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a b s t r a c t 

In human processed AI, HP-AI, we build our AI systems based on knowledge learned by human experts rather 

then that learned by artificial neural networks such as in the case of deep learning. The information provided 

by these human experts is typically linguistically expressed. In support of HP-AI we look at the properties of an 

ordinal scale, S , needed to model linguistically expressed quantitative information. Since fuzzy measures provide 

a very general structure for modeling uncertainty we look at ordinal fuzzy measures. We look at the Sugeno 

integral based on this ordinal S scale. We discuss the modeling of information about an uncertain variable using 

an ordinal scale. We look at the problem of multi-source in this ordinal environment. 
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. Introduction 

Artificial Intelligence has become one of the most important tech-
ologies in todays technology oriented world. Essentially we can iden-
ify two major paradigms for building AI models. The first, and currently
he most popular, is based on machine processing of data and experi-
nces. We shall refer to this as MP-AI. Central to this are neural network
echniques such as deep learning [1] . In this approach data and other
xperiential information is feed into some digital device that uses this
nformation to learn decision and other models. The second type of AI
s based on the human processing of data and experiential information
o learn decision models. We shall refer to this as HP-AI. Often HP-AI
s based on human experience. While the models obtained using HP-AI
re generally based on less data they are typically more sophisticated.
n HP-AI we use logic, fuzzy sets, approximate reasoning and other soft
omputing technologies to build systems based on this human processed
nowledge. In HP-AI we must extract from human experts their learned
odels and rules of thumb. As humans prefer language to express them-

elves this kind of human processed observations are generally linguisti-
ally expressed. Human language typically uses qualitative quantitative
erms such as small, medium and big as well as tall and sort. Fuzzy sets
2–4] and other related technologies [5] can be used to model this kind
f imprecise information. However, along another dimension the scales
nderlying the kinds if qualitative quantitative information provided by
uman information processes is generally of an ordinal nature. In sup-
ort of HP-AI in this work we look at techniques for building ordinal
cale based uncertainty models. 

. Ordinal scales 

Let S = {S 1 , …, S q } be a linguistically motivated ordinal scale such
hat S j + 1 > S j . Typically such a linguistic scale would be {Smallest, very
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mall, small, medium, big, very big, biggest}. Here S 1 is our minimal
lement and S q is our maximal element. At times we shall find it conve-
ient to denote our minimal element S 1 as 0 and our maximal element
s 1. Here we see S i > S j if i > j . We shall say that the power of the scale
s q. Here we have the ability to denote q different levels. 

We can define a negation operator [6,7] on S. We define the nega-
ion operator N: S → S such that N(S j ) = S q + 1 – j . We note that N has the
ollowing properties 

1) N(S 1 ) = S q 
2) N(S q ) = S 1 
3) N(N(S j )) = S j 
4) If S i > S j then N(S j ) ≥ N (S i ) 

We can define the binary operation of conjunction (Min), ∧, on S
uch that 

 i ∧ S j = S i ∧ j = S Min (i , j) 

nd the binary operation of disjunction (Max), ∨, on S such that 

 i ∧ S j = S i ∧ j = S Max (i , j) 

We see that for any level S j we have 

 j ∧ S 1 = S 1 
 j ∨ S 1 = S j 
 j ∧ S q = S j 
 j ∨ S q = S q 

When working with an ordinal scale such as S a useful tool is what
e refer to as a unitor function, which maps the unit interval into S . 
une 2020 
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3) Assume A ⊂ B. In this case 𝐴 ⊇ 𝐵 , �̂�(A) = N ( 𝜇( 𝐴 )) and �̂�(B) = N ( 𝜇( 𝐵 )) 
efinition. Assume S = {S 1 , …, S q } is an ordinal scale. A unitor func-

ion U is a mapping 
U: [0, 1] → S such that 

U ( r ) = S i if ( 𝑖 − 1) 
𝑞 

≤ r < 

𝑖 

𝑞 
for i = 1 , 2 … , q 

 ( 1 ) = S q 

There are many functions and mathematical structures we can model
sing the ordinal scale S to provide associated parameters. 

An aggregation function with respect to S is a function of n > 1
rguments f: S n → S having the properties [8,9] 

1) f(S 1 , …, S 1 ) = S 1 
2) f(S q , …, S q ) = S q 
3) f(a 1 , …, a n ) ≥ f (b 1 , …, b n ) if a i ≥ b i for all i. 

Two notable examples of aggregation functions are Min and Max.
ere for f = Min, we have f(a 1 , …, a n ) = Min i [a i ] and for f = Max, we
ave f(a 1 , …, a n ) = Max i [ a i ]. The median is also an aggregation function
n S . 

Another notable example of an aggregation function on S is f(a 1 , …,
 n ) = 𝑀𝑎𝑥 

𝑗= 1 𝑡𝑜 𝑛 
[w j ∧ a j ] where w j are a set of weights such 1) w j ∈ S and 2)

t least one w j = S q , that is 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[w j ] = S q. 

Closely related function is a basic Monotonic function f: S → S such
hat: 

1) f(S 1 ) = S 1 
2) f(S q ) = S q 
3) f(a) ≥ f (b) if a > b 

One mathematical structure we can model using the ordinal scale S
s to provide the associated parameters of a fuzzy set. Assume X = {x 1 ,

, x n } is a set of objects we can define a fuzzy subset F on X using the
cale S to provide the membership grades. At times we refer to this as an
 -fuzzy set to emphasize that the membership grades are drawn from S .
hus here we define the fuzzy set F so its membership grades F(x j ) are
uch that F(x j ) ∈ S . We say that F is normal if there exists at least one x j ∈
 such that F(x j ) = S q . We say F is the null set ∅, if F(x j ) = S 1 for all x j and
e say F is the whole space if F(x j ) = S q for all x j . Assume F is an S -fuzzy

et we define its negation 𝐹 as an S -fuzzy set such that 𝐹 (x j ) = N (F(x j )).
ssume F 1 and F 2 are two S -fuzzy sets on X we say F 1 ⊆ F 2 if F 1 (x j ) ≤
 2 (x j ) for all x j . Furthermore we can define their intersection, F 1 ∩ F 2 ,
s an S -fuzzy set F 3 such that F 3 (x j ) = F 1 (x j ) ∧ F 2 (x j ) and we can define
heir union F 1 ∪ F 2 as the S -fuzzy set F 4 such that F 4 (x j ) = F 1 (x j ) ∨ F 2 (x j ).

