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1. Introduction

Artificial intelligence (AI) is committed to the realization of
machine-borne intelligence. The technologies underpinning AI
have made huge leaps in the past decade, bringing exciting appli-
cations such as language understanding, vision recognition, and
intelligent digital assistants. However, contemporary AI systems
are good at specific predefined tasks and are unable to learn by
themselves from data or from experience, intuitive reasoning,
and adaptation. From the perspective of overcoming the limita-
tions of existing AI, interdisciplinary scientific efforts are necessary
to boost future research on AI. As a result, the next breakthroughs
of AI will be interdisciplinary endeavors that draw upon neuro-
science, physics, mathematics, electronic engineering, biology,
linguistics, and psychology to deliver great theoretical, technolog-
ical, and applicable innovations, address complex societal issues,
reshape the national industrial system, and more.
2. AI and aerospace

AI is becoming an enabling technology for space exploration. As
AI-powered solutions are capable of data mining, data fusion, and
massive data analysis, they are widely adopted to perform
different tasks, such as producing the first picture of a black hole,
predicting solar flares, mapping the moon’s surface, searching for
extraterrestrial communications in the universe, and studying dark
matter [1]. Meanwhile, AI is facilitating onboard space missions as
well.

AI is empowering spacecraft to be more independent,
self-reliant, and autonomous. For example, from its atmospheric
entry to its Mars landing, National Aeronautics and Space
Administration (NASA)’s lander InSight was beyond the reach of
remote control due to weak telemetry signal strength and commu-
nication latency. To survive, InSight had to autonomously perform
dozens of operations and do them flawlessly. AI is also being used
for trajectory and payload optimization, both of which are impor-
tant preliminary steps in NASA’s next rover mission to Mars [2].

AI is helping to accelerate the transition toward an era of smart
satellites. Lockheed Martin has developed ‘‘SmartSat,” a software-
defined satellite architecture that allows users to change the
mission of a satellite in orbit using a software update. This soft-
ware-defined solution not only provides the flexibility and ability
to reconfigure satellites for different tasks, but could also reduce
cost with high reusability, which would be impossible with
traditional hardware-defined satellites. Furthermore, a series of
formation-flying smart satellites can establish a distributed AI plat-
form, processing data on board and having their functionality
changed during the mission. This space-based AI platform is able
to train models, deploy applications, and perform online serving.
Such onboard processing capability would dramatically improve
the operational efficiency of space missions, while reducing
communication costs.

Space exploration is full of unknown and unexpected difficul-
ties. Current programming models for spacecraft rely on
pre-programming a system for all potential scenarios; however,
such a system is unable to react to new, unforeseen circumstances.
By introducing new machine learning (ML) mechanisms [3],
systems are enabled to learn continuously, adapt to new condi-
tions, and apply previously learned information to novel situations,
in order to promote spacecraft autonomy on job scheduling, health
monitoring, and onboard data processing. Moreover, with auto-
mated program-repair techniques [4], onboard debugging and
maintenance activities that are currently executed manually are
expected to be reduced by automating the process of analyzing
failed executions, identifying the causes of failures, isolating faults,
implementing fixes, and validating the fixed system.

3. AI and healthcare

Like a spring breeze that causes thousands of flowering trees to
bloom overnight, AI seems to be having a sudden and dramatic
‘‘blooming” effect on various fields. ML lies at the core of AI, and
has experienced promising advances in its ability to comprehend,
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exploit, and harness massive data. The field of AI has recently
advanced through the development of computational power and
the explosion of new data. Especially in healthcare and medicine
[5], the sheer volume of data that is generated, as well as the pro-
liferation of medical devices and digital record systems, means that
human health can benefit immensely from the application of AI.
Therefore, the increasing adoption of data-intensive methods can
be observed throughout the healthcare system. The associated data
flowing through the system thus results in the formulation of
distinguishable representations, leading to more evidence-based
decisions in regards to health and wellness.

While much attention has been paid to the implications for
human health, another area in which AI is significantly evolving
is genomics. AI systems can make genetic sequencing and analysis
faster, cheaper, and more accurate [6]. Moreover, AI has revolu-
tionized prediction [7] in molecular biology and genetics. With this
insight, researchers can make decisions about what an organism
might be susceptible to in the future, what mutations might cause
different diseases, and how to prepare for the future. Since genetic
sequencing and analysis can provide a perspective on the
particular genetic blueprint that orchestrates all the activities of
a particular organism, they can be ground-breaking in the fields
of agriculture, animal husbandry, and genetic disease diagnosis
with the support of AI.

As for the next generation of industrial technology, no one can
ignore the pivotal roles of both AI and blockchain [8] in boosting
healthcare in the wave of the fourth industrial revolution: AI is
integrated into the very DNA of the fourth industrial revolution,
while blockchain could revolutionize the infrastructure of the eco-
nomic system. Since the joint force of these two technologies can
determine the depth and breadth of the fourth industrial revolu-
tion, the synergy or integration of AI and blockchain is necessary
in order to allow AI to efficiently assist the implementation of
blockchain technology. Based on its deep influence on various
fields, AI is destined to inject a self-renewal ability and magnificent
vitality into our time.
4. AI and material design

Designing advanced materials with the assistance of AI is
also of great significance for the future of human society.
Historically, the discovery and industrial applications of new
materials often require fairly long periods of time. In 2011, the
Obama administration proposed the Materials Genome Initiative
(MGI) to enable the discovery, development, manufacturing,
and deployment of advanced materials at least twice as fast
as was possible at that time. Along with the merging of the
MGI and big data in subsequent years, the data-driven model
is now treated as the most promising approach in materials
research, where AI is the key technology used to process big
data and obtain the composition–structure–process–performance
relationship.

