, respectively, but their con-

tribution towards rejection is very small (approximately

0.080). 
• Application 5: 
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Fig. 9. Example of loan applications in decision explaination illustrator. 

Fig. 10. Importance of rules activated by Application 3. 
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Fig. 11. Importance of attribute in rules activated by Application 3. 

Fig. 12. Importance of rules activated by Application 4. 

Fig. 13. Importance of attribute in rules activated by Application 4. 
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- Factual-rules-base: passed all rules 

- Level 1 MAKER in heuristic-rule-base: In Fig. 9 , two types

of attributes unsecured loans and property & loan criteria

have a high probability of rejection of loan application

and all other attributes point towards the funding of this

loan application. 

- Level 2 BRB in heuristic-rule-base: For this applicant,

rules 34 and 50 were most relevant. Both rules have

R code (for reject) in both unsecured loans ( MK 1) and

property & loan criteria ( MK 6). Additionally, rule 50 has

R code in credit score; however, its contribution towards

rejection is very small. The contribution of property &

loan criteria in rules 34 and 50 towards rejection is 0.208

and 0.210, respectively. It is followed by contribution for

unsecured loans 0.156 and 0.164, respectively. The contri-

bution of attributes in rules for application 5 is shown in

Fig. 15 . 
• Application 6: 
- Factual-rules-base: passed all rules 

- Level 1 MAKER in heuristic-rule-base: In Fig. 9 , all at-

tributes have a high probability for funding this loan ap-

plication. 

- Level 2 BRB in Heuristic-rule-base: Among all rules, rule

1 has the highest importance, shown in Fig. 16 . It has

F code in all the attributes. In this rule, loan criteria &

property ( MK 6) has the highest contribution of 0.28 fol-

lowed by unsecured loans ( MK 2), shown in Fig. 17 . 

This system can provide textual explanations for a rejected ap-

lication. The examples of textual explanation are shown in the

ast row of Fig. 9 . This type of textual explanation is crafted for

ifferent outcomes of MAKER framework and activated rules in

 BRB system. Additional domain knowledge can be applied to

uild more coherent explanations, which could be sent to rejected

pplicants as a reason for denying their loan applications. The

RB system can explain a single decision and a chain of events
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Fig. 14. Importance of rules activated by Application 5. 

Fig. 15. Importance of attributes in rules activated by Application 5. 

Fig. 16. Importance of rule activated by Application 6. 

Fig. 17. Importance of attributes in rules activated by Application 6. 
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Tables 17–19 . 
eading to the decision. This is enabled by inference for each cat-

gory of creditworthiness factors (unsecured loans, secured loans,

earches, credit score and CCJ, IVA, bankruptcy and payday loans)

y the MAKER framework and contribution of attributes in acti-

ated rules in BRB. This type of explainability helps underwriters

o understand the decision-making process at each level of the sys-

em, which enables them to make fast and accurate choices for ro-

ust lending decision-making. 

The AI-based systems can reap benefits to businesses only

hen their executives can trust these systems. The transparent

ecision-making process of BRB system could provide sufficient as-

urance to executives in lending companies to sanction the deploy-

ent of BRB system. This enables lending companies to be in reg-

latory compliance such as the General Data Protection Regulation

GDPR) in Europe which mandates explanation of outcomes from

I/ML systems. 

All rules are activated by the transformed data of an applica-

ion. The activation weights of many rules are very small and could

e close to zero; therefore visually the importance of some least

mportant rules in Figs. 10 , 12 , 14 and 16 is zero. 

.5. Limitation 

The proposed system can explain each step of the decision-

aking process. It combines expert knowledge and fine-tunes the

ystem by training it with data. However, the development of this

ystem is a time-consuming process as it demands deep domain

nowledge. It requires expert inputs in finalizing the structure of a

elief-rule-base system and appending their certain and uncertain

udgment in IF-THEN rules in the form of degree of belief. Further,

t requires cleaning and aggregation of large credit data and in-

ormation provided by applicants in loan applications to map and

rain lending organization baseline rules and heuristic knowledge

f experts. This system was adopted to automate the underwrit-

ng process at Together Financial Services; however, it cannot re-

ect loan applications based on inconsistency in loan applications,

uch as missing or undisclosed information and customer integrity

oncerns. A loan application must be screened by another system

r manually by humans before providing decision by this system. 