In [10] Zadeh discussed the modeling of proportional linguistic
uantifiers using fuzzy sets. Examples of linguistic quantifiers are
most ”, “about half ”, “more than 𝛼% ”. As noted by Zadeh these can be
odeled as a fuzzy subset of the unit interval [0, 1]. A particularly im-
ortant class of linguistic quantifiers are the monotonic linguistic quan-
ifiers. For these linguistic quantifiers the membership function Q: I → I
s monotonic. We can generalize this idea to the ordinal domain S using
n S -quantifier where Q: S → S such that 

1) Q(S 1 ) = S 1 
2) Q(S q ) = S q 
3) Q is monotonic, Q(a) ≥ Q (b) if a > b 

A useful concept associated with a classic fuzzy subset A on a finite
pace X = {x 1 , …, x n } is the specificity of A, Sp(A) [11-16] . The speci-
city of A is a quantification of the degree to which A can be considered
s a one point set. It is closely related to the concept of entropy and
an be seen as an indication of the amount of information contained
n the set A. In [17] we discussed a number of properties required of a
ormulation of the specificity of a fuzzy set: 

1) Sp(A) assumes the largest value when A is a crisp set consisting of
exactly one element 

2) Sp(A) assumes its smallest value when A is the null set or A = X 
93 
3) If A and B are two normal fuzzy sets such that A ⊂ B then Sp(A) ≥
Sp(B). 

While there are many possible formulations for specificity in
17,18] Yager suggested the following strict linear formulation for the
pecificity of a fuzzy set A 

p ( A ) = w 1 b 1 − 

𝑛 ∑
𝑗=2 

𝑤 𝑗 𝑏 𝑗 

here b j is the j th largest membership grade in A and w j are a set of
eights having the following properties: 

1) w j ∈ [0, 1] 
2) w 1 = 1 
3) w i ≥ w j for i < j 

4) 
∑𝑛 

𝑗=2 𝑤 𝑗 = 1 

In [19] we suggested a formulation for specificity in the ordinal en-
ironment, S = {S 1 , …, S q }. Assume A is an S -fuzzy set of X = {x i , i = 1
o n}. Let a i for i = 1 to n be the membership grades of the elements in
. With b j being the j th largest membership grade in A let L = 𝑀𝑎𝑥 

𝑗= 1 𝑡𝑜 𝑛 
[b j 

𝑈 ( 𝑗−1 
𝑛 −1 ) ] using this we define Sp(A) = N (L) ∧ b 1 . Let us look at the

roperties of Sp(A). 

1) Assume A is one point set. Without loss of generality assume
A(x 1 ) = S q and A(x j ) = S 1 for all j ≠ 1. In this case b 1 = S q and b j = S 1
for all other j. We see 

L = 

( 

b 1 ∧ U ( 0 ) ∨
𝑛 

𝑀𝑎𝑥 
𝑗=2 

[(
b j ∧ U ( j − 1∕n − 1 ) 

)]) 

Since b j = S 1 for j ≠ 1 then L = b 1 ∧ U(0) and since U(0) = S 1 then
L = S 1 . Hence N(L) = S q and Sp(A) = S q . 

2) Assume A is the null set, b i = S 1 for all i including b 1 hence
Sp(A) = N (L) ∧ b 1 = S 1 . 

3) Assume A is X. With L = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[b j ∧ 𝑈 ( 𝑗−1 
𝑛 −1 ) ] since b j = 1 for all j then

L = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[U( 𝑗−1 
𝑛 −1 )] = U (1) = S q and hence N(L) = S 1 

4) Assume A and B are two normal S -fuzzy sets such that A ⊆ B, that is
A(x i ) ≤ B (x i ) for all x i . Assume e j and f j are the j th largest member-
ship grades in A and B respectively. Since A ⊆ B then f j ≥ e j for each
j. Since A and B are normal then e 1 = f 1 = S q and Sp(A) = N (L A ) and
Sp(B) = N (L B ). Here L A = 𝑀𝑎𝑥 

𝑗 
[e j ∧ U(j - 1/n - 1)] and L B = 𝑀𝑎𝑥 

𝑗 
[f j 

∧ U(j - 1/n - 1)], however since f j ≥ e j then L B ≥ L A from this we
see N(L A ) ≥ N (L B ) and hence Sp(A) ≥ Sp(B). Thus we see the pro-
posed definition of Sp(A) = N (L) ∧ b 1 has all the required properties
of Sp(A). 

. S-Fuzzy measures 

Assume X = {x 1 , …, x n } is an arbitrary finite set we now define an S-

uzzy measure 𝝁 on X. Here 𝜇 maps crisp subsets on X in to S . Specifically
: 2 X →S such that 

1) 𝜇( ∅) = S 1 
2) 𝜇(X) = S q 
3) If A ⊂ B then 𝜇(B) ≥ 𝜇(A) 

Here we shall simply refer to 𝜇 as a measure or S -measure. If 𝜇1 and

2 are two S -measures such that 𝜇1 (A) ≥ 𝜇2 (A) for all subsets A, we
hall denote this as 𝜇1 ≥ 𝜇2 . 

If 𝜇 is an S -measure we define the dual of 𝜇, �̂�: 2 X →S such
hat ̂𝜇(A) = N ( 𝜇( ̄𝐴 )). We easily see that �̂� is a S -measure 

1) �̂�( ∅) = N ( 𝜇( ̄∅)) = N ( 𝜇(X)) = N (S q ) = S 1 
2) �̂�(X) = N ( 𝜇( �̄� )) = N ( 𝜇( ∅)) = N (S 1 ) = S q 

̄ ̄ ̄ ̄
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Since �̄� ⊇ �̄� then 𝜇( ̄𝐴 ) ≥ �̂�( ̄𝐵 ) and hence N( 𝜇( ̄𝐴 )) ≤ N ( 𝜇( ̄𝐵 )) since
̂(A) = N ( 𝜇( ̄𝐴 )) and �̂�(B) = N ( 𝜇( ̄𝐵 )) then �̂�(B) ≥ 𝜇(A). 

We see that the dual of dual is the original measure ̂�̂�(A) = 𝜇(A). This
s easily shown, ̂�̂�(A) = N ( ̂𝜇( �̄� )) = N (N( 𝜇(A)) = 𝜇(A) 

We shall now introduce some notable examples of S -measures in X.
he prototypical example of an S measure is the S -possibility measure
efined as follows. Let 𝛼j ∈ S for j = 1 to n and assume at least one 𝛼j = S q .
ere 𝜇 is defined so that 𝜇({x j }) = 𝛼j and for any subset A ⊆ X we have
(A) = 𝑀𝑎𝑥 

𝑥 𝑗 ∈𝐴 
[ 𝛼j ], then 𝜇 is an S -possibility measure. We easily see that

(X) = S q and if A ⊆ B then 𝜇(A) ≤ 𝜇(B). 
A special case of S -possibility measure 𝜇 is one focused on 𝑥 𝑗 ∗ . Here

𝑗 ∗ = S q and 𝛼j = S 1 for j ≠ j ∗ . Here we see that for any A ⊆ X we have
(A) = S q if 𝑥 𝑗 ∗ ∈ A and 𝜇(A) = S 1 if 𝑥 𝑗 ∗ ∉ A. Another special possibility
easure is one where 𝛼j = S q for all j. This is called a uniform possibility
easure. 

