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a b s t r a c t 

There are a lot of hidden dangers in the change of human skin conditions, such as the sunburn caused by long-time 

exposure to ultraviolet radiation, which not only has aesthetic impact causing psychological depression and lack 

of self-confidence, but also may even be life-threatening due to skin canceration. Current skin disease researches 

adopt the auto-classification system for improving the accuracy rate of skin disease classification. However, the 

excessive dependence on the image sample database is unable to provide individualized diagnosis service for 

different population groups. To overcome this problem, a medical AI framework based on data width evolution 

and self-learning is put forward in this paper to provide skin disease medical service meeting the requirement of 

real time, extendibility and individualization. First, the wide collection of data in the close-loop information flow 

of user and remote medical data center is discussed. Next, a data set filter algorithm based on information entropy 

is given, to lighten the load of edge node and meanwhile improve the learning ability of remote cloud analysis 

model. In addition, the framework provides an external algorithm load module, which can be compatible with 

the application requirements according to the model selected. Three kinds of deep learning model, i.e., LeNet-5, 

AlexNet and VGG16, are loaded and compared, which have verified the universality of the algorithm load module. 

The experiment platform for the proposed real-time, individualized and extensible skin disease recognition system 

is built. And the system’s computation and communication delay under the interaction scenario between tester 

and remote data center are analyzed. It is demonstrated that the system we put forward is reliable and effective. 
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. Introduction 

A skin disease is the pathological state affecting the body surface.

ong-time exposure to ultraviolet radiation or the radiation from high-

requency wireless equipment may induce the skin canceration. Accord-

ng to the statistical data report from American Cancer Society [1] , it is

stimated that 91,270 new melanoma cases are diagnosed in the United

tates in 2018, and meanwhile it is estimated that about 9320 people

ill die from melanoma. Melanoma has a high cure rate at early detec-

ion, with 99% of 5-year relative survival rate. However, since it is easier

o spread to other parts of the body than non-melanoma skin cancers,

he 5-year relative survival rate at long-term stage drops to 20%. 

The symptom of skin diseases is a long and constantly changing

rocess. Generally, the health care provider should provide assessment

here changes have occurred in certain area of the skin for over a month
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r longer. However, due to multiple factors such as poor medical con-

itions and cumbersome medical process, patients always ignore such

hanges of their skin, or wrongly identify them as other skin injuries.

eanwhile, no family physician or supervision organization carries out

he regular maintenance and treatment since it is not required to report

edical records to the cancer registry. 

The development of body sensor network [2,3] , artificial in-

elligence, cloud computing [4] and wireless network communica-

ion [5,6] has brought opportunities to the cognitive medical service [7–

] . The remote health monitoring, health guidance and feedback can

e realized through multi-sensor data fusion [10,11] with the help

f remote medical devices, such as mobile phone [12] , wearable de-

ice [13] , intelligent robot, autonomous vehicle and unmanned aerial

ehicle [14,15] . And an open-source programming framework to sup-

ort rapid and flexible prototyping and management of human-centered
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i  

u  
pplications is critical [16] . In the paper [17] , it is pointed out that

obile devices equipped with deep neural network can potentially ex-

end the range of dermatologists outside the outpatient service. It is es-

imated that by 2023, the number of smart phone users will reach 7.2

illion [18] . It is possible to provide general diagnosis service with low

ost [19] . 