. Conclusion 

In this paper, we presented the methodology to develop the

elief-rule-based (BRB) system as an explainable AI decision-

upport-system to automate the underwriting process of lend
Table 17 

Rules in Factual-Rule-Base (do not require training contain facts). 

Rule 

Number 

Rule1: 

Affordability 

Rule2: # of bankruptcy 

> X and amount of 

bankruptcy > X 

Rule

and

1 PASS NONE NON

2 FAIL NONE NON

3 PASS = > 1 NON

4 FAIL = > 1 NON

5 PASS NONE = > 1

6 FAIL NONE = > 1

7 PASS = > 1 = > 1

8 FAIL = > 1 = > 1

9 PASS NONE NON

10 FAIL NONE NON

11 PASS = > 1 NON

12 FAIL = > 1 NON

13 PASS NONE = > 1

14 FAIL NONE = > 1

15 PASS = > 1 = > 1

16 FAIL = > 1 = > 1
oans. Unlike black-box models, the BRB system can explicitly ac-

ommodate expert knowledge and can also learn from data by

upervised learning, though the acquisition of expert knowledge

an be a time-consuming and labor-intensive task. The decision-

aking process in this system can be explained by the importance

f rules activated by a data point representing a loan application

nd by the contribution of attributes in activated rules. Through

 business case study, we have demonstrated that the proposed AI

ecision-support-system provides a good trade-off between predic-

ion accuracy and explainability. The importance of activated rules

nd their attributes in the rules help to understand the reason-

ng behind the decisions. The textual explanations initiated by the

hain of events in the factual-rule-base to the heuristic-rule-base

ould be sent to rejected applicants as reasons for denying their

oan applications. The BRB structure and its decision-making pro-

ess can easily be narrated and understood by non-technical peo-

le. A transparent decision-making process provides sufficient as-

urance to executives to allow the deployment of this system in

heir companies. 
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ppendix A 
3: # IVA 

 CCJ > X 

Rule4: #payday 

loans in past Y 

years > X 

Belief Degree 

(accept, decline) 

E NONE (1,0) 

E NONE (0,1) 

E NONE (0,1) 

E NONE (0,1) 

 NONE (0,1) 

 NONE (0,1) 

 NONE (0,1) 

 NONE (0,1) 

E = > 1 (0,1) 

E = > 1 (0,1) 

E = > 1 (0,1) 

E = > 1 (0,1) 

 = > 1 (0,1) 

 = > 1 (0,1) 

 = > 1 (0,1) 

 = > 1 (0,1) 
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Table 18 

Rules in Heuristic-rule-base 

Before training. 

Rule 

number 

Rule 

weight 

MK1: 

Unsecured 

loans 

MK2: 

Secured 

loans 

MK3: CCJ, 

IVA, 

Bankruptcy 

and payday 

MK4: Debt 

and credit 

searches 

MK5: 

Credit score 

MK6: Loan criteria, 

property valuation 

and property type 

Attribute weight Belief degree 

1 1 F1 F2 F3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (1.0,0.0) 

2 1 R1 F2 F3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.4,0.6) 

3 1 F1 R2 F3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7,0.3) 

4 1 R1 R2 F3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.6,0.4) 

5 1 F1 F2 R3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (1.0,0.0) 

6 1 R1 F2 R3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7,0.3) 

7 1 F1 R2 R3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7,0.3) 

8 1 R1 R2 R3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.5,0.5) 

9 1 F1 F2 F3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.8,0.2) 

10 1 R1 F2 F3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7,0.3) 

11 1 F1 R2 F3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.65,0.35) 

12 1 R1 R2 F3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.65,0.35) 

13 1 F1 F2 R3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7,0.3) 

14 1 R1 F2 R3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.3,0.7) 

15 1 F1 R2 R3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.65,0.35) 

16 1 R1 R2 R3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.3,0.7) 

17 1 F1 F2 F3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.8,0.2) 

18 1 R1 F2 F3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.8,0.2) 

19 1 F1 R2 F3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7,0.3) 

20 1 R1 R2 F3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.65,0.35) 

21 1 F1 F2 R3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.6,0.4) 

22 1 R1 F2 R3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7,0.3) 

23 1 F1 R2 R3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.65, 0.35) 

24 1 R1 R2 R3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7, 0.3) 

25 1 F1 F2 F3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.8, 0.2) 