A measure closely related to these possibility S -measures are granu-
ar possibility S -measures. Assume A i for i = 1 to K are subsets of X and
ssociated with each A i is a value 𝛼i ∈ S such that at least one 𝛼i = S q .
lso associated with each A i is an integer V i so that 1 ≤ V i ≤ Card(A i ).
lso associated with each A i is a function G i : 2 

X → {S 1 , S q } so that for
ny subset B ⊆ X we have 

 i ( B ) = S q if Card 
(
B ∩ A i 

)
≥ V i 

 i ( B ) = S 1 if Card 
(
B ∩ A i 

)
< V i 

Using the preceding we define an S -fuzzy measure 𝜇 on X such that
(B) = 𝑀𝑎𝑥 

𝑖 = 1 𝑡𝑜 𝐾 
[G i (B) ∧ 𝛼i ]. We now show that 𝜇 is an S -measure on X: 

1) 𝜇( ∅): We have Card( ∅ ∩ A i ) = 0 for any A i . In this case G i ( ∅) = S 1 and
𝜇( ∅) = 𝑀𝑎𝑥 

𝑖 = 1 𝑡𝑜 𝐾 
[S 1 ∧ 𝛼i ] = S 1 

2) 𝜇(X): We see X ∩ A i = A i and Card(X ∩ A i ) = Card(A i ). In this case
G i (X) = S q and 𝜇(X) = 𝑀𝑎𝑥 

𝑖 = 1 𝑡𝑜 𝐾 
[S q ∧ 𝛼i ] = S q 

3) Assume B and D are two subsets of X so that D ⊆ B. Here then for
this Card(B ∩ A i ) ≥ Card(D ∩ A i ) for all A i . From that it follows that
G i (B) ≥ G i (D) for any i. From this we get 𝜇(B) = 𝑀𝑎𝑥 

𝑖 = 1 𝑡𝑜 𝐾 
[G i (B) ∧ 𝛼i )]

≥ 𝑀𝑎𝑥 
𝑖 = 1 𝑡𝑜 𝐾 

[G i (D) ∧ 𝛼i ] = 𝜇(D) 

Some notable examples of G i and V i are worth pointing out. 
If all V i = 1 then 𝜇(B) = 𝑀𝑎𝑥 

𝐴 𝑖 ∩𝐵 ≠ ∅
[ 𝛼i ] 

If all V i = Card(A i ) then 𝜇(B) = 𝑀𝑎𝑥 
𝑖, 𝐴 𝑖 ⊂𝐵 

[ 𝛼i ] 

If all V i = 0.5 Card(A i ) then 𝜇(B) = 𝑀𝑎𝑥 
𝑖, |𝐴 𝑖 ⊂𝐵 |≥ 1 2 |𝐴 𝑖 1 

[ 𝛼i ]. Thus here if B

ontains at least half the elements in A i then 𝛼i contributes to 𝜇(B). 
More generally we see that each G is an S -measure on X. This inspires

s to consider the following general formulation. Assume 𝜇i for i = 1 to
 are collection of S measures on X and associated with each 𝜇 is a value

i ∈ S such that at least one 𝛼i = S q . We can define an S-measure 𝜇 on
, 𝜇: 2 X →S , such that 𝜇(B) = 𝑀𝑎𝑥 

𝑖 = 1 𝑡𝑜 𝐾 
[ 𝛼i ∧ 𝜇i (B)]. 

Another interesting example of an S -measure on X is what we shall
efer to as a prioritized measure [20-22] . Assume the elements in
 = {x 1 , …, x n } are prioritized so that x 1 ≥ x 2 ≥ x 3 … ≥ x n . We now
efine a type of measure to capture this prioritization. First we define 

L j = 

{
x k ∕ k = 1 to j 

}
for j = 1 to n 

 0 = ∅

Here we see that L 4 = {x 1 , x 2 , x 3 , x 4 } and L n = X . We now associate
ith each subset L j a value 𝛽 j ∈ S such that 𝛽0 = S 1 , 𝛽n = S q and 𝛽 j ≥ 𝛽 j - 1 .
e now define the measure 𝜇 so that 𝜇(A) = Max j [ 𝛽 j ∧ G j (A)] where 

 j ( A ) = S q if L j ⊆ A 

 j ( A ) = S 1 if L j ⊄ A 

We see 𝜇(A) = 𝛽 j where L j is the largest L j that is contained in A. We
bserve that 𝜇(L j ) = 𝛽 j and 𝜇(X) = S q and 𝜇( ∅) = S 1 . 
94 
Another notable class of S -fuzzy measures are the cardinality based
 -measures. Assume for j = 0 to n that a j ∈ S where a j + 1 ≥ a j and
 0 = S 1 and a n = S q then the S -measure 𝜇 defined such that 𝜇(A) = a |A| 

s called a cardinality based measure. We easily see that 𝜇( ∅) = a 0 = S 1 ,
(X) = a n = S q and if A ⊂ B then 𝜇(B) = a |A| ≤ a |B| = 𝜇(A). Further we
bserve that all sets A and B such that they have the same number of
lements have the same measure independent of elements in the set. 

We can point out some special cases of cardinality based S - measure.
ne case 𝜇∗ is such that 𝜇∗ (A) = S 1 for A ≠ X and 𝜇∗ (X) = S q . Another
ardinality based measure is 𝜇∗ define such that 𝜇∗ (A) = S q for A ≠ ∅
nd 𝜇∗ ( ∅) = S 1 . Actually these two measures are the smallest and largest
 -measures on X, that is 𝜇∗ ≤ 𝜇 ≤ 𝜇∗ . 

Another special case of cardinality-based measure is a generalization
f these two cases called a tipping measure. Here a j = S 1 for j < K and
 j = S q for j ≥ K . Here we note K ≤ n . 

. Sugeno integral 

An important and useful operation which we can define using the
rdered space S is the Sugeno integral [23–25] . Assume X = {x 1 , …, x n }
s a set of elements and 𝜇 is an S -measure on X, 𝜇: 2 X →S . Let f: X →S

e a function that maps elements of X into S . The Sugeno integral of f
ith respect to 𝜇 is defined as 

u g μ(f) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[
μ( H j ) ∧ f( x ρ(j) ) 

]
here 𝜌 is an index function so that 𝜌(j) is the index the element x i 
aving the j th largest value of f(x i ) and H j = {x 𝜌(1) , …, x 𝜌(j) }, it is the
ubset of X with j largest values for f(x i ). 

