
Medical Image Analysis 66 (2020) 101800 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Position paper on COVID-19 imaging and AI: From the clinical needs 

and technological challenges to initial AI solutions at the lab and 

national level towards a new era for AI in healthcare 

Hayit Greenspan 

a , ∗, Raúl San José Estépar b , Wiro J. Niessen 

c , Eliot Siegel d , Mads Nielsen 

e 

a Dept. of Biomedical Eng. Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel 
b Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA 
c Erasmus MC, University Medical Center Rotterdam and Delft University of Technology, Netherlands 
d Univ. of Maryland School of Medicine, Baltimore, USA 
e DIKU, Dept. of Computer Science, Univ of Copenhagen, Denmark 

a r t i c l e i n f o 

Article history: 

Received 11 June 2020 

Revised 15 July 2020 

Accepted 25 July 2020 

Available online 19 August 2020 

Keywords: 

COVID-19 

Imaging 

AI 

a b s t r a c t 

In this position paper, we provide a collection of views on the role of AI in the COVID-19 pandemic, from 

clinical requirements to the design of AI-based systems, to the translation of the developed tools to the 

clinic. We highlight key factors in designing system solutions - per specific task; as well as design issues 

in managing the disease at the national level. We focus on three specific use-cases for which AI systems 

can be built: early disease detection, management in a hospital setting, and building patient-specific pre- 

dictive models that require the combination of imaging with additional clinical data. Infrastructure con- 

siderations and population modeling in two European countries will be described. This pandemic has 

made the practical and scientific challenges of making AI solutions very explicit. A discussion concludes 

this paper, with a list of challenges facing the community in the AI road ahead. 
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. Introduction 

The COVID-19 pandemic surprised the world with its rapid

pread and has had a major impact on the lives of billions of peo-

le. Imaging is playing a role in the fight against the disease, in

ome countries as a key tool, from screening and diagnosis through

he entire treatment process, but in other countries, as a relatively

inor support tool. Guidelines and diagnostic protocols are still

eing defined and updated in countries around the world. Where

nabled, Computed Tomography (CT) of the thorax has been shown

o provide an important adjunctive role in diagnosing and tracking

rogress of COVID-19 in comparison to other methods such as

onitoring of temperature/respiratory symptoms and the current-

gold standard”, molecular testing, using sputum or nasopharyn-

eal swabs. Several countries (including China, Netherlands, Russia

nd more) have elected to use CT as a primary imaging modality,

rom the initial diagnosis through the entire treatment process.

ther countries, such as the US and Denmark as well as developing

ountries (Southeast Asia, Africa) are using mostly conventional

adiographic (x-ray) imaging of the chest (CXR). In addition to
∗ Corresponding author. 
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stablishing the role of imaging, this is the first time AI, or more

pecifically, deep learning approaches have the opportunity to join

n as tools on the frontlines of fighting an emerging pandemic.

hese algorithms can be used in support of emergency teams, real-

ime decision support, and more. In this position paper 1 , a group

f researchers provide their views on the role of AI, from clinical

equirements to the design of AI-based systems, to the infrastruc-

ure necessary to facilitate national-level population modeling. 

Many studies have emerged in the last several months from

he medical imaging community with many research groups as

ell as companies introducing deep learning based solutions to

ackle the various tasks: mostly in detection of the disease (vs

ormal), and more recently also for staging disease severity. For a

eview of emerging works in this space we refer the reader to a

ecent review article Shi et al. (2020a) that covers the first papers

ublished, up to and including March 2020 - in the entire pipeline

f medical imaging and analysis techniques involved with COVID-

9, including image acquisition, segmentation, diagnosis, and

ollow-up. We also want to point out several Special Issues in this
1 motivated by an IEEE-ISBI COVID workshop, April 2020 https://ieeetv.ieee.org/ 

vent- showcase/covid- 19- deep- learning- and- biomedical- imaging- panel- at- isbi- 

020 . 

https://doi.org/10.1016/j.media.2020.101800
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101800&domain=pdf
mailto:hayit@eng.tau.ac.il
mailto:hayitg@gmail.com
https://ieeetv.ieee.org/event-showcase/covid-19-deep-learning-and-biomedical-imaging-panel-at-isbi-2020
https://doi.org/10.1016/j.media.2020.101800
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space- including IEEE Special issue of TMI, April 2020; IEEE Special

issue of JHBI, 2020; as well as the current Special issue of MedIA. 

In the current position paper, it is not our goal to provide an

overview of the publications in the field, rather we present our

own experiences in the space and a joint overview of challenges

ahead. We start with the radiologist perspective. What are the clin-

ical needs for which AI may provide some benefits? We follow that

with an introduction to AI based solutions - the challenges and

roadmap for developing AI-based systems, in general and for the

COVID-19 pandemic. In Section 2 of this paper we focus on three

specific use-cases for which AI systems can be built: detection, pa-

tient management, and predictive models in which the imaging is

combined with additional clinical features. System examples will

be briefly introduced. In Section 3 we present a different perspec-

tive of AI in its role in the upstream and downstream management

of the pandemic. Specific infrastructure considerations and popu-

lation modeling in two European countries will be described in

Section 4 . A discussion concludes this paper, with a list of chal-

lenges facing the community in our road ahead. 

1.1. The COVID-19 pandemic – clinical perspective 

As of this writing, according to the Johns Hopkins Resource

Center ( https://coronavirus.jhu.edu/ ), there are, approximately, 12.5

million confirmed cases with 561,0 0 0 deaths throughout the world,

with 32,0 0 0 deaths in New York State alone. The rate of increase in

cases has continued to rise as demonstrated by the log scale plot

in Fig. 1 . 