26 1 R1 F2 F3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.65,0.35) 

27 1 F1 R2 F3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.7,0.3) 

28 1 R1 R2 F3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.65,0.35) 

29 1 F1 F2 R3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.6,0.4) 

30 1 R1 F2 R3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.3,0.7) 

31 1 F1 R2 R3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.5,0.5) 

32 1 R1 R2 R3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.3, 0.7) 

33 1 F1 F2 F3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.5,0.5) 

34 1 R1 F2 F3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

35 1 F1 R2 F3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.5,0.5) 

36 1 R1 R2 F3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

37 1 F1 F2 R3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

38 1 R1 F2 R3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.1,0.9) 

39 1 F1 R2 R3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

40 1 R1 R2 R3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.1,0.9) 

41 1 F1 F2 F3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

42 1 R1 F2 F3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

43 1 F1 R2 F3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

44 1 R1 R2 F3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

45 1 F1 F2 R3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

46 1 R1 F2 R3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.1,0.9) 

47 1 F1 R2 R3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

48 1 R1 R2 R3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.1,0.9) 

49 1 F1 F2 F3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

50 1 R1 F2 F3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

51 1 F1 R2 F3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

52 1 R1 R2 F3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

53 1 F1 F2 R3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

54 1 R1 F2 R3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.1,0.9) 

55 1 F1 R2 R3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

56 1 R1 R2 R3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.1,0.9) 

57 1 F1 F2 F3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

58 1 R1 F2 F3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

59 1 F1 R2 F3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

60 1 R1 R2 F3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

61 1 F1 F2 R3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

62 1 R1 F2 R3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.1,0.9) 

63 1 F1 R2 R3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.2,0.8) 

64 1 R1 R2 R3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.1,0.9) 
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Table 19 

Rules in heuristic-rule-base 

After training. 

Rule 

number 

Rule 

weight 

MK1: Un- 

secured 

loans 

MK2: 

Secured 

loans 

MK3: CCJ, 

IVA, 

Bankruptcy 

and payday 

MK4: 

Debt and 

credit 

searches 

MK5: 

Credit 

score 

MK6: Loan 

criteria, property 

valuation and 

property type 

Attribute weight Belief degree 

1 0.75 F1 F2 F3 F4 F5 F6 0.64, 0.64, 0.64, 0.63, 0.62, 1.0 (1.0,0.0) 

2 0.92 R1 F2 F3 F4 F5 F6 0.99, 1.0, 1.0, 0.99, 1.0, 1.0 (1.0,0.0) 

3 0.92 F1 R2 F3 F4 F5 F6 0.98, 0.94, 0.98, 0.98, 0.98, 1.0 (1.0,0.0) 

4 0.97 R1 R2 F3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.85,0.15) 

5 0.91 F1 F2 R3 F4 F5 F6 0.89, 0.89, 0.58, 0.89, 0.88, 1.0 (1.0,0.0) 

6 0.97 R1 F2 R3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.95,0.05) 

7 0.97 F1 R2 R3 F4 F5 F6 1.0, 0.99, 0.99, 0.99, 1.0, 1.0 (0.96,0.04) 

8 0.99 R1 R2 R3 F4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.59,0.41) 

9 0.92 F1 F2 F3 R4 F5 F6 0.95, 0.95, 0.95, 0.83, 0.95, 1.0 (1.0,0.0) 

10 0.97 R1 F2 F3 R4 F5 F6 0.99, 1.0, 1.0, 1.0, 1.0, 1.0 (0.95,0.05) 

11 0.97 F1 R2 F3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.91,0.09) 

12 0.99 R1 R2 F3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.74,0.26) 

13 0.97 F1 F2 R3 R4 F5 F6 1.0, 0.99, 0.99, 0.99, 0.99, 1.0 (0.96,0.04) 

14 0.99 R1 F2 R3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.39,0.61) 

15 0.99 F1 R2 R3 R4 F5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.75,0.25) 

16 1.00 R1 R2 R3 R4 F5 F6 1.0, 1.0, 1.0, 1.0, 0.99, 1.0 (0.33,0.67) 

17 0.91 F1 F2 F3 F4 R5 F6 0.95, 0.95, 0.95, 0.95, 0.83, 1.0 (1.0,0.0) 