Note : If multiple elements in X have the same value for f(x i ) the
ugeno integral is indifferent as how we order these tied value elements,
e see this as follows. Assume m elements are tied and assume these are
 𝜌(K + 1) , …, x 𝜌(K + m) . Here 

u g μ(f) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝐾 

[
μ( H j ) ∧ f( x ρ(j) ) 

]
∨ 𝑀𝑎𝑥 

𝑗=𝐾+1 𝑡𝑜 𝐾+ 𝑚 

[
μ( H j ) ∧ f( x ρ(j) ) 

]
∨ 𝑀𝑎𝑥 

𝑗= 𝐾+ 𝑚 +1 𝑡𝑜 𝑛 

[
μ( H j ) ∧ f( x ρ(j) ) 

]
We see that f(x 𝜌( j) ) for j = K + 1 to K + m are the same, let us denote

his S T . We now see that 

𝑀𝑎𝑥 
= 𝐾+1 𝑡𝑜 𝐾+ 𝑚 

[
𝜇
(
H j 
)
∧ S T 

]
= 𝑀𝑎𝑥 

𝑗= 𝐾+1 𝑡𝑜 𝐾+ 𝑚 

[
𝜇
(
H j 
)
∧ S T = 

(
H K+m 

)
∧ S T 

]
Here H K + m 

= {x 𝜌(j) , …, x 𝜌(K + m) }. 
We can easily see that the Sugeno integral has the following proper-

ies 

1) If f(x i ) = S k for all i, then Sug 𝜇(f) = S k , it is idempotent 
2) As special cases of 1 we have 

a) All f(x i ) = S 1 then Sug 𝜇(f) = S 1 
b) All f(x i ) = S q then Sug 𝜇(f) = S q 

3) It is monotonic, if f ≥ 𝑓 , f(x i ) ≥ 𝑓 (x i ) for x i then Sug 𝜇(f) ≥ Sug 𝜇( 𝑓 )
4) The Sugeno integral can be expressed as a median function [8] 

Su g μ( f ) = Med 
(
f ( x 1 ) , … , f ( x n ) , μ( H 1 ) , … , μ( H n − 1) 

)
5) The Sugeno integral is bounded: 𝑀𝑖𝑛 

𝑖 = 1 𝑡𝑜 𝑗 
[f(x i )] ≤ Sug 𝜇(f) ≤ 𝑀𝑎𝑥 

𝑖 = 1 𝑡𝑜 𝑗 
[f(x i )]

From these properties we see that for any measure 𝜇 the Sugeno
ntegral is an aggregation function. Also we see that the Sugeno integral
s a mean function [8] . 

We can use the Sugeno integral to extend a measure to act on S -fuzzy
ubsets. Assume 𝜇 is an S -measure on X = {x 1 , …, x n }. Thus for any crisp
ubset F on X we have 𝜇(F). Let 𝐹 be a S -fuzzy subset of X. Here then
or each x i ∈ X we have 𝐹 (x i ) ∈ S . We now define 𝜇( ̃𝐹 ) = Sug 𝜇(f) where
(x i ) = 𝐹 (x i ). We see using this definition for the case where 𝐹 is a crisp
ubset of X, 𝐹 (x i ) ∈ {S 1 , S q } then Sug 𝜇(f) = 𝑀𝑎𝑥 

𝑗= 1 𝑡𝑜 𝑛 
[ 𝜇(H j ) ∧ f(x j )] = 𝜇(H K 0

here H K = {x 𝜌(1)) , …, x 𝜌(K) }. Here x 𝜌(j) , for j = 1 to K are the subset of
lements in X for which f(x 𝜌(j) ) = 1 thus H K = F and hence Sug 𝜇(f) = 𝜇(F).
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. Combining measures for new measures 

Theorem: Assume 𝜇 is an S -measure on X = {x 1 , …, x n } and assume
 is a basic monotonic function of S , f: S → S . Then the S set function 𝜇1 :
 

X → S defined such that for all A ∈ 2 X 𝜇1 (A) = f ( 𝜇(A) is an S -measure. 

roof. 1) If A = ∅ then 𝜇1 ( ∅) = f ( 𝜇( ∅)) = f (S 1 ) = S 1 
2) If A = X then 𝜇1 (X) = f ( 𝜇(X)) = f (S q ) = S q 
3) Let 𝜇1 (A) = f ( 𝜇(A)) and 𝜇2 (B) = f ( 𝜇(B) and if A ⊂ B then 𝜇(A) ≤

(B) and 𝜇1 (A) = f( 𝜇(A) ≤ f ( 𝜇(B)) = 𝜇1 (B) 
Thus here we see we can create new S -measures from 𝜇 by trans-

orming 𝜇(A) using a basic monotonic function. 

A very important and useful property is noted in the following theo-
em. 

Theorem: Assume for j = 1 to m that 𝜇j are a collection of S -measures
n X. If G is an S -aggregation function of dimension m then the set
unction 𝜇 defined such that for all A ⊆ X 

𝜇(A) = G ( 𝜇1 (A), 𝜇2 (A), …, 𝜇m 

(A)) is an S -measure on X. 

roof. 

1) 𝜇( ∅) = G ( 𝜇1 ( ∅), …, 𝜇m 

( ∅)) = G (S 1 , …, S 1 ) = S 1 
2) 𝜇(X) = G ( 𝜇1 (X), …, 𝜇m 

(X)) = G (S q , …, S q ) = S q 
3) Consider 𝜇(A) = G ( 𝜇1 (A), …, 𝜇m 

(A)) and 𝜇(B) = G ( 𝜇1 (B), …, 𝜇m 

(B)),
if B ⊆ A then 𝜇j (A) ≥ 𝜇j (B) for all j and hence 𝜇(A) ≥ 𝜇(B). 

There are a large number of S aggregation functions. In applications
he choice of aggregation function depends on the user’s imperative for
ombining the measures. One class of aggregation functions are conjunc-
ive functions [8] , these are defined by having the additional property
(a 1 , …, a m 

) ≤ Min(a 1 , …, a m 

). These conjunctive functions are often
sed for implementation of the logical “anding ” type aggregation. One
roperty of these operations is that if a j = S 1 for some argument then
(a 1 , …, a m 

) = S 1 . Some notable examples of these conjunctive aggre-
ation functions are the Min and Drastic conjunction aggregator. For
he Min we have G(a 1 , …, a m 

) = Min i [a i ] and for the drastic operator
e have 

 1 
(
a 1 , … , a m 

)
= S 1 if Ma x j 

[
a j 
]
< S q 

 1 
(
a 1 , … , a m 

)
= Mi n i 

[
a i 
]
if Ma x j 

[
a j 
]
< S q 

Actually, the Min and the drastic conjunction are the bounding con-
unction type aggregation operators, with the Min the biggest and the
rastic the smallest. 