The most common symptoms of the disease, fever, fatigue, dry

cough, runny nose, diarrhea and shortness of breath are non-

specific and are common to many people with a variety of con-

ditions. The mean incubation period is approximately 5 days and

the virus is probably most often transmitted by asymptomatic pa-

tients. Knowing who is positive for the disease has critical impli-

cations for keeping patients away from others. Unfortunately, the

gold standard lab test, real time reverse transcription polymerase

chain reaction (RT-PCR) which detects viral nucleic acid, has not

been universally available in many areas and its sensitivity varies

considerably depending on how early patients are tested in the

course of their disease. Recent studies have suggested that RT-RPR

has a sensitivity of only 61-70%. Consequently, repeat testing is

often required to ensure a patient is actually free of the disease.

Fang et al. (2020) found that for the 51 patients they studied with
Fig. 1. Logarithmic plot of number of total confirmed cases from January through 

the first week in July 2020 indicating continuing acceleration in the rate new pa- 

tients are testing positive for COVID-19 (plot from Johns Hopkins Resource Center). 
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horacic CT and RT-PCR assay performed within 3 days of each

ther, the sensitivity of CT for COVID-19 was 98% compared to RT-

CR sensitivity of 71% ( p < .001). 

On CXR and CT exams of the thorax, findings are usually bi-

ateral (72%) early in the progression of disease and even more

ikely bilateral (88%) in later stages ( Bernheim et al., 2020; Zhao

t al., 2020 ). The typical presentation in ICU patients is bilateral

ubsegmental areas of air-space consolidation. In non-ICU patients,

lassic findings are transient subsegmental consolidation early and

hen bilateral ground glass opacities that are typically peripheral

n the lungs. Pneumothorax (collapsed lung) and pleural fluid or

avitation (due to necrosis) are usually not seen. Distinctive pat-

erns of COVID-19 such as “crazy paving” in which ground glass

pacity is combined with superimposed interlobular and intralob-

lar septal thickening and the “reverse halo sign” where a ground

lass region of the lung is surrounded by an irregular thick wall

ave been previously described in other diseases but are atypical

f most pneumonias. 

The use of thoracic CT for both diagnosis of disease and track-

ng has varied tremendously from country to country. While coun-

ries such as China and Iran utilize it for its very high sensitivity

o disease in the diagnosis and tracking of progression of disease,

he prevailing recommendation in the US and other countries is

o only use lab studies for diagnosis, use chest radiography to as-

ess severity of disease, and to hold off on performing thoracic CT

xcept for patients with relatively severe and complicated mani-

estations of disease ( Simpson et al., 2020 ). This is due to concerns

n the US about exposure of radiology staff and other patients to

OVID-19 patients and the thought that CT has limited incremen-

al value over portable chest radiographs which can be performed

utside the imaging department. Additionally, during a “surge” pe-

iod, the presumption is made that the vast majority of patients

ith pulmonary symptoms have the disease, rendering CT as a rel-

tively low value addition to the clinical work-up. As a diagnostic

ool, CT offers the potential to differentiate patients with COVID-19

ot only from normal patients, but from those with other causes

f shortness of breath and cough such as TB or other bacterial or

lternatively, other viral pneumonias, bronchitis, heart failure, and

ulmonary embolism. As a quantitative tool, it offers the ability to

etermine what percentage of the lung is involved with the disease

nd to break this down into areas of ground glass density, consoli-

ation, collapse, etc. This can be evaluated on serial studies which

ay be predictive of a patient’s clinical course and may help to

etermine optimal clinical treatment. 

Complications of COVID-19 are not limited to acute lung

arenchymal disease. These patients have coagulopathies and are

t increased risk for pulmonary embolism. Diffuse vascular in-

ammation can result in pericarditis and pericardial effusions. Re-

al and brain manifestations have been described by many au-

hors and are increasingly recognized clinically in COVID-19 pa-

ients. Long term lung manifestations will not be apparent for

any months or years, but there is the potential that these pa-

ients will develop higher rates of Chronic Obstructive Pulmonary

isease (COPD) such as emphysema, chronic bronchitis and asthma

han the general population. Objective metrics for assessment and

ollow-up of these complications of the disease would be very

aluable from a clinical perspective. 

.2. AI for COVID-19 

The extraordinarily rapid spread of the COVID-19 pandemic has

emonstrated that a new disease entity with a subset of relatively

nique characteristics can pose a major new clinical challenge

hat requires new diagnostic tools in imaging. The typical develop-

ental cycle and large number of studies required to develop AI

lgorithms for various disease entities is much too long to respond

https://coronavirus.jhu.edu/
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Fig. 2. Patients trajectories of the individual may be staged into contamination, 

symptoms, hospitalization, ventilation, and deceased. 
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ffectively to produce these software tools on demand. This is

omplicated by the fact that the disease can have different mani-

estations (perhaps due to different strains) in different regions of

he world. This suggests the strong need to develop software more

apidly, perhaps using transfer learning from existing algorithms,

o train on a relatively limited number of cases, and to train on

ultiple datasets in various locations that may not be able to be

asily combined due to privacy and security issues. It also suggests

hat we determine how to balance regulatory requirements for

dequate testing of the safety and efficacy of these algorithms

gainst the need to have them available in a timely manner to

mpact clinical care. 