The automatic recognition of patients’ skin conditions may become

 good promoter for the cognitive medical monitoring framework. On

ne side, it can reduce the consumption of resources deployed to the

edical industry center, and meanwhile automatically feed back the

atients’ conditions and service experiences evaluation. On the other

ide, it properly takes into account the consumption of patients’ time

nd money cost as well as the concerns on privacy. The cloud comput-

ng technology deployed on the medical center can solve the problem

hat the local devices, under the big data environment, have insufficient

omputing and storage capacities to provide the computation-intensive

ervices [20–22] . However, the huge amount of data transmission and

ommunication will cause a consumption of network communication

esources, it is still unable to meet the delay-sensitive characteristic of

ognitive medical services [23–25] . The deployment of edge comput-

ng technology on the network edge can solve the pressure caused by

he large scale of computation-intensive and rich-media tasks [26–28] .

lso, the technology is beneficial to facilitate secure data management

nd convenient data trading in mobile health care [29] . Some exist-

ng advanced computation offloading schemes such as [30] and novel

outing mechanisms such as [31] can be integrated into the system to

chieve highly reliable cooperative computing and communication be-

ween local terminals and remote clouds [32] . 

The traditional skin disease detection system complete the classifi-

ation output through characteristics extraction of image data set as the

nput. The existing researches adopt the deep architecture to automate

he learning of characteristics [33–35] , and the priori knowledge based

n pathological skin data set is obtained to improve the accuracy of auto-

atic classification. Esteva et al. [17] put forward the adoption of Deep

onvolutional Neural Networks to classify skin diseases, and demon-

trate the achievement of expert-level diagnosis. In the literature [36] ,

t is discussed that the pre-trained deep neural network model has an

ffect superior to the model trained from the beginning, and the prob-

em of insufficient labeled image data of skin disease can be solved by

re-training the Convolutional Neural Network (CNN) with the images

rom other medical fields. 

Due to the limited intelligence of current system, a one-time testing

esult be concluded by inputting the collected users’ skin image data

nto the system, but the function of monitoring the changes of skin con-

itions cannot be realized. Meanwhile, current system is a centralized

ystem with a static and centralized database required an active update

y expert, which limits the user mobility and cannot realize convenient

nd high-efficiency self-checking. In addition, the centralized system

s unable to provide sufficient resources to support the individualized

atabase for different population groups. Due to the centralization of

he database, it is unable to give a good judgment for paroxysmal dis-

ases. 

We consider that the future skin disease monitoring system will meet

ollowing characteristics: 

• Real-time: The user’s individual database keeps accumulating and

storing. The system analyzes user’s skin state based on personal his-

torical data and current data, and monitors skin state changes regu-

larly. The camera on smart terminal capture user’s skin image, and

skin analysis reports feed back to terminals. Users record their skin

state changes based on reports. 
• Dynamic: The physical location of users often changes dynamically,

but mobile devices are relatively static for skin disease detection.

Through mobile terminals, users can easily and efficiently collect

individual skin images. With the computing power of terminals, fast

analysis results are provided to users. 
2 
• Sharing mode: User’s skin images can be locally stored for analy-

sis. Multiple users also send their data to the cloud for sharing. The

cloud collects data from different users, and conducts more accurate

analysis with its powerful storage and computing capacity. 

Different from the traditional open-ended input/output system, we

ntend to build a user-centered close-loop system, and consider connect-

ng the mobile terminal users’ personal data collection, the communica-

ion between mobile terminals and remote data center, and the real-time

pdate of training model. Based on this, a deep skin disease monitoring

ystem based on edge-to-cloud cognitive medical framework is put for-

ard. Specifically, the contributions of this paper are divided into three

oints as below: 

1. A medical AI framework based on data width evolution and self-

learning is proposed. Under such framework, the process of infor-

mation interaction between users and terminal devices, and the wide

collection of data in the close-loop information flow of user and re-

mote medical data center are considered. 

2. A data set filter algorithm based on information entropy is given,

so as to lighten the load of no-label data sets in terminals and edge

cloud in the meantime of improving the data quality of remote cloud

data base and the learning ability of analysis model. 

3. A load module specially for analysis algorithms is designed. Under

such module, it can be compatible with the application requirements

according to the learning model selected. Meanwhile, three learning

models are deployed successively in the load module and the training

process is completed. 