Another class of S aggregation operators are the disjunctive aggrega-
ion operators. These operator have the additional property that G(a 1 ,

, a m 

) ≥ Max j [ a j ]. These are often used to implement an “oring ” type
ggregation. One property of these disjunctive type aggregation opera-
ors is that if a j = S q for at least one argument then G(a 1 , …, a m 

) = S q .
wo notable examples of these operators are the Max and the drastic
isjunction, G(a 1 , …, a m 

) = Max j [a j ] and 

 1 
(
a 1 , … , a m 

)
= S 1 if Mi n j 

[
a i 
]
< S 1 

 1 
(
a 1 , … , a m 

)
= Ma x j 

[
a j 
]
if Mi n j ( a j ] = S 1 

Another class of S aggregation operators are mean operators, these
re defined as having the additional of property Min j [a j ] ≤ G (a 1 , …, a m 

)
 Max j [ a j ]. Mean operator are idempotent, if G is a mean operator and
ll a j = a then G(a 1 , …, a m 

) = a . A notable example of mean operators is
he weighed max, G(a 1 , …, a m 

) = 𝑀𝑎𝑥 
𝑖 = 1 𝑡𝑜 𝑚 

[C i ∧ a i ], where C i ∈ S and Max

C i ] = S q . The median is an example of a mean operator. The Sugeno
ntegral is another example of aggregation operator that is a mean. 

The Sugeno integral provides a very general approach for the aggre-
ation of a collection of S -measures on X to obtain another S -measure
n X. Assume 𝜇i for i = 1 to m are a collection of S -measures on X.
et us denote Z = { 𝜇i for i = 1 to m} and let 𝜆 be an S -measure on Z.
ere we are interested in the set function 𝜇∗ on X that results from the
ugeno aggregation of the 𝜇i with respect to the S - measure 𝜆, we de-
ote 𝜇∗ = Sug ( 𝜇 , …, 𝜇 ). If 𝜇∗ is defined such that for each subset A
𝜆 1 m 

95 
X we have 𝜇∗ (A) = Sug 𝜆( 𝜇1 (A), …, 𝜇m 

(A)) then 𝜇∗ is a measure on X.
ere 

∗ ( A ) = Su g λ( μ1 ( A ) , … , μm ( A ) ) = [λ
(
H j 
)
∧ 𝜇𝜌

𝐴 
( 𝑗) ( A ) ] 

here 𝜌A is an index function so that 𝜌A (j) is the index of j th largest

i (A) and H j = { 𝜇𝜌𝐴 ( 𝑗) , …, 𝜇𝜌𝐴 ( 𝑗) } is the subset of Z consisting of the 𝜇i 

ith the j largest values for 𝜇i (A). We emphasize that 𝜇∗ (A) must be
alculated for all subsets A ⊆ X. 

Some notable examples of 𝜆 are worth pointing out. If 𝜆 is the
in measures then 𝜇∗ (A) = 𝑀𝑖𝑛 

𝑖 
[ 𝜇i (A)] and if 𝜆 is Max measure then

∗ (A) = 𝑀𝑎𝑥 
𝑖 

[ 𝜇i (A)]. If 𝜆 is a possibility measure on Z with 𝛼i ∈ S the

ossibility of 𝜇i then 𝜆(H j ) = 𝑀𝑎𝑥 
𝑘 = 1 𝑡𝑜 𝑗 

[ 𝛼𝜌𝐴 ( 𝑘 ) ] and hence 

∗ ( A ) = 

[ 
𝑀𝑎𝑥 

𝑗= 1 𝑡𝑜 𝑚 
𝑀𝑎𝑥 

𝐾= 1 𝑡𝑜 𝑗 

[
𝛼𝜌𝐴 ( 𝐾) 

]
∧ 𝜇𝜌𝐴 ( 𝑗) (A) 

] 
Finally if 𝜆 is a cardinality based measure with parameters w j ∈

 where w 0 = S 1 , w m 

= S q and w j + 1 ≥ w j then 𝜆(H j ) = w j and hence
∗ (A) = 𝑀𝑎𝑥 

𝑗= 1 𝑡𝑜 𝑚 
[w j ∧ 𝜇𝜌𝐴 ( 𝑗) (A)] 

. Modeling information about an uncertain variable using the S 

cale 

Assume V is an uncertain variable that takes its value in the space
 = {x 1 , …, x n }. A general structure for representing information about
 variable V that takes its value in a space X is a measure 𝜇 on the
pace X. In this representation for any subset A of X, 𝜇(A) indicates the
nticipation of finding the value of V in A [ 26 , 27 ]. Since we only have
vailable the S scale we must use an S-measure on X. Here for any subset
 ⊆ X we have 𝜇(A) ∈ S as the anticipation that the value of V is in A.
or this measure 𝜇( ∅) = S 1 , 𝜇(X) = S q and for any two subsets A ⊂ B ⊆

 we have 𝜇(A) ≤ 𝜇(B). The anticipation of finding V in B is at least as
uch as finding V in A. The knowledge that V = x K is represented as a
irac S -measure. Here for x K in A we have 𝜇(A) = S q and for x K ∉ A we
ave 𝜇(A) = S 1 . 

Another notable measure for representing information about V is a
ossibility measure 𝜇. Here for each x i ∈ X, we have 𝜇({x i }) = 𝜋i ∈ S

enoted the possibility of x i . For this measure for any subset A ⊆ X,
(A) = 𝑀𝑎𝑥 

𝑥 𝑖 ∈𝐴 
[ 𝜋i ]. Since 𝜇(X) = 1 we require that at least one 𝜋i = 1. 

We note that a probability measure is not available to us as this re-
uires a scale that allows addition. We can associate with V a cardinality-
ased measure 𝜇. Here we assume a i is a set of parameters for i = 0
o n with a i ∈ S and a 0 = S 1 , a n = S q and a i ≤ a i + 1 . For this measure
(A) = a |A| . In this case the anticipation of a set A depends on how many
lements are in A. 

Assume V is an uncertain variable that takes its value in the space
 = {x i , i = 1 to n}. Assume our knowledge about V is expressed via an
 -measure 𝜇 on X. In addition let f be a function of V such that f: X → S .
 natural question is to find expected value of V, EV(V). Here we can
se the Sugeno integral 

V ( V ) = Su g μ( f ) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[
μ
(
H j 
)
∧ f( x ρ( j ) ) 

]
here 𝜌 is an index function such that 𝜌(j) is the index of the element
 i with the j th largest value for f(x i ) and H = {x 𝜌(k) , for k = 1 to j}, the
ubset of X with the j largest values of f(x i ). 