AI technology, in particular deep learning image analysis tools,

an potentially be developed to support radiologists in the triage,

uantification, and trend analysis of the data. AI solutions have the

otential to analyze multiple cases in parallel to detect whether

hest CT or chest radiography reveals any abnormalities in the

ung. If the software suggests a significantly increased likelihood

f disease, the case can be flagged for further review by a radiol-

gist or clinician for possible treatment/quarantine. Such systems,

r variations thereof, once verified and tested can become key con-

ributors in the detection and control of patients with the virus. 

Another major use of AI is in predictive analytics: foreseeing

vents for timely intervention. Predictive AI can be potentially ap-

lied at three scales: the individual scale, the hospital scale, and

he societal scale. An individual may go through various transitions

rom healthy to potentially contaminated, symptomatic, etc. as de-

icted in Fig. 2 . At the individual level , we may use AI for comput-

ng risk of contamination based on location, risk of severe COVID-

9 based on co-morbidities and health records, risk of Acute Res-

iratory Distress Syndrome (ARDS) and risk of mortality to help

uide testing, intervention, hospitalization and treatment. Quanti-

ative CT or chest radiographic imaging may play an important role

n risk modeling for the individual, and especially in the risk of

RDS. At the hospital level , AI for imaging may for example be used

or workflow improvement by (semi-) automating radiologist’s in-

erpretations, and by forecasting the future need for ICU and ven-

ilator capacity. At the societal level AI may be used in forecasting

ospital capacity needs and may be an important measure to aid

n assessing the need for lock downs and re-openings. 

So far, we have here concentrated on disease diagnosis and

anagement, but imaging with AI may also have a role to play

n relation to late effects like neurological, cardiovascular, and res-

iratory damage. 

Before entering the discussion on specific usages of AI to ease

he burden of the pandemic, we briefly describe the standard pro-

edure of creating an AI solution in order to clarify the nomen-

lature. The standard way of developing Deep Learning algorithms

nd systems entails several phases ( Greenspan et al., 2016; Litjens

t al., 2017 ) : I. Data-collection, in which a large amount of data

amples need to be collected from predefined categories; expert
nnotations are needed for ground-truthing the data; II. Training

hase in which the collected data are used to train network mod-

ls. Each category needs to be represented well enough so that the

raining can generalize to new cases that will be seen by the net-

ork in the testing phase. In this learning phase, the large number

f network parameters (typically on the order of millions) are au-

omatically defined; III. Testing phase in which an additional set

f cases not used in training is presented to the network and the

utput of the network is tested statistically to determine its suc-

ess of categorization. Finally, IV, the software must be validated

n independent cohorts to ensure that performance characteristics

eneralize to unseen data from other imaging sources, demograph-

cs, and ethnicity. 

In the case of a new disease, such as the coronavirus, datasets

re just now being identified and annotated. There are very lim-

ted data sources as well as limited expertise in labeling the data

pecific to this new strain of the virus in humans. Accordingly,

t is not clear that there are enough examples to achieve clini-

ally meaningful learning at this early stage of data collection de-

pite the increasingly critical importance of this software. Solu-

ions to this challenge, that may enable rapid development, include

he combination of several technologies: Transfer learning will uti-

ize pretraining on other but somehow statistically similar data. In

he general domain of computer vision, ImageNet has been used

or this purpose ( Donahue et al., 2014 ). In the case of COVID-

9 this may be provided by existing databases of annotated im-

ges of patients with other lung infections. Data augmentation is

 trick used from the beginning of applying convolution neural

etworks (CNNs) to imaging data ( LeCun et al., 1989 ), in which

ata are transformed to provide extra training data. Normally ro-

ations, reflections, scaling or even group actions beyond the affine

roup can be explored. Other technologies include semi-supervised

earning and weak learning when labels are noisy and/or missing

 Cheplygina et al., 2019 ). Thus, the underlying approach to enable

apid development of new AI-based capabilities, is to leverage the

bility to modify and adapt existing AI models and combine them

ith initial clinical understanding to address the new challenges

nd new disease entities, such as the COVID-19. 

. AI for detection, management, and prediction in COVID-19 

In this Section we briefly review three possible system devel-

pments: AI systems for detection and characterization of disease,

I systems for measuring disease severity and patient monitoring,

nd AI systems for predictive modeling. Each category will be re-

iewed briefly and a specific system will be described with a focus

n the AI based challenges and solutions. 

.1. AI for detection and diagnosis 

The vast majority of effort s f or the diagnosis of COVID-19 have

een focused on detecting unique injury patterns related to the in-

ection. Automated recognition of those patterns became an ideal

hallenge for the use of CNNs trained on the appearance of those

atterns. 

One example of a system for COVID-19 detection and analysis

s shown in Fig. 3 , which presents an overview of the analysis con-

ucted in Gozes et al. (2020a) . In general, as is shown here, auto-

ated solutions are comprised of several components. Each one is

ased on a network model that focuses on a specific task to solve.

n the presented example, both 3D and 2D analysis are conducted,

n parallel. 3D analysis of the imaging studies is utilized for de-

ection of nodules and focal opacities using nodule-detection algo-

ithms, with modifications to detect ground-glass (GG) opacities.

 2D analysis of each slice of the case is used to detect and lo-

alize COVID-19 diffuse opacities. If we focus on the 2D analysis -
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Fig. 3. System architecture example for automatic CT image analysis of COVID-19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) 2D visualization of network heatmap results; (b) Visualization of 3D re- 

sults(Green - Focal GG Opacities,Red - Global Diffuse Opacities). Fig.s 3 and 4 from 

Gozes et al. (2020a) . 
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we again see that multiple steps are usually defined. The first step

is the extraction of the lung area as a region of interest (ROI) us-

ing a lung segmentation module. The segmentation step removes

image portions that are not relevant for the detection of within-

lung disease. Within the extracted lung region, a COVID-19 detec-

tion procedure is conducted, utilizing one of a variety of possible

schemes and corresponding networks. For example, this step can

be a procedure for (undefined) abnormality detection, or a specific

pattern learning task. In general, a classification neural network

(COVID-19 vs. not COVID-19) is a key component of the solution.