The remained parts of this paper are organized as below. In Section 2 ,

he AI medical framework is presented, and the entities in and function

f the AI medical framework are introduced in detail. In Section 3 , based

n the framework raised, the data width collection and the self-learning

rocess are elaborated. In Section 4 , the training details of the three deep

earning models deployed on cloud are provided, including the data set

cquisition, model building and training precision. In Section 5 , the skin

isease recognition prototype system is demonstrated, the specific scene

ase is given, and the computing and communication delay of the system

re analyzed. Finally, the whole paper is summarized and future works

re discussed in Section 6 . 

. Medical AI framework 

The medical AI framework based on data width evolution and self-

earning is shown as Fig. 1 . The framework contains user terminal, edge

odes, radio access network (RAN), cloud platform and remote medical

ite. Try to imagine an application scenario like this. A user finds abnor-

al changes in facial skin tissue and has plagued. At this time, the user

an, on his/her mobile devices such as mobile phone, easily send the

kin images to the edge nodes through taking photos by camera or up-

oading images from mobile phone gallery. The edge nodes, after data

ltering, transmit the skin images to the cloud through the RAN. The

loud provides analysis results on the user’s skin conditions based on

he deployed learning model, and meanwhile transmits the results to

he remote medical site. Upon receipt of the user’s data, the specialist

hysician feeds back the medical measures to the user, and meanwhile

rchives the medical records to evaluate the changes of the user’s skin

onditions. The main parts involved in the framework are introduced in

etails. 

.1. User terminal 

It refers to users’ terminal devices, mainly including smart phone,

mart bracelet, camera, humanoid robot and other intelligent devices.

he terminal device itself contains the data storage module, data send-

ng module, data processing module, and data receiving module. The

ser, after collecting his/her skin images through the device’s shooting
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Fig. 1. The Proposed medical AI framework. 
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pp or from the device gallery, firstly makes simple pre-processing by

he data processing module and then uploads the skin images to edge

ode by the data sending module, and the data receiving module will

eceive the medical feedback data transmitted from the remote cloud or

emote site. These devices are characterized by high mobility, low com-

uting resources, and low storage resources. To deal with wireless trans-

issions in high mobility situations such as vehicular environments,

e can employ existing self-organized cooperative transmission scheme

ike [37] or some advanced routing protocols [38] . 

.2. Edge node 

It refers to node equipment deployed on the network edge with rela-

ively high computing resources and storage resources, such as the local

erver. The local server has deployed the learning model, which can

arry out skin condition recognition according to users’ local data. The

dge node transmits the skin image to the remote cloud through RAN,

nd meanwhile receives the updating parameters of the trained learning

odel from remote cloud, so as to provide high-efficiency local services.

.3. Cloud platform 

The cloud platform provides computation-intensive task processing

ervices. The learning ability of model in algorithm load module is im-

roved through receiving the skin image data from the edge nodes. The

lgorithm load module realizes the adaptation with the application re-

uirements by loading different learning models, and the updated model

arameters are transmitted to the edge nodes. The resource cognition

odule cognizes the network resources, and the data cognition module

ognizes the application context and network environment context. The

wo modules act upon each other to carrying out the network resource

anagement and allocation to meet service requirements of applica-

ions. 

.4. Remote medical site 

It refers to the remote medical resources, including doctors, nurses,

edical devices and etc. The remote dermatologists receive the user

kin conditions analysis results from the cloud, provide online medical

ervices and feed back to user terminals. Users receive the suggested

reatment from remote dermatologists, and meanwhile evaluate the ser-

ice contents. 
3 
. Data width evolution and self-learning process 

Next, we discuss the close-loop data flow in the framework, and give

he data width collection and the self-learning process. It is shown as

ig. 2 . 