Assume 𝜇 is an S-Dirac measure focused at x L in this case 

V ( V ) = Su g μ( f ) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[
μ
(
H j 
)
∧ f( x ρ( j ) ) 

]
, 

owever here 𝜇(H j ) = S q if x L ∈ H j and 𝜇(H j ) = S 1 if x L ∉ H j . Assume

(x L ) is the M 

th largest value of f(x i ). In this case 𝜇(H j ) = S q for j ≥ M and
(H j ) = S 1 for j < M . In this case 

V ( V ) = 𝑀𝑎𝑥 
𝑗= 𝑀 𝑡𝑜 𝑛 

[
S q ∧ f( x ρ( j ) 

]
= f ( 𝑥 ρ(M) 

) = f 
(
x L 

)
. 

Assume now 𝜇 is a cardinality based measure with parameters a i , in
he case 
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Table 1 

𝐾( 𝑅𝑖𝑐𝑛𝑒𝑠𝑠 ) 𝐼𝑛𝑓 𝐹𝑢𝑠𝑒𝑑 𝑉 𝑎𝑙𝑢𝑒 

𝑟 𝐼𝑛𝑓 ( ℑ 𝑟 ) 𝜇𝑟𝑗 ∗ 
𝑟 

𝑟 − 1 𝐼𝑛𝑓 ( ℑ 𝑟 −1 ) 𝜇𝑟 −1 𝑗 ∗ 
𝑟 −1 

𝑟 − 2 
. 

. 

. 

1 𝐼𝑛𝑓 ( ℑ 1 ) 𝜇1 𝑗 ∗ 1 
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EV(V) = Sug 𝜇(f) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[a j ∧ f(x 𝜌(j) )] 

This is what Yager [28] referred to as the ordered OWA operator. 
Assume 𝜇 is a possibility measure on X where 𝜇({x i }) = 𝜋i . In this

ase 𝜇(H j ) = 𝑀𝑎𝑥 
𝑘 = 1 𝑡𝑜 𝑗 

[ 𝜋𝜌(k) ] and we have 

EV(V) = Sug 𝜇(f) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[( 𝜇(H j ) ∧ f(x 𝜌(j) ))] = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[( 𝑀𝑎𝑥 
𝑘 = 1 𝑡𝑜 𝑗 

[ 𝜋𝜌(k) ] ∧

(x 𝜌(j) ))] 
Sug 𝜇(f) = ( 𝜋𝜌( 1) ∧ f(x 𝜌(1) )) ∨ (( 𝜋𝜌(1) ∨ 𝜋𝜌(2) ) ∧ f(x 𝜌(2) )) ∨

𝑀𝑎𝑥 
= 3 𝑡𝑜 𝑛 

[( 𝑀𝑎𝑥 
𝑘 = 1 𝑡𝑜 𝑗 

[ 𝜋𝜌(k) ] ∧ f(x 𝜌(j) ))]. 

We see that 𝜋𝜌(1) ∧ f(x 𝜌(2) ) ≤ 𝜋𝜌(1) ∧ f(x 𝜌(1) ) hence 
Sug 𝜇(f) = 𝑀𝑎𝑥 

𝑗= 1 𝑡𝑜 2 
( 𝜋𝜌(j) ∧ f(x 𝜌(j) )) ∨𝑀𝑎𝑥 

𝑗= 3 𝑡𝑜 𝑛 
[ 𝑀𝑎𝑥 
𝑘 = 1 𝑡𝑜 𝑗 

( 𝜋 𝜌(k) ∧ f(x 𝜌(j) ))] 

We now see that ( 𝜋𝜌(1) ∨ 𝜋𝜌(2) ) ∧ f(x 𝜌(3) ) ≤ 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 2 

( 𝜋𝜌(j) ∧ f(x 𝜌(j) )) hence

Sug 𝜇(f) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 3 

( 𝜋𝜌(j) ∧ f(x 𝜌(j) )) ∨𝑀𝑎𝑥 
𝑗= 4 𝑡𝑜 𝑛 

[ 𝑀𝑎𝑥 
𝑘 = 1 𝑡𝑜 𝑗 

( 𝜋 𝜌(k) ∧ f(x 𝜌(j) ))] 

Continuing in this manner we get that 
EV(V) = Sug 𝜇(f) = 𝑀𝑎𝑥 

𝑗= 1 𝑡𝑜 𝑛 
[( 𝜋𝜌(j) ∧ f(x 𝜌(j) ))]. 

. Multi-Source fusion 

In the preceding we considered the situation where V is an uncer-
ain variable that takes its value in the space X = {x 1 , …, x n } and our
nowledge about V is expressed via an S -measure 𝜇 on X. In many cases
e have multiple pieces of information about the variable V. More par-

icularly, assume we have r pieces of information V is 𝜇k for k = 1 to
 where each 𝜇k is an S -measure. If we have some prescribed aggrega-
ion formulation G for combining these r pieces of information where G
an be expressed as an aggregation function, then our fused measure is
∗ = G( 𝜇1 , 𝜇2 , ……, 𝜇r ). As we have previously shown our fused mea-
ure 𝜇∗ in this case is such that for each A ⊂ X, 𝜇∗ (A) = G ( 𝜇1 (A), …,

r (A)). 
Here we shall consider the case where we have no prescribed formu-

ation for combining these r pieces of information. We observe that one
bjective in fusing these r sources of information is to obtain a fused
 -measure that is informative. The most informative measure 𝜇 is one
hat tells us that one value, x K , is completely possible and all other x j 
re impossible. This can be captured by a Dirac measure 𝜇K such that

K (A) = S q for any A such that x K ∈ A and 𝜇K (A) = S 1 for any subset A
uch that x K ∉ A. Thus measure tells us the x K is the value of V. 

Given some proposed fused measure 𝜇∗ , to determine how informa-
ive it is, we must find its closeness to some 𝜇K . In general the problem
f finding the closeness of two measures is not easy, however, the spe-
ial structure of a Dirac measure 𝜇K allows us to attain a formula to
ccomplish this. Consider the measure 𝜇K on 2 X . We can partition 2 X 

nto two collections of subsets of X, 𝐸 

+ 
𝐾 

and 𝐸 

− 
𝐾 

. Here 𝐸 

+ 
𝐾 

consists of the
ubsets of X that contain x K and 𝐸 

− 
𝐾 

consists of all the subsets that do
ot contain x K . Furthermore, for any A ∈ 𝐸 

+ 
𝐾 

we have 𝜇K (A) = S q and
or any A ∈ 𝐸 

− 
𝐾 

we have 𝜇K (A) = S 1 . Here for our proposed fused value
∗ to be close to 𝜇K we desire for any A ∈ 𝐸 