Such networks, which are mostly CNN based, enable the localiza-

tion of COVID-19 manifestations in each 2D slice that is selected in

what have become known as“heat maps” per 2D slice. 

To provide a complete review of the case, both the 2D and 3D

analysis results can be merged. Several quantitative measurements

and output visualizations can be used, including per slice localiza-

tion of opacities, as in Fig. 4 (a), and a 3D volumetric presentation

of the opacities throughout the lungs, as shown in Fig. 4 (b), which

presents a 3D visualization of all GG opacities. 

Several studies have shown the ability to segment and classify

the extracted lesions using neural networks to provide a diagnos-

tic performance that matches a radiologist rating ( Zhang et al.,

2020; Bai et al., 2020 ). In Zhang et al. (2020) , 4695 manually

annotated CT slices were used for seven classes, including back-

ground, lung field, consolidation (CL), ground-glass opacity (GGO),

pulmonary fibrosis, interstitial thickening, and pleural effusion. Af-

ter a comparison between different semantic segmentation ap-

proaches, they selected DeepLabv3 as their segmentation detection

backbone ( Chen et al., 2017 ). The diagnostic system was based on

a neural network fed by the lung-lesion maps. The system was de-

signed to classify normals from common pneumonia and COVID-19

specific pneumonia. Their results show a COVID-19 diagnostic ac-

curacy of 92.49% tested in 260 subjects. In Bai et al. (2020) , a di-

rect classification of COVID-19 specific pneumonia versus other eti-

ologies was performed using an EfficientNet B5 network ( Tan and

Le, 2019 ) followed by a two-layer fully connected network to pool

the information from multiple slices and provide a patient-level di-

agnosis. This system yielded a 96% accuracy in a testing set of 119

subjects compared to an 85% average accuracy for six radiologists.

These two examples exemplify the power of AI to perform at a

very high level that may augment the radiologist, when designed

and tested for a very narrow and specific task within a de-novo

diagnostic situation. Time delay in COVID-19 testing using RT-PCR

can be overcome with integrative solutions. Augmented testing us-

ing CT, clinical symptoms, and standard white blood cell (WBC)
 r  
anels has been proposed in Mei et al. (2020) . The authors show

heir AI system that integrates both sources of information is su-

erior to an imaging-alone CNN model as well as a machine learn-

ng model based on non-imaging information for the diagnosis of

OVID-19. Integrative approaches can overcome the lack of diag-

ostic specificity of CT imaging for COVID-19 ( Rubin et al., 2020 ) 

It is well understood that chest radiographs (CXR) have lower

esolution and contain much less information than their CT coun-

erparts. For example, for COVID-19 patients, the lungs may be so

everely infected that they become fully opacified, obscuring de-

ails on an x-ray and making it difficult to distinguish between

neumonia, pulmonary edema, pleural effusions, alveolar hemor-

hage, or lung collapse ( Fig. 5 ). Still, many countries are using CXR
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Fig. 5. (a) Normal CXR with lungs clearly visible. (b) Severely infected patient with 

dominant opacities making the lung boundaries hardly visible. 
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nformation for initial decision support as well as throughout the

atient hospitalization and treatment process ( Yang et al., 2020 ). 

Deep learning pipelines for CXR opacities and infiltration scor-

ng exist. In most publications seen to-date, researchers utilize ex-

sting public pneumonia datasets, which were available prior to the

pread of Coronavirus, to develop network solutions that learn to

etect pneumonia on a CXR. In Selvan et al. (2020) , an attempt to

olve the issue of the compact lungs is presented using variational

mputation. A deep learning pipeline based on variational autoen-

oders (VAE) has shown in pilot studies > 90% accuracy in sepa-

ating COVID-19 patients from other patients with lung infections,

oth bacterial and viral. A systematic evaluation of one of those

ystem has demonstrated comparable performance to a chest radi-

logist ( Murphy et al., 2020 ). This demonstrates the capability of

ecognizing COVID-19 associated patterns, using the CXR data. We

iew these results as preliminary, and to be confirmed with more

igorous experimental setup which includes access to COVID-19

nd other infections from the same sources with identical acqui-

ition technology, time-window, ethnicity, demographics, etc. Such

igorous experiments are critical in order to assess the clinical rel-

vance of the developed technology. 

.2. AI for patient management 

In this Section we focus on the use of AI for hospitalized pa-

ients. Image analysis tools can support measurement of the dis-

ase extent within the lungs, thus generating quantification for

he disease that can serve as an image-based biomarker. Such a

iomarker may be used to assess relative severity of patients in

he hospital wards, enable tracking of disease severity over time,

nd thus assist in the decision-making process of the physicians

andling the case. One such biomarker, termed the “Corona score”,

as recently introduced in Gozes et al. (2020a,b) . The Corona score

s a measure of the extent of opacities in the lungs. It can be ex-

racted in CT and in CXR cases. 