.1. Data width collection 

First, the terminal devices acquire users’ skin images and transmit

hem to the remote medical cloud platform, and the cloud provides

kin disease diagnosis service for users by the traditional method based

n skin database and deep learning. When the edge nodes receive the

ontinuously accumulated image data from user, the edge cloud pre-

rocesses the local data based on the local cognition, and then send

he user data to the remote medical cloud platform. The remote cloud

eceives the data set from multiple terminals and deep model param-

ters updated based on global cognition, and then further feeds back

he updated parameters to the edge node for a better local cognition.

n the whole close-loop process, the skin image data of users, the lo-

al cognition data of edge nodes, and the global cognition of the cloud

re transmitted and communicated mutually, so as to continuously ex-

lore valuable information. In addition, the remote cloud cognizes users’

kin conditions according to the deep learning model, and meanwhile

udges users’ health condition and emotional state and feed back to

sers. While requesting services, users may also provide the skin condi-

ion data, health condition data, emotional state data and surrounding

nvironment information for remote intelligent analysis. The use value

f the framework can be expanded horizontally through continuous in-

usion of information based on user, environment and model into the

ystem. 

.2. Self-learning process 

After continuous infusion of information based on user, environ-

ent and model into the system, the huge amount of data loaded in

he system are unlabeled. It cannot be guaranteed that the unlabeled

ata set plays a positive role in the model training and global cogni-

ion of the cloud platform. Meanwhile, the transmission of huge amount

f unlabeled data set will consume the network communication re-

ources and thus reduce the service experience of users [39] . Deploy

 data filter algorithm in the edge cloud to filter out the worthless

ata, and upload the valuable data to the cloud [40] . The edge cloud,



M. Chen, P. Zhou and D. Wu et al. Information Fusion 54 (2020) 1–9 

Fig. 2. The illustration of data width collection and self-learning process. 
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ased on the information entropy, filters and provides the valuable

ata to the remote cloud. The remote cloud further adjusts and opti-

izes the model parameters to longitudinally explore more valuable

nformation. 

We assume that the labeled data sets are 𝑥 𝑙 =
 𝑥 𝑙 1 , 𝑥 

𝑙 
2 , ⋯ , 𝑥 𝑙 

𝑛 
, ⋯ , 𝑥 𝑙 

𝑛 
] , (1 ≤ 𝑛 ≤ 𝑁) , where N is the number of la-

eled data sets. The label classes corresponding to the labeled

ata sets are 𝑦 𝑙 = [ 𝑦 𝑙 1 , 𝑦 
𝑙 
2 , ⋯ , 𝑦 𝑙 

𝑚 
, ⋯ , 𝑦 𝑙 

𝑀 

] , (1 ≤ 𝑚 ≤ 𝑀) , respectively,

here M is the number of label classes, and for binary classifi-

ation problem, 𝑀 = 2 . Assume that the unlabeled data sets are

 

𝑢 = [ 𝑥 𝑢 1 , 𝑥 
𝑢 
2 , ⋯ , 𝑥 𝑢 

𝑘 
, ⋯ , 𝑥 𝑢 

𝐾 
] , (1 ≤ 𝑘 ≤ 𝐾) , where K is the number of unla-

eled data sets. We consider making skin color classification on the unla-

eled data sets which is denoted as 𝑐 𝑢 = [ 𝑐 𝑢 1 , 𝑐 
𝑢 
2 , ⋯ , 𝑐 𝑢 

𝑠 
, ⋯ , 𝑐 𝑢 

𝑆 
] , (1 ≤ 𝑠 ≤ 𝑆) ,

here S denotes the number of skin color classifications. Then with

he conditions of 𝑥 𝑢 
𝑖 

already labeled as class c s , the probability of being

redicted as skin disease class j is 𝑝 
𝑗 

𝑖 
= 𝑝 ( 𝑦 𝑥 𝑢 

𝑖 
= 𝑗|𝑐 𝑠 ) , and it is concluded

hat the prediction probability of 𝑥 𝑢 
𝑖 

is 𝑝 𝑥 𝑢 
𝑖 
= { 𝑝 1 

𝑖 
, 𝑝 2 

𝑖 
, ⋯ , 𝑝 𝑀 

𝑖 
} . On this

asis, the prediction probability entropy of unlabeled data is defined

s: 