18 0.97 R1 F2 F3 F4 R5 F6 0.96, 0.99, 0.99, 0.99, 0.96, 1.0 (0.96,0.04) 

19 0.97 F1 R2 F3 F4 R5 F6 1.0, 1.0, 1.0, 1.0, 0.99, 1.0 (0.98,0.02) 

20 0.99 R1 R2 F3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.74,0.26) 

21 0.97 F1 F2 R3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.87,0.13) 

22 0.99 R1 F2 R3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.79,0.21) 

23 0.99 F1 R2 R3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.75,0.25) 

24 1.00 R1 R2 R3 F4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 0.73,0.22 

25 0.97 F1 F2 F3 R4 R5 F6 0.99, 0.98, 0.99, 0.96, 0.96, 1.0 (0.97,0.03) 

26 0.99 R1 F2 F3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.74,0.26) 

27 0.99 F1 R2 F3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.81,0.19) 

28 1.00 R1 R2 F3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.68,0.42) 

29 0.99 F1 F2 R3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.70,0.30) 

30 1.00 R1 F2 R3 R4 R5 F6 1.0, 0.99, 0.99, 0.99, 1.0, 1.0 (0.33,0.67) 

31 1.00 F1 R2 R3 R4 R5 F6 1.0,1.0,1.0,1.0,1.0,1.0 (0.54,0.46) 

32 1.00 R1 R2 R3 R4 R5 F6 1.0, 0.99, 0.99, 0.99, 1.0, 0.99 (0.31,0.69) 

33 0.93 F1 F2 F3 F4 F5 R6 0.99, 0.99, 1.0, 1.0, 0.99, 1.0 (0.03,0.97) 

34 0.97 R1 F2 F3 F4 F5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 1.0 (0.00,1.0) 

35 0.97 F1 R2 F3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.31,0.69) 

36 0.99 R1 R2 F3 F4 F5 R6 1.0, 0.99, 0.99, 0.99, 0.99, 1.0 (0.10,0.90) 

37 0.97 F1 F2 R3 F4 F5 R6 0.99, 0.99, 1.0, 0.99, 0.99, 1.0 (0.02,0.98) 

38 0.99 R1 F2 R3 F4 F5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 1.0 (0.02,0.98) 

39 0.99 F1 R2 R3 F4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.12,0.88) 

40 0.99 R1 R2 R3 F4 F5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 1.0 (0.06,0.94) 

41 0.97 F1 F2 F3 R4 F5 R6 0.99, 0.99, 1.0, 1.0, 0.99, 1.0 (0.04,0.96) 

42 0.99 R1 F2 F3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.12,0.88) 

43 0.99 F1 R2 F3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.13,0.87) 

44 0.99 R1 R2 F3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.16,0.84) 

45 0.99 F1 F2 R3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.13,0.87) 

46 1.00 R1 F2 R3 R4 F5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 1.0 (0.07,0.93) 

47 1.00 F1 R2 R3 R4 F5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.17,0.83) 

48 1.00 R1 R2 R3 R4 F5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 1.0 (0.08,0.92) 

49 0.97 F1 F2 F3 F4 R5 R6 0.99, 0.99, 0.99, 0.97, 0.98, 1.0 (0.00,1.0) 

50 0.99 R1 F2 F3 F4 R5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 0.99 (0.08,0.92) 

51 0.99 F1 R2 F3 F4 R5 R6 0.99, 1.0, 0.99, 0.99, 1.0, 1.0 (0.09,0.91) 

52 0.99 R1 R2 F3 F4 R5 R6 1.0, 0.99, 0.99, 0.99, 1.0, 0.99 (0.14,0.86) 

53 0.99 F1 F2 R3 F4 R5 R6 0.99, 0.99, 1.0, 1.0, 1.0, 1.0 (0.10,0.90) 

54 0.99 R1 F2 R3 F4 R5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 0.99 (0.05,0.95) 

55 0.99 F1 R2 R3 F4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.15,0.85) 

56 1.00 R1 R2 R3 F4 R5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 0.93 (0.07,0.93) 

57 0.99 F1 F2 F3 R4 R5 R6 0.98, 1.0, 1.0, 1.0, 1.0, 1.0 (0.10,0.90) 

58 0.99 R1 F2 F3 R4 R5 R6 1.0, 0.99, 0.99, 0.99, 1.0, 0.99 (0.15,0.85) 

59 0.99 F1 R2 F3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.15,0.85) 