Fig. 6 presents a plot of Corona-score measurements per pa-

ient over time, in CT cases. Using the measure, we can assess

elative severity of the patients (left) as well as extract a model

or disease burden over the course of treatment (right). Additional

ery valuable information on characterization of disease manifesta-

ion can be extracted as well, such as locations of opacities within

he lungs, opacities burden within specific lobs of the lungs (us-

ng a lungs lobe segmentation module) and analysis of the texture

f the opacities using classification of patches extracted from de-

ected COVID-19 areas (using a patch-based classification module).

hese characteristics are important biomarkers with added value

or patient monitoring over time. 

.3. AI - based predictive modeling: combining the image with the 

linical 

COVID-19 lung infections are diagnosed and monitored with

T or CXR imaging where opacities, their type and extent, may
e quantified. The picture of radiological findings in COVID-19 pa-

ients is complex ( Wong et al., 2020 ) with mixed patterns: ground-

lass opacities, opacities with a rounded morphology, peripheral

istribution of disease, consolidation with ground-glass opacities,

nd the so called crazy-paving pattern. First reporting of longitu-

inal developments monitored by CXR ( Shi et al., 2020b ) indicate

hat CXR findings occur before the need for clinical intervention

ith oxygen and/or ventilation. This fosters the hypothesis that

XR imaging and quantification of findings are valuable in the risk

ssessment of the individual patient developing severe COVID-19. 

In the Capital Region of Denmark, it is standard practice to

cquire a CXR for COVID-19 patients. The clinical workflow dur-

ng the COVID-19 pandemic does not in general allow for manual

uantitative scoring of radiographs for productivity reasons. Mak-

ng use of the CXR already recorded during real time risk assess-

ent therefore requires automated methods for quantification of

mage findings. Several scoring systems for the severity of COVID-

9 lung infection adapted from general lung infection schemes

ave been proposed ( Wong et al., 2020; Shi et al., 2020b; Cohen

t al., 2020 ). Above, in Fig. 4 , it is shown how opacities may be

ocated in CT images. Similar schemes may be used for regional

pacity scoring in CXR, as shown in Fig. 7 . 

For the administration and risk profiling of the individual pa-

ient, imaging does not tell the full story. Important risk factors

nclude age, BMI, co-morbidities (especially diabetes, hypertension,

sthma, chronic respiratory or heart diseases) ( Jordan et al., 2020 ).

ombining imaging with this type of information from the EHR

nd with data representing the trajectory of change over time en-

ances the ability to determine and predict the stage of disease.

n early indication is that CXR’s contribute significantly to the pre-

iction of the probability for a patient to be on a ventilator. Here

e briefly summarise the patient trajectory prognosis setup: We

ave in preliminary studies from the cohort from the Capital and

ealand regions of Denmark, combined clinical information from

lectronic health records (EHR) defining variables relating to vi-

al parameters, comorbidities, and other health parameters with

maging information. Modeling was performed using a simple ran-

om forest implementation in a 5-fold cross-validation fashion. In

ig. 8 are as illustration AUC for prediction of outcome in terms of

ospitalisation, requirement for ventilator, admission to intensive

are unit, and death. These have been illustrated on 2866 Covid-

9 positive subjects from the Zealand and Capital Region of Den-

ark. These are preliminary unconsolidated results for illustrative

urposes. However, these support the feasibility of an algorithm to

redict severity of COVID-19 manifestations early in the course of

he disease. 

The combination of CXR into these prognostic tools have been

erformed by including a number of quantitative features per lung

egion as a feature vector in the random forest described above. 

. AI for upstream and downstream management of COVID-19 

Imaging has played a unique role in the clinical management of

he COVID-19 pandemic. Public health authorities of many affected

ountries have been forced to implement severe mitigation strate-

ies to avoid the wide community spread of the virus ( Parodi and

iu, 2020 ). Mitigation strategies put forth have focused on acute

isease management and the plethora of automated imaging solu-

ions that have emerged in the wake of this crisis have been tai-

ored toward this emergent need. Until effective therapy is proven

o prevent the widespread dissemination of the disease, mitiga-

ion strategies will be followed by more focused efforts and con-

ainment approaches aimed at avoiding the high societal cost of

ew confinement policies. In that regard, imaging augmented by

I can also play a crucial role in providing public health officials

ith pandemic control tools. Opportunities in both upstream in-
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Fig. 6. Tracking of patient’s disease progression over time using Corona Score (Left) and Relative Corona Score (Right). Day 0 corresponds to 1-4 days following first signs of 

the virus. Figure from Gozes et al. (2020a) 

Fig. 7. Regional opacity or infiltration scoring. Here depicted in 4 quadrants but 

scoring systems up to 12 regions exist using 3 vertical and 2 horizontal zones of 

each lung being sensitive also to the peripheral patterns of COVID-19. 
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fection management and downstream solutions related to disease

resolution, monitoring of recurrence and health “security” will be

emerging in the months to come as economies reopen to normal

life. 

Pandemic control measurements in the pre-clinical phase of the

infection may seek to identify those subjects that are more sus-

ceptible to the disease due to their underlying risk factors that

lead to the acute phase of COVID-19 infections. Several epidemi-

ological factors, including age, obesity, smoking, chronic lung dis-

ease hypertension, and diabetes, have been identified as risk fac-

tors ( Petrilli et al., 2020 ). However, there is a need to understand

further risk factors that can be revealed by image-based studies.

Imaging has shown to be a powerful source of information to re-

veal latent traits that can help identify homogeneous subgroups

with specific determinants of disease ( Young et al., 2018 ). This

kind of approach could be deployed in retrospective databases of

COVID-19 patients with pre-infection imaging to understand why

some subjects seem to be much more prone to progression of the

viral infection to acute pulmonary inflammation. The identification

of high-risk populations by imaging could enable targeted preven-

tive measurements and precision medicine approaches that could
atalyze the development of curative and palliative therapies. Iden-

ification of molecular pathways in those patients at a higher risk

ay be crucial to catalyze the development of much needed host-

argeting therapies. 