 

(
𝑝 𝑥 𝑢 

𝑖 

)
= 𝐸 

(
𝑦 𝑥 𝑢 

𝑖 
= 𝑗|𝑐 𝑠 

)
= − 

𝑀 ∑
𝑗=1 

𝑝 
𝑗 

𝑖 
log 

(
𝑝 
𝑗 

𝑖 

)
. (1)

If the entropy value is less than a certain threshold value E T , i.e.,

( 𝑝 𝑥 𝑢 
𝑖 
) < 𝐸 𝑇 , the unlabeled data is selected. The threshold value E T is

elated to the sample size of labeled data, the accuracy rate of model

lassification, and the quality of service required by users. When the

ntropy value is relatively small, the newly selected data has a lower

rediction uncertainty. 

A large amount of unlabeled data collected from users’ personal ter-

inal devices is stored in the edge cloud. The filtration of the unlabeled

ata in the edge nodes decreases the transmission amount of image data

ith low value, and reduces the communication delay of user service.

eanwhile, owe to the preliminary filtration operation in edge nodes,

he cloud utilizes the most valuable data to update the knowledge base,

hich guarantees the precision of classification. In addition, the data

election according to the skin color labeled by users can form new

atabase classifying by population groups, so as to support the indi-

idualized database for different groups. 
4 
. CNN model training and comparison 

A data set used for the classification of human face skin disease is

uilt. The human face images on web pages are crawled by keyword

earch. The keywords are human face pictures, human face skin disease.

he first 20 pages of dynamic web pages are selected for each keyword.

otally 6144 images are obtained through crawling. The dermatologists

rom Wuhan Union Hospital are invited to classify all skin images. The

abels of images contain 14 classes, including facial acnes, forehead ac-

es, alar acnes, acne marks, chloasma, pregnant spots, sunburn spots,

adiation spots, age spots, dark circles, blackheads, nevus, large pores,

rinkles. Considering the characteristics of diseases, facial acnes, fore-

ead acnes, alar acnes and acne marks are unified as skin acnes. And

hloasma, pregnant spots, sunburn spots, radiation spots and age spots

re unified as skin spots. Unusable images are removed from the data

et. Finally the images are classified as five types of skin diseases. In

he classification of skin acnes, skin spots, skin blackheads, dark circles

nd clean face, the images having skin acnes are taken as the positive

ample, and others having skin spots, skin blackheads, dark circles and

lean face are taken as the negative samples. In the selection of negative

amples, the number of images for each disease type is selected accord-

ng to the number of images for positive sample, so as to make the ratio

f positive samples and negative samples is about 1:1, which avoids the

roblem of sample imbalance. 

The diagram of CNN model for skin disease classification is shown

s Fig. 3 . The system uses the Convolutional Neural Network model to

xtract skin image characteristics. Three learning models, i.e., LeNet-

 [41] , AlexNet [42] and VGG16 [43] , are adopted to carry out the train-

ng, classification and assessment processes. In the experiment, 85% of

he data set is used as the training set, and the remaining 15% is used

s test set. 

Firstly, three deep Convolutional Neural Networks are pre-trained

n ImageNet [44] . Then a fine tuning is carried out on all layers. The

ast layer is the softmax layer, which allows to do classification on two

iagnosis classes. LeNet-5 is set as 2 convolutional layers, 2 max-pooling

ayers and 3 fully connected layers. The sizes of all input images are ad-

usted as 228 ∗ 228 ∗ 3, and the input images are normalized. AlexNet is

et as 5 convolutional layers, 3 max-pooling layers and 3 fully connected

ayers. The max-pooling operation is carried after the 1st, 2nd and 5th

onvolution. The sizes of all input images are adjusted as 227 ∗ 227 ∗ 3,
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Fig. 3. The Diagram of CNN model for skin disease classification. 

