
OPEN ACCESS

ll
Review

When Autonomous Systems Meet Accuracy
and Transferability through AI: A Survey
Chongzhen Zhang,1,5 Jianrui Wang,1,5 Gary G. Yen,2 Chaoqiang Zhao,1 Qiyu Sun,1 Yang Tang,1,* Feng Qian,1

and J€urgen Kurths3,4
1Key Laboratory of Advanced Control and Optimization for Chemical Process, Ministry of Education, East China University of Science and
Technology, Shanghai 200237, China
2School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74075, USA
3Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
4Institute of Physics, Humboldt University of Berlin, 12489 Berlin, Germany
5These authors contributed equally
*Correspondence: yangtang@ecust.edu.cn or tangtany@gmail.com
https://doi.org/10.1016/j.patter.2020.100050
THE BIGGER PICTURE Accuracy and transferability are critical to the perception and decision-making tasks
of autonomous systems. The focus of several learning-based perception and decision-making methods has
gradually evolved from accuracy to transferability. This survey summarizes the perception and decision-
making tasks of autonomous systems from the perspectives of accuracy and transferability. We introduce
transfer learning and some preliminaries of adversarial learning, reinforcement learning, and meta-learning.
Then, we review several perception and decision tasks of autonomous systems from the perspectives of ac-
curacy or transferability or both. Last but not least, we discuss several challenges and future works for using
adversarial learning, reinforcement learning, and meta-learning in autonomous systems.
With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding,
decision-making, and control for autonomous systems have improved significantly in recent years. When
autonomous systems consider the performance of accuracy and transferability, several AI methods, such
as adversarial learning, reinforcement learning (RL), and meta-learning, show their powerful performance.
Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy
and transferability. Accuracymeans that awell-trainedmodel shows good results during the testing phase, in
which the testing set shares a same task or a data distribution with the training set. Transferability means that
when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we intro-
duce some basic concepts of transfer learning and then present some preliminaries of adversarial learning,
RL, and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of these ap-
proaches to show the advantages of adversarial learning, such as generative adversarial networks, in typical
computer vision tasks in autonomous systems, including image style transfer, image super-resolution, image
deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection, and per-
son re-identification. We furthermore review the performance of RL and meta-learning from the aspects of
accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot
navigation, and robotic manipulation. Finally, we discuss several challenges and future topics for the use
of adversarial learning, RL, and meta-learning in autonomous systems.
Introduction
Artificial intelligence (AI) has been widely used in art, govern-

ment, healthcare, games, and economics due to its powerful

learning ability. Especially after the representative AI algorithm

AlphaGo defeated the world champion in Go games,1 people

have been paying more attention to AI. Understanding the

behavior of AI agents is very important in promoting its technol-

ogy.2 With the rise of deep learning (DL) algorithms, the upgrad-

ing of hardware, and the availability of big data, AI technology

has been making huge progress in recent years.3 Autonomous

systems powered by AI, including unmanned vehicles, robotic
This is an open access article under the CC BY-N
manipulators, and drones have been widely used in various in-

dustries and daily lives, such as intelligent transportation,4 intel-

ligent logistics,5 and service robots.6 Due to the limitations of

current computer perception and decision-making technologies

in terms of accuracy and transferability, autonomous systems

still have much room for improvement in complex and intelligent

tasks via technological development. Due to the ability of DL to

capture high-dimensional data features,3 DL-based algorithms

are widely used in the perception and decision-making tasks

of autonomous systems. There are a number of typical tasks

related to perception and decision-making for autonomous
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systems, such as image super-resolution (SR),7,8 image deblur-

ring/dehazing/rain removal,9–11 semantic segmentation,12,13

depth estimation,14,15 pedestrian detection,16 person re-identifi-

cation (re-ID),17 pedestrian tracking,18 robot navigation,19,20 and

robotic manipulation.21,22 However, most DL-based models

have good accuracy and poor transferability, i.e., they are usually

effective in the testing dataset with the same data distribution or

task. When a well-trained model is transferred to other datasets

or real-world tasks, the accuracy usually declines drastically,

which means that the transferability is poor; thus, the transfer-

ability has to be taken into account for practical applications.23

This issue results in the fact that the current vision perception

and decision-making methods cannot be used directly in actual

autonomous systems. Transfer learning improves the transfer-

ability of models between different domains, i.e., a well-trained

model can achieve good accuracy when applied to other testing

domains.

Recently, since adversarial learning, such as generative adver-

sarial networks (GANs), has shown promising results in image

generation, a number of GANs-based methods have been pro-

posed and have achieved breakthroughs in the aforementioned

computer vision tasks.24–27 In the field of AI, GANs have become

increasingly important due to their powerful generation and

domain adaptation capabilities.28 GANs have attracted

increasing attention since they were proposed by Goodfellow

et al.29 in 2014. GAN is a generativemodel that introduces adver-

sarial learning between the generator and the discriminator, in

which the generator creates data to deceive the discriminator

while the discriminator distinguishes whether its input comes

from real data or generated ones. The generator and discrimi-

nator are iteratively optimized in the game, and finally reach

the Nash equilibrium.30 In particular, when considering a well-

trained model for different datasets or real scenes, GANs can

be used for domain-transfer tasks by virtue of their ability to cap-

ture high-frequency features to generate sharp images.31

Although some learning-based models mainly focus on the

aspect of accuracy,7,12,14 GANs have demonstrated satisfactory

results for various complex image fields in autonomous systems

and other related fields, such as text-to-image generation,32,33

image style transfer,24,34 SR,26 image deblurring,27 image rain

removal,35,36 object detection,37,38 semantic segmenta-

tion,24,39,40 pedestrian detection,41 person re-ID,42 and video

generation.43

Meanwhile, as a powerful tool for decision-making and con-

trol, reinforcement learning (RL) has been extensively studied

in recent years because it is suitable for decision-making tasks

in complex environments.44,45 However, when the input data

are high-dimensional such as images, sounds, and videos, it is

difficult to solve the problem only with RL. With the help of

deep neural networks (DNNs), deep RL (DRL), which combines

the high-dimensional perceptual ability of DL with the decision-

making