The resolution of the infection has been shown to involve re-

urrent pulmonary inflammation with vascular injury that has led

o post-intensive care complications ( Ackermann et al., 2020 ). De-

ection of micro embolisms is a crucial task that can be addressed

y early diagnostic methods that monitor vascular changes related

o vascular pruning or remodeling. Methods developed within the

ontext of pulmonary embolism detection, and clot burden quan-

ification could be repurposed for this task ( Huang et al., 2020 ). 

Another critical aspect of controlling the pandemic is the need

o monitor infection recurrence as the immunity profile for SARS-

ov-2 is still unknown ( Kirkcaldy et al., 2020 ). Identifying early

ulmonary signs that are compatible with COVID-19 infection

ould be an essential tool to monitor subjects that may relapse in

he acute episode. AI methods have shown to be able to recog-

ize COVID-19 specific pneumonia identified on radiographic im-

ges ( Murphy et al., 2020 ). The accessibility and potential porta-

ility of the imaging equipment in comparison to CT images could

nable early pulmonary injury screening if enough specificity can

e achieved in the early phases of the disease. Eventually, some of

hose tools might facilitate the implementation of health security

creening solutions that revolve around the monitoring of individ-

als that might present compatible symptoms. Although medical

maging solutions might have a limited role in this space, other

inds of non-clinical imaging solutions such as thermal imaging

ay benefit from solutions that were originally designed in the

ontext of X-ray or CT screening. 

.1. Pandemic control using free Apps 

One of the fascinating aspects that has emerged around the

tilization of AI-based imaging approaches to manage the COVID-

9 pandemic has been the speed of prototyping imaging solutions

nd their integration in end-to-end applications that could be

asily deployed in a healthcare setting and even ad-hoc makeshift

aring facilities. This pandemic has shown the ability of deep neu-

al networks to enable the development of end-to-end products

ased on a model representation that can be executed in a wide

ange of devices. Another important aspect has been the need for

arge-scale deployments due to the high incidence of the COVID-
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Fig. 8. Receiver operating characteristic curves for models trained on data available at time of positive PCR test from electronic health records of 2866 patients from eastern 

Denmark. (a) is ROC for endpoint being hospitalized, AUC = 0.81. (b) is ROC for endpoint being admitted to ICU, AUC = 0.83.(c) is ROC for endpoint having ventilation admitted, 

AUC = 0.87. (d) is ROC for endpoint lethal outcome, AUC = 0.89. 
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9 infection. These deployments have been empowered by the

se of cloud-based computing architectures and multi-platform

eb-based technologies. Multiple private and open-source systems

ave been rapidly designed, tested, and deployed in the last few

onths. The requirements around the utilization of these systems

n the general population for pandemic control are: 

• High-throughput: the system needs to have the ability to per-

form scanning and automated analysis within several seconds if

screening is intended. 
• Portable: the system might need to reach the community with-

out bringing them to hospital care settings to avoid nosocomial

infections. 
• Reusable: imaging augmented with AI has emerged as a highly

reusable technique with scalable utilization that can adapt to

variable demand. 
• Sensitive: the system needs to be designed with high sensitiv-

ity and specificity to detect early signs of disease. 
• Private: systems have to protect patient privacy by minimizing

the exchange of information outside of the care setting. 

Web-based technologies that provide embedded solutions

o deploy neural network systems have emerged as one of the

ost promising implementations that fulfill those requirements.

ultiple public solutions in the context of chest X-ray detection

f early pneumonia and COVID-19 compatible pneumonia have
een prototyped, as shown in Fig. 9 . The Covictory App , part

f the slow-down COVID project ( www.slowdowncovid19.org )

mplements a classification neural network for the detection of

ild pneumonia as an early risk detection of radiographic changes

ompatible with COVID-19. The developers of this system based

heir system in a network architecture recently proposed for

uberculosis detection that has a very compact and efficient design

ell-suited for deployment in mobile platforms ( Pasa et al., 2019 ).

he database that trained the network was based on imaging from

hree major chest X-ray databases: NIH Chest X-ray, Chexpert, and

adChest. The developers sub-classified X-ray studies labeled as

neumonia in mild versus moderate/severe pneumonia by consen-

us of multiple readers using spark crowd, an open source system

or consensus building ( Rodrigo et al., 2019 ). Another example is

he Coronavirus Xray app that included public-domain images from

OVID-19 patients to classify images into three categories: healthy,

neumonia and COVID-19. Both systems were implemented as a

tatic web application in JavaScript using Tensorflow-JS. Although

he training was carried out using customized GPU hardware,

he deployment of trained models is intrinsically multi-platform

nd multi-device thanks to the advancement of web-based

echnologies. Other commercial effort s like CAD4COVID-XRay

 https://www.delft.care/cad4covid/ ) has leveraged prior infrastruc-

ure used for the assessment of tuberculosis on X-ray to provide a

eadily deployable solution. 

http://www.slowdowncovid19.org
https://www.delft.care/cad4covid/
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Fig. 9. Illustration of a public AI systems for COVID-19 compatible pneumonias on chest X-rays from two COVID-19 subjects using Covictory App ( www.covictoryapp.org ) 

with mild pneumonia signs (left) and more severe disease (right). 
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4. AI as part of a national infrastructure 