+ 
𝐾 

that 𝜇∗ (A) = S q and for
ny A ∈ 𝐸 

− 
𝐾 

we desire 𝜇∗ (A) = S 1 . 
We also observe that the each of the subsets 𝐸 

+ 
𝐾 

and 𝐸 

− 
𝐾 

can be par-
ially ordered. In particular, {x K } is the smallest set in 𝐸 

+ 
𝐾 

and hence
∗ ({x K }) = 𝑀𝑖𝑛 

𝐴 ∈𝐸 + 
𝐾 

[ 𝜇∗ (A)] and X - {x K } is the largest set in 𝐸 

− 
𝐾 

and hence

∗ (X - {x K }) = 𝑀𝑎𝑥 
𝐴 ∈𝐸 − 

𝐾 

[ 𝜇∗ (A)]. We see that for 𝜇∗ to be close to 𝜇K we de-

ire all A ∈ 𝐸 

+ 
𝐾 

to be close to S q and all A ∈ 𝐸 

− 
𝐾 

to be close to S 1 , as
mall as possible. Using these observations we see 

Close( 𝜇∗ , 𝜇K ) = 𝑀𝑖𝑛 
𝐴 ∈𝐸 + 

𝐾 

[ 𝜇∗ (A)] ∧ N( 𝑀𝑎𝑥 
𝐴 ∈𝐸 − 

𝐾 
− 
[ 𝜇∗ (A)]) 

Close( 𝜇∗ , 𝜇K ) = 𝜇∗ ({x K }) ∧ N( 𝜇∗ (X - {x K })) 

To find the informativeness of a proposed fused measure 𝜇∗ , Inf( 𝜇∗ ),
e calculate 

Inf( 𝜇∗ ) = 𝑀𝑎𝑥 
𝑥 𝐾 ∈𝑋 

[Close( 𝜇∗ , 𝜇K )] 

Inf( 𝜇∗ ) = 𝑀𝑎𝑥 
𝑥 𝐾 ∈𝑋 

[( 𝜇∗ ({x K }) ∧ N( 𝜇∗ (X - {x K }))] 
96 
Here we shall suggest a C rude Q uantification of the I nformativeness
f a measure 𝜇, CQI( 𝜇). Assume 𝜇 is an S -measure on X = {x 1 , …, x n }
nd let a i = 𝜇({x i }). Let g be an index function so that g(j) is the index
f the x i with the j th largest value of a i , thus a g(j) is the j th largest value
({x i }). In particular a g(1) is the largest value of a i and a g(2) is the second

argest value of a i . Here we see a g(1) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑛 

[a i ]. We now define our

rude quantification of the informativeness of measure 𝜇 as 
CQI( 𝜇) = a g(1) ∧ N(a g(2) ). 
In the preceding we provided a method for determining the informa-

ion associated with a proposed fused value. We now turn to the issue
f generating a proposed fused value. 

Assume R = { 𝜇i , i = 1 to r} are sources of value for V. One approach
o fusing these is to take the conjunction of some subset of R. Assume F

R is a subset of source values for V, the fused value 𝜇 corresponding
o the conjunction of these sources from R is 

F = 𝑀𝑖𝑛 
𝜇𝑖 ∈𝐹 

[
𝜇i 
]

here 𝜇F (A) = 𝑀𝑖𝑛 
𝜇𝑖 ∈𝐹 

[ 𝜇i (A)]. Here our fused value is trying to satisfy all

he sources in F. 
In addition to the informativeness of the fused value, Inf( 𝜇F ), a sec-

nd feature of a good fused value is that it is based upon many of ele-
ents in R we shall refer to this as the Richness of the fusion, Rich( 𝜇F ).
ere we note Rich( 𝜇F ) ≈ Card(F). The larger the cardinality of F, the

icher the fusion. A good fused value 𝜇F is one that has a large Inf( 𝜇F )
nd large Card(F). At times we shall find it convenient to use Rich( 𝜇F )
r Rich(F) synonymously. 

Let ℑ K denote the set of all subsets of R having cardinality K 

Example : Assume R = { 𝜇1 , 𝜇2 , 𝜇3 } then 

ℑ 1 = {{ 𝜇1 }, { 𝜇2 }, { 𝜇3 }} 
ℑ 2 = {{ 𝜇1 , 𝜇2 }, { 𝜇1 , 𝜇3 }, { 𝜇2 , 𝜇3 }} 
ℑ 3 = {{ 𝜇1 , 𝜇2 , 𝜇3 }} 

We see the following properties of Rich are desired 

1) If F and F ∗ ∈ ℑ K then Rich( 𝜇F ) = Rich( 𝜇𝐹 ∗ ), all fused values based
on sets of the same cardinality have the same richness. We t refer to
this as Rich{ ℑ K } 

2) If K 2 > K 1 then if F 1 ∈ ℑ 𝐾 1 
and F 2 ∈ ℑ 𝐾 2 

then Rich(F 2 ) > Rich(F 1 ).
Thus Rich( ℑ 𝐾 2 

) ≥ Rich ( ℑ 𝐾 1 
). 

Let F Kj ∈ ℑ K , it is a subset of K sources from R. Let us denote 𝜇Kj as
he fused value based on the conjunction of sources in F Kj . Our objective
s to select the fused value having the largest informativeness and rich-
ess. Assume Inf( 𝜇𝐾𝑗 ∗ 

𝐾 
) = 𝑀𝑎𝑥 

𝐹 𝐾𝑗 ∈ℑ 𝐾 
[Inf( 𝜇Kj )]. If we had to select a fused

alue from ℑ K it would be 𝜇𝐾𝑗 ∗ 
𝐾 

since all F Kj ∈ ℑ K have the same Rich-

ess and this fused value has the largest informativeness. Let us denote
nf( ℑ K ) = Inf( 𝜇𝐾𝑗 ∗ 

𝐾 
}. 

Construct the following the table 
Construct from Table 1 a Table 2 that is a subset of the rows in Table

 using the following rule. A row j in Table 1 appears in Table 2 if there
s no row K > j such that Inf( ℑ K ) > Inf( ℑ j ). 

Operational we form Table 2 as follows. We place a row in Table 2 if
o row above it in Table 1 has a larger informativeness. We note for
ure the top row in table 1 appears in Table 2 . 
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Table 2 

𝐾( 𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠𝑠 ) 𝐼𝑛𝑓 𝐹𝑢𝑠𝑒𝑑 𝑉 𝑎𝑙𝑢𝑒 

r 𝐼𝑛𝑓 ( ℑ 𝑟 ) 𝜇𝑟𝑗 ∗ 
𝑟 
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The fused values in Table 2 are the possible optimal fused values,
est Richness and best Informativeness. At this point it is up to the re-
ponsible decision maker to select a fused value from Table 2 by looking
t its Richness and Informativeness. 