Due to the potential demonstrated by ML techniques in recent
years, it is believed that these techniques could revolutionize
materials science. For example, it is well known that the current
form of the periodic table of chemical elements was constructed
by many eminent scientists over almost one a full century.
However, with the aid of AI, it is now possible to reconstruct the
periodic table within several hours. An unsupervised machine
named Atom2Vec autonomously learns the basic properties of
atoms from the extensive database of known compounds and
materials, which and then employs them in neural networks to
predict the detailed characteristics of new materials with signifi-
cant accuracy [9]. In drug-candidate synthesis, Segler et al. [10]
proposed the use of symbolic AI to discover retrosynthetic routes;
this method is 30 times faster and yields almost twice as many
molecules in comparison with the traditional computer-aided
search method. It is worth pointing out that the neural network
must be trained on both successful and failed data, which stands
in stark contrast to the conventional assumption that only success-
ful data is useful for training.

In addition to its use in synthesizing materials, AI has the
potential to advance the development of artificial materials
(termed metamaterials or metasurfaces), which are characterized
by effective material parameters determined by geometric dimen-
sions and compositions [11]. Since the structural geometries and
basic compositions of artificially structured materials vary far
beyond the capabilities of traditional trial-and-error methods, it
is necessary to optimize the design with the help of big-data
technologies. In turn, the newly developing optical computation
technologies enabled by structured materials may help to
increase the data-processing speed and reduce the power
consumption of deep learning, as the speed of light is much faster
than that of electrons, while the passive optical components do not
need power [12].
5. AI and marine resources

AI is playing an increasingly important role in the develop-
ment of marine resources. Developed countries, driven by the
era of great navigation, have strong strategic advantages in this
regard. As an ocean that accounts for 71% of the Earth’s area, AI
will be very critical for the deep development of marine
resources, but at present we have not done enough in the devel-
opment of the ocean. For example, AI is utilized to efficiently
detect and develop mineral resources in the ocean. Furthermore,
‘‘underwater country gates open” is not desired by any technolog-
ical country with a long coastline. In other words, coastal defense
security is undoubtedly the one of the most important national
security.

Traditional marine technology is mainly used to detect marine
resources from the aspects of acoustics and magnetism. The deep
mining and analysis capabilities of AI on marine data can make
traditional marine technology more viable for efficient use and
effective protection.

As an important channel for obtaining information, optics has a
wide range of applications in the field of AI. However, due to the
strong absorption and scattering effect of seawater on light, the
underwater optical world is chaotic. Data quality and range of
application are world-class challenges. As for China, with its vast
internal and territorial waters, the use of underwater optics to
observe landforms, properties, processes, and other information
below the sea surface is an important subject related to national
defense security, resource management, and economic develop-
ment. Therefore, intelligent optics and AI will be indispensable
for the development of marine optics.
6. Decentralized AI

We face twomajor challenges when practicing AI. One is that, in
most industries, data exists in the form of isolated islands. The
other is the ever-increasing demand for privacy-preserving AI.
While conventional AI approaches with centralized data cannot
address these challenges, federated learning (FL) is a solution
that not only bridges the data islands, but also enables privacy-
preserving AI with cross-data, cross-domain, and cross-enterprise
applications [13,14].

FL can be considered as privacy-preserving collaborative ML
with decentralized data. It is an algorithmic framework with the
following features:
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� Multiple parties work to jointly build an ML model. Each
party holds some training data.

� The data held by each party does not leave that party; only
model parameters or gradients are shared.

� The model can be transferred (in part) from one party to
another under a security scheme [15,16], so that any party
cannot reverse-engineer the data of any other parties.

� The performance of the model obtained from FL is a close
approximation of the model built with centralized data
collection.

FL can be classified into horizontal federated learning (HFL),
vertical federated learning (VFL), and federated transfer learning
(FTL), depending on how data is distributed among the parties.
HFL refers to a case in which the parties share overlapping data
features, but differ in data samples [13,14]. It resembles the situa-
tion in which data is horizontally partitioned in a tabular view. VFL
applies to a scenario in which the parties share overlapping data
samples, but differ in data features [13]. It resembles the situation
in which data is vertically partitioned in a tabular view. FTL is
applicable for a case in which little overlap occurs, either in data
samples or in features among the parties, including instance-based
FTL, feature-based FTL, and model-based FTL [13,15].

To facilitate the advance of FL, researchers at WeBank AI have
developed the Federated AI Technology Enabler (FATE). FATE is
an open-source project and an industrial-grade FL platform that
supports HFL, VFL, and FTL. FL is promising for building ML models
under data protection. It has potential applications in financing,
healthcare, education, smart cities, and edge computing [13,17].
For example, FL can be used to perform local model training inside
a bank, a social networking company, and an e-commerce com-
pany without sharing data, and can securely aggregate the trained
local models to produce a federated model for a recommender
system.
7. Conclusion

AI is a highly interdisciplinary field with potential applications
in many areas of science, industry, and society [18–21]. We believe
that the next breakthroughs of AI will be based on its interdisci-
plinary nature.
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