The COVID-19 crisis has seen the emergence of multiple ob-

servational studies to support research into understanding disease

risk, monitoring disease trajectory, and for the development of di-

agnostic and prognostic tools, based on a variety of data sources

including clinical data, samples and imaging data. All these studies

share the theme that access to high quality data is of the essence,

and this access has proven to be a challenge. The causes for this

challenge to observational COVID-19 research are actually the same

ones that have hampered large scale data-driven research in the

health domain over the last years. Owing to the data collection

that takes place in different places and different institutes, there

is fragmentation of data, images and samples. Moreover there is a

lack of standardization in data collection, which hampers reuse of

data. Consequently, the reliability, quality and re-usability of data

for data-driven research, including the development and validation

of AI applications, is problematic. Finally, depending on the sys-

tem researchers and innovators are working in, ethical and legal

frameworks are often unclear and may sometimes be (interpreted

as being) obstructive. 

A coordinated effort is required to improve the accessibility

to observational data for COVID-19 research. If implemented for

COVID-19, it can actually serve as a blueprint for large, multi-

center observational studies in many domains. As such, address-

ing the COVID-19 challenges also presents us with an opportunity,

and in many places we are already observing that hurdles towards
ulticenter data accessibility are being addressed with more ur-

ency. An example is the call by the European Union for an action

o create a pan-European cohort COVID-19 including imaging data.

In the Netherlands, the Health-RI© initiative aims to build a na-

ional health data infrastructure, to enable the re-use of data for

ersonalized medicine, and similar initiatives exist in other coun-

ries. In light of the current pandemic, these initiatives have fo-

used effort s on supporting observational COVID-19 research, with

he aim to facilitate data access to multi-center data. The underly-

ng principle of these infrastructures is that by definition they will

ave to deal with the heterogeneous and distributed nature of data

ollection in the healthcare system. In order for such data to be

e-usable, harmonisation at the source is required. This calls for lo-

al “data stewardship”, in which the different data types, including

.g. clinical, imaging and lab data, need to be collected in a harmo-

ized way, adhering to international standards. Here, the FAIR prin-

iple needs to be adopted, i.e. data needs to be stored such that

hey are “Findable”, “Accessible”, “Interoperable” and “Reusable”

ilkinson et al. (2016) . For clinical data, it is not only impor-

ant that the same data are collected (e.g. adhering to the World

ealth Organisation Case Report Form (CRF), often complemented

ith additional relevant data), but also that their values are unam-

iguously defined and are machine-readable. The use of electronic

RFs (eCRFs) and accompanying software greatly supports this, and

arge international efforts exist to map observational data to a

ommon data model, including e.g. the Observational Health Data

ciences and Informatics (OHDSI) model. Similarly the imaging and

http://www.covictoryapp.org
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Fig. 10. Design of Covid-19 observational data platform. In order for hospitals to link to the data platform, they need to make their clinical, imaging and lab data FAIR. Tools 

for data harmonization (FAIR-ification) are being shared between institutes. FAIR metadata (and in some cases FAIR data) and access policies are shared with the observational 

platform. This enables a search tool for researchers to determine what data resources are available at the participating hospitals. These data can subsequently be requested, 

and if the request is approved by a data access committee, the data will be provided, or information how the data can be accessed will be shared. In subsequent versions of 

the data platform, also distributed learning will be supported, so that data can stay at its location. 
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ab data should be processed following agreed standards. In the

ealth-RI© implementation, imaging data are pseudonimized us- 

ng a computational pipeline that is shared between centers. For

ab data, standard ontologies such as LOINC can be employed. The

OVID-19 observational project will not only collect FAIR meta-

ata describing the content and type of the data, but also data

ccess policies for the data that are available. This will support

he data search, request, and access functionalities provided by the

latform. An illustration of the data infrastructure in Health-RI© is

rovided in Fig. 10 . 

Next to providing data for the development of AI algorithms, it

s important to facilitate their objective validation. In the medical

maging domain, challenges have become very popular to objec-

ively compare performance of different algorithms. In the design

f challenges, part of the data needs to be kept apart. It is there-

ore important that, while conducting effort s to provide access to

bservational COVID-19 data, we already plan for using part of the

ata for designing challenges around relevant clinical use cases. 

During the pandemic, setting up such an infrastructure from

cratch will not lead to timely implementation. Health-RI© was

lready in place prior to the pandemic, and some of its infras-

ructures could be adjusted to start building a COVID-19 observa-

ional data platform. In Denmark, a similar initiative was not in

lace. However, in eastern Denmark, the Capital and Zealand Re-

ions share a common data platform in all hospitals with a com-

on EHR and a PACS at each region covering in total 18 hospi-

als and 2.6 million citizens making data collection and curation

elatively simple. At continental scale, solutions are being created,

ut will likely not be in place during the first wave of the pan-

emic. The burdens to overcome are legal, political, and technical.

ccess to un-consented data from patients follows different legal

aths in different countries. In UK the Department of Social and

ental Care issued on March 20, 2020 a notice simplifying the le-

al approval of COVID-19 data processing. In Denmark, usual reg-

lation and standards were maintained, but authorities made an
ffort to grant permission by the usual bodies in fast track. As ac-

ess to patient information must be restricted, not every researcher

ith any research goal can be granted access. Without governance

n place prior to an epidemic, access will be granted on an ad

oc and first-come-first-served basis, not necessarily leading to the

ost efficient data analysis. Finally, data are hosted in many differ-

nt IT systems and the two major technical challenges lie in bring-

ng data to a common platform, and having a (in EU GDPR) com-

liant technical setup for collaboration. Building such infrastruc-

ure with proper security and data handling agreements in place

s complex and will lead to substantial delays if not in place prior

o the epidemic. In the Netherlands, the Health-RI© platform was

n place. In Denmark, the effort s have been constrained to the

astern part of the country sharing common EHR and PACS and

aving infrastructure in place for compliant data sharing at Com-

uterome. At a European scale, the commission launched the Eu-

opean COVID-19 Data Platform on April 20 building on existing

ardware infrastructure. This was followed up by a call for estab-

ishing a pan-European COVID-19 cohort. Funding decision will be

n August 2020. Even though a tremendous effort has been put in

lace and usual approvals of access and funding have been fast-

racked, proper infrastructures have not been created in time for

he first wave in Europe. 