In order to simplify the burden on the decision maker we can suggest
he following procedure to associate with each row in Table 2 a unique
alue which can be used to select the best fused value. 

We associate with each K a unique value in S . Thus let H(K) ∈ S

ndicate the Richness value associated with a fused based on K sources.
e note that H should have the following properties: 

1) H(r) = S q 
2) If K 2 > K 1 the H(K 2 ) ≥ H (K 1 ) 

In the following we shall denote a row in Table 2 by its K value. Here
e shall associate with each row in Table 2 a unique value, D(K) based
n its Richness and Informativeness 

D(K) = Min[I nf ( ℑ K ), H(K)] 
We then select as our fused value the 𝜇𝐾𝑗 ∗ 

𝐾 
corresponding to the K

ith the maximal value for D(k) 
The one open question is having to obtain the function H(K). The

hoice of H(K) is very subjective other than the requirements that 1)
(r) = S q and 2) If K 2 > K 1 then H(K 2 ) ≥ H (K 1 ). A reasonable choice is
 quasi-linear formula for H. Here 

 ( K ) = S i if 
( 𝑖 − 1) 

𝑞 
≤ 

𝐾 

𝑟 
≤ 

𝑖 

𝑞 
. 

Thus given the value of K associated with a row in Table 2 then we
alculate H(K) using the above. Here emphasize we are saying the above
orm for H(K) is a reasonable choice for H(K) not the only choice. 

. Granular information 

Assume V is a variable with domain X = {x 1 , …, x n }. Our interest
s in the value of variable V. Let F = {F 1 , …, F m 

} be a granulation of

he space X, each F k ⊆ X. Here we assume 
𝑚 ⋃

𝑘 =1 
𝐹 𝑘 = X but the F k are not

ecessary disjoint. Let W be a related variable that takes its value in the
pace F . Assume the information available to us concerns the value of
he variable W. In particular we have an S -measure 𝜇 on the space F so
or any subset E of F , 𝜇(E) is the anticipation that the value of W lies in
. Our interest is in using this available information about W to tell us
omething about the value of V. 

Assume A and all of the F j be crisp subsets of X. What is clear in this
ase is that if W = F K , where F K is also a crisp subset of X then 

Poss(V is in A/ W = F K ) = 1, S q , if A ∩ F K ≠ ∅
Poss(V is in A/ W = F K ) = 0, S q , if A ∩ F K = ∅

Furthermore 

Cert(V is in A/ W = F K ) = 1, S q , if F K ⊆ A 

Cert(V is in A/ W = F K ]) = 0, S q , if F K ⊄ A. 

In the more general setting where A and the sets F j are S -fuzzy sets
f X then using Zadeh definitions [29,30] 

Poss(V is in A/ W = F K ) = 𝑀𝑎𝑥 
𝑥 𝑖 

[A(x i ) ∧ F K (x i )] 

Cert(V is in A/ W = F K ) = 𝑀𝑖𝑛 
𝑥 𝑖 

[A(x i ) ∨ N(F K (x i ))] 

Here we can say that Truth(V is in A/ W = F K ) lies in an interval
ounded below by the certainty and above by the possibility, 
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Truth(V is in A/ W = F K ) ∈ [Cert(V is in A/ W = F K ), Poss(V is in
/ W = F K )]. 

We now more generally consider the situation we do not know the
xact value of W, all we have is a measure 𝜇 on F as our knowledge
bout the value of W. Here we must provide an expected like value for
he possibility and certainty, EV(Poss(V is in A/W is 𝜇) and EV(Cert(V is
n A/W is 𝜇). Since our knowledge involves a measure 𝜇 and is expressed
nvolving parameters from S we must use the Sugeno integral to express
he expected value. In particular 

EV(Poss(V is in A/W is 𝜇) = Sug 𝜇[Poss(A/F K ] for K = 1 to m] 
EV(Cert(V is in A/W is 𝜇) = Sug 𝜇[Cert(A/F K ] for K = 1 to m] 

Using our preceding discussion about the Sugeno integral we have 
Sug 𝜇[Poss(A/F K ) for K = 1 to m] = 𝑀𝑎𝑥 

𝑗= 1 𝑡𝑜 𝑚 
[( 𝜇(H j ) ∧ Poss(A/F 𝜌(j) ))]

here 𝜌 is an index function so that 𝜌(j) is the index of the F k with
he j th largest value of Poss[A/F K ] and H j = {F 𝜌(1) , …, F 𝜌(j) }, the subset
f elements in F with the j largest values of Poss(A/F K ). Similarly 

Sug 𝜇[Cert(A/F K ), K = 1 to m] = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑚 

[( 𝜇(G j ) ∧ Cert(A/F 𝜏(j) ))] where

is an index function so that 𝜏(j) is the index of the F k with the j th largest
alue of Cert[A/F K ) and G j = {F 𝜏(1) , …, F 𝜏(j) }. Using the terminology of
hafer [31] we refer to these as S -plausibility(A) and S -belief(A). Thus
e have 

EV(Truth V is A /W is 𝜇) ∈[ S - belief (A), S - plausibility (A)] 
We shall look at the preceding for some special cases. Consider the

ase where A and all the granular sets, the F K , are crisp sets. For this
ituation Poss(A/F K ) and Cert(A/F K ) are all either S q or S 1 . Thus in this
ase 

 l μ( A ) = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑚 

[(μ
(
H j 
)
∧ Poss (A∕ F ρ( j ) ))] = μ

(
H 

P )
here H 

P is the subset of F consisting of all the granular sets F k so that
 k ∩ A ≠ ∅, thus H 

P = {F k /F k ∩ A ≠ ∅}. Similarly Bel 𝜇 = 𝑀𝑎𝑥 
𝑗= 1 𝑡𝑜 𝑚 

[( 𝜇(G j ) ∧

ert(A/F 𝜏(j) ))] = 𝜇(H 

B ) where H 

B = {F k /F k ⊆ A}. 
Another special case is where A is one element in X, A = {x ∗ }. In case

oss(A/F k ) = F k (x 
∗ ) and Cert(A/F k ) = 𝑀𝑎𝑥 

𝑥 𝑖 ≠𝑥 ∗ 
[N(F k (x i ))] = N ( 𝑀𝑖𝑛 

𝑥 𝑖 ≠𝑥 ∗ 
[F k (x i )])

. Conclusion 

We first looked at the properties of an ordinal scale, S , needed
o model linguistically expressed quantitative information. Since fuzzy
easures provide a very general structure for modeling uncertainty we

ooked at S fuzzy measures. We looked at the Sugeno integral based on
his ordinal S scale. We discussed the modeling of information about an
ncertain variable using an ordinal scale. We turned to the problem of
ulti-source in this ordinal environment. 
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