Table 1 

Skin disease classification accuracy rate of three CNN models. 

Skin acnes Skin spots Skin blackheads Dark circles Clean face 

LeNet-5 0.63 0.65 0.70 0.58 0.87 

AlexNet 0.79 0.80 0.91 0.78 0.95 

VGG16 0.68 0.75 0.87 0.76 0.90 
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nd the input images are normalized. The learning rate in the experi-

ent is set as 0.001, and the number of iterations is 150. The batch sizes

f the training set and test set are respectively 64 and 5, and the dropout

ate is 0.6. VGG16 is set as 13 convolutional layers, 5 max-pooling layers

nd 3 fully connected layers. The sizes of all input images are adjusted

s 227 ∗ 227 ∗ 3, and the input images are normalized. The batch size of

he training set is 32. The number of iterations is 200. Other parame-

ers are set as the same with LeNet-5 and AlexNet. The accuracy rates

f the three learning models on five classes of skin disease are shown as

able. 1 . It can be seen from the statistical data that the AlexNet model

as the best overall effect. 

. A demonstration system for skin disease recognition 

.1. Prototype platform 

AI skin disease recognition prototype platform is built, as shown in

ig. 4 . The hardware environment includes AIWAC (Affective Interac-

ion through Wide Learning and Cognitive Computing) robot [45] , local

erver, and remote cloud platform. The AIWAC robot is equipped with

I skin App, and captures the user image through the camera above the

isplay screen. The local server is the edge node. The remote cloud is
5 
quipped with AMD FX 8-Core processor in 4 GHz with 32 GB RAM

DR3. Under current environment, the communication gateway is the

ommunication bridge for the AIWAC robot and local server, the local

erver and remote cloud, and the remote cloud and AIWAC robot. 

The AI skin disease detection processes are as follows: Firstly, the

raining of skin disease classification models is executed on the remote

lgorithm server based on our own skin database. After the completion

f training, the trained models are stored in the cloud platform, and

eanwhile migrated to local server for execution. Then, the skin images

f user captured from AWAIC robot are transmitted to edge node. When

dge node receives those data, the unlabeled data are selecting based on

ata set filter algorithm, and then labeled together with the recognition

odel. The labeled data transmitted to remote cloud for deep training

nd the updated model parameters are fed back to the edge node. The

lgorithm extension interface deployed in cloud server can load different

lgorithm models. To execute the recognition algorithm in edge device,

t is required to deploy TensorFlow environment [46] . 

.2. Test scene 

An experimental test is carried out on the AI skin prototype platform.

he tester captures her own face skin image through the mobile termi-

al camera, and the OpenCV [47] face detection classifier is utilized

o label and segment face area as the input of model. The skin disease

ecognition algorithm deployed in local server is AlexNet model, which

s selected by the optimal result in cloud training. Based on the types

f skin diseases given by Table. 2 , the skin conditions of the tester are

nalyzed for five classes of skin diseases, i.e., (skin acnes, no skin acne),

skin spots, no skin spot), (skin blackheads, no skin blackhead), (dark

ircles, no dark circle), and (clean face, unclean face). After the comple-
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Fig. 4. The AI-skin Prototype platform. 

Fig. 5. The skin disease recognition demo and analysis report. 

Table 2 

Five types of skin diseases classification. 

Type Class Class 

1 Skin acnes No skin acne 

2 Skin spots No skin spot 

3 Skin blackheads No skin blackhead 

4 Dark circles No dark circle 

5 Clean face Unclean face 

t  
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r  

a  

r  

a

5

 

e  

t  

t

 

n  

L  
ion of skin disease analysis, the skin condition report of the tester is fed

ack to the mobile terminal. The execution results of real-time analysis

f skin conditions are shown as Fig. 5 . 