60 1.00 R1 R2 F3 R4 R5 R6 1.0, 1.0, 0.99, 0.99, 1.0, 0.99 (0.17,0.83) 

61 0.99 F1 F2 R3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.16,0.84) 

62 1.00 R1 F2 R3 R4 R5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 0.99 (0.08,0.92) 

63 1.00 F1 R2 R3 R4 R5 R6 1.0,1.0,1.0,1.0,1.0,1.0 (0.18,0.92) 

64 1.00 R1 R2 R3 R4 R5 R6 0.99, 0.99, 0.99, 0.99, 0.99, 0.99 (0.09,0.91) 
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Appendix B. Parameter value of MAKER example: Before 

Training 

Tables 20–29 

Table 20 

Initial weight of single evidence ( w h, v , 1 an

Debt searches A 1 B 1 C 1 D 1 

F 1 1 1 1 

R 1 1 1 1 

Table 21 

Initial weight of joint evidence ( w h, v 1 , v 2 ). 

Debt searches A 1 B 1 

Credit Searches A 2 B 2 C 2 D 2 A 2 B 2 

F 1 1 1 1 1 1 

R 1 1 1 1 1 1 

Table 22 

Initial reliability of single evidence ( r h,v , 1 an

Debt searches A 1 B 1 C 1 D 1 

F 1 1 1 1 

R 1 1 1 1 

Table 23 

Initial reliability of joint evidence ( r h,v 1, v 2 ). 

Debt Searches A 1 B 1 

Credit searches A 2 B 2 C 2 D 2 A 2 B 2 

F 1 1 1 1 1 1 

R 1 1 1 1 1 1 

Table 24 

Initial reliability ratio ( γ h,v 1, v 2 ). 

Debt searches A 1 B 1 

Credit searches A 2 B 2 C 2 D 2 A 2 B 2 

F 1 1 1 1 1 1 

R 1 1 1 1 1 1 

Table 25 

Weight of single evidence ( w h, v , 1 and w h, v , 2 ) 

Parameter value of MAKER example: After Training

Debt searches A 1 B 1 C 1 D 1 

F 1.00 1.00 1.00 0.94 

R 0.99 0.97 0.73 0.46 

Table 26 

Weight of joint evidence ( w h, v 1 , v 2 ). 

Debt searches A 1 B 1 

Credit searches A 2 B 2 C 2 D 2 A 2 B 2 C 2 

F 1 1 1 1 1 1 1 

R 1 0.98 0.98 1 1 0.97 0.98
 v , 2 ) . 

edit searches A 2 B 2 C 2 D 2 

1 1 1 1 

1 1 1 1 

C 1 D 1 

D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

2 ). 

redit searches A 2 B 2 C 2 D 2 

 1 1 1 1 

 1 1 1 1 

C 1 D 1 

D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

C 1 D 1 

D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

Credit searches A 2 B 2 C 2 D 2 

F 1.00 0.98 1.00 1.00 

R 0.99 0.62 0.76 0.75 

C 1 D 1 

 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

1 1 1 1 1 0.98 1 0.99 

98 0.99 0.89 1 0.98 0.98 0.99 0.98 0.99 . 
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Table 27 

Reliability of single evidence ( r h,v , 1 and r h,v , 2 ). 

Debt searches A 1 B 1 C 1 D 1 Credit searches A 2 B 2 C 2 D 2 

F 1.00 1.00 1.00 0.91 F 1.00 0.98 1.00 1.00 

R 0.99 0.97 0.99 0.93 R 0.99 0.89 0.99 0.86 

Table 28 

Reliability of joint evidence ( r h,v 1, v 2 ). 

Debt searches A 1 B 1 C 1 D 1 

Credit searches A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

F 1 1 0.99 1 1 1 1 1 1 1 1 1 1 1 1 1 

R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.99 

Table 29 

Reliability ratio ( γ h,v 1, v 2 ). 

Debt searches A 1 B 1 C 1 D 1 

Credit searches A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 A 2 B 2 C 2 D 2 

F 1 1 1 1 1 1.01 1.05 1.09 1.00 1.11 1.07 1.06 1.02 1.21 1.14 1.15 

R 1 1.0 1 1 1.00 0.98 0.99 0.98 0.99 0.88 0.92 0.93 0.99 0.78 0.85 0.84 
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