. Discussion 

The current COVID-19 pandemic offers us historic challenges

ut also opportunities. It is widely believed that a substantial per-

entage of the (as of this writing) 12.5 million confirmed cases and

61,0 0 0 deaths and trillions of dollars of economic losses would

ave been avoided with adequate identification of those with ac-

ive disease and subsequent tracking of location of cases and pre-

iction of emerging hotspots. Imaging has already played a major

ole in diagnosis and tracking and prediction of outcomes and has

he potential to play an even greater role in the future. Automated
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computer based identification of probability of disease on chest ra-

diographs and thoracic CT combined with tracking of disease could

have been utilized early on in the development of cases, first in

Wuhan, then other areas of China and Asia, and subsequently Eu-

rope and the United States and elsewhere. This could have been

utilized to inform epidemiologic policy decisions as well as hospi-

tal resource utilization and ultimately, patient care. 

This pandemic also represented, perhaps for the first time in

history, that a disease with relatively unique imaging and clinical

characteristics emerged and spread globally faster than the knowl-

edge to recognize, diagnose and treat the disease. It also created a

unique set of challenges and opportunities for the machine learn-

ing/AI community to work side by side and in parallel with clin-

ical experts to rapidly train and deploy computer algorithms to

treat an emerging disease entity. This required a combination of

advanced techniques such as the use of weakly annotated schemes

to train models with relatively tiny amounts of training data which

has only become widely available recently, many months after the

initial outbreak of disease. 

The imaging community as a whole has demonstrated that ex-

tremely rapidly developed AI software using existing algorithms

can achieve high accuracy in detection of a novel disease process

such as COVID-19 as well as provide rapid quantification and track-

ing. The majority of research and development has focused on pul-

monary disease with developers using standard Chest-CT DICOM

imaging data as input for algorithms designed to automatically de-

tect and measure lung abnormalities associated with COVID-19.

The analysis includes automatic detection of involved lung vol-

umes, automatic measurement of disease as compared to overall

lung volume and enhanced visualization techniques that rapidly

depict which areas of the lungs are involved and how they change

over time in an intuitive manner that can be clinically useful. 

A variety of manuscripts describing automated detection of

COVID-19 cases have been recently published. When reviewing

these manuscripts one can see the following interesting trend: All

are focusing on one of the several key tasks, as defined herein.

Each publication has a unique system design that contains a set

of network models, or a comparison across models; and the re-

sults are all very strong. The compelling results, such as the ones

presented herein may lead us to conclude that the task is solved;

but is this the correct conclusion? It seems that the detection and

quantification tasks are in fact solvable with our existing imag-

ing analysis tools. Still, there are several data-related issues which

we need to be aware of. Experimental evidence is presented on

datasets of hundreds and we need to go to real world settings,

in which we will start exploring thousands and even more cases,

with large variability. Our systems to date are focusing on detec-

tion of abnormal lungs in a biased scenario of the pandemic in

which there is a very high prevalence of patients presenting with

the disease. Once the pandemic declines substantially, the shift will

be immediate to the need to detect COVID among a wide vari-

ety of diseases including other lung inflammatory processes, occu-

pational exposures, drug reactions, and neoplasms. In that future

in which the prevalence of disease is lower,will our solutions that

work currently be sensitive enough, without introducing too many

false positives? That is the crux of many of the current studies that

have tested the different AI solutions within a very narrow diag-

nostic scope. 

There are many possibilities and promising directions, yet the

unknown looms larger than the known. Just as the current pan-

demic has changed the way many are thinking about distance

learning, the practice of telemedicine, and overall safety in a non-

socially distanced society, it seems that we are similarly setting

the stage with our current on the fly effort s in algorithm develop-

ment for the future development and deployment of AI. We need

to update infrastructure including methods of communication and
haring cases and findings as well as reference databases and algo-

ithms for research, locally, country-based and globally. We need

o prove the strengths, build the models and make sure that the

teps forward are such that we can continue and expand the use

f AI, particularly “just in time” AI. 

We believe that imaging is an absolutely vital component of

he medical space. For predictive modeling we need to not limit

urselves to just the pixel data but also include additional clinical,

atient level information. For this, combined effort among many

roups, as well as state and federal level support will result in op-

imal development, validation, and deployment. 

Many argue that we were caught unaware from a communi-

ation, testing, treatment and resource perspective with the cur-

ent pandemic. But deep learning-augmented imaging has emerged

s a unique approach that can deliver innovative solutions from

onception to deployment in extreme circumstances to address

 global health crisis. The imaging community can take lessons

earned from the current pandemic and use them to not only be far

etter prepared for recurrence of COVID-19 and future pandemics

nd other unexpected diseases, but also use these lessons to ad-

ance the art and science of AI as applied to medical imaging in

eneral. 
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