The skin disease recognition report is shown as Fig. 5 (b). First, the

ystem gives an overall score based on the skin condition of the tester

nd the score is weighted by different skin diseases. Next, the exact

nalysis result of each disease class is given. It is pointed out that, the

roblem of blackheads is relatively serious, other skin diseases, includ-
6 
ng the skin acnes and skin spots are only in mild degree. Moreover,

he skin color of the tester is the yellowish skin which is common in

sian people. It can be seen that these results are consistent with the

kin state of the tester. In addition, according to the skin analysis, the

eport indicates that the tester belongs to the damp-heat constitution

nd the excessive oil secretion leads to the enlarged pores or acnes. The

eport also proposes measures for improving the skin conditions, such

s increasing outdoor sports to promote metabolism. 

.3. Delay analysis 

To evaluate the system’s reliability and validity, two different mod-

ls, i.e., LeNet-5 and AlexNet, are compared for the system’s computa-

ion delay and transmission delay. In the experiment, the communica-

ion bandwidth is 2 Mbps. 

We conducted 30 experiments under two models, and the sequence

umbers are from 1 to 30. The results of system delay under AlexNet and

eNet-5 models are shown in Figs. 6 and 7 , respectively. From the figure,
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Fig. 6. Edge computation delay and transmission delay with AlexNet model. 

Fig. 7. Edge Computation delay and transmission delay with LeNet-5 model. 
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Fig. 8. Edge computation delay of images with high- and low- resolutions. 
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e can see that the computation delay of each model changes smoothly

ith the number of experiments. Without considering the transmission

elay of instructions in communication, we can see that the factor de-

ermining the total time delay in the system is the computation delay

f edge nodes. The average delay of edge computation under AlexNet

odel is 1.2 s, but the end-to-end communication delay (the sum of

omputation and transmission delay) between terminal device and edge

ode is still in the order of 1 s. The standard deviations of the total com-

unication delay under the two models are 75 ms and 63 ms, respec-

ively, which can show the effectiveness and flexibility of the real-time

kin disease recognition system. 

Moreover, it is found that the edge computing time of images with

igh resolution is shorter than that with low resolution, as shown in

ig. 8 . In the experiment, the size of original image is 1,233,634 bytes,

nd the size of the compressed image is 4830 bytes. The computing time

f high-resolution image is shorter than that of low-resolution image

nder both AlexNet and LeNet model. The image has a 1.0 probability

f detecting skin blackhead disease at both resolutions. Upon testing

he images of other skin diseases, it is found that the high- and low-

esolution images of blackheads and skin spots have little impact on the

lassification accuracy. 
7 
. Conclusion 

In this paper, a real-time, individualized and extensible skin dis-

ase recognition system is presented. A medical AI framework based

n data width evolution and self-learning is proposed. The close-loop

nformation flow between user and remote medical data center is dis-

ussed based on the updating of the data sets such as user’s skin images,

ser’s health conditions, environment information, and model parame-

ers in AI skin detection process. In addition, a data set filter algorithm

ased on information entropy is given. Through the filtration of valu-

ble data sets in the edge node, the data quality of the remote cloud

atabase and the learning ability of models can be further improved.

he universality of algorithm extension interface is verified based on

he three learning models trained on the cloud, i.e., LeNet-5, AlexNet

nd VGG16. A skin disease recognition prototype system is built. And

kin disease analysis result with the tester’s face skin image shot on the

obile terminal camera is conducted. Meanwhile, the edge computa-

ion delay and transmission delay of the system is tested, so as to verify

he reliability and validity of the system. In our experiment, the end-

o-end communication delay between terminal device and edge node is

n the order of 1s. We found that the high- and low-resolution images

f some skin diseases have little impact on the classification accuracy.

here is a tradeoff between transmission delay and classification accu-

acy. In the future, lower transmission delay can be realized through the

eployment of image compression algorithms on terminals [48] . More-

ver, the classification accuracy of skin disease can be further improved

y the improvement of learning model [49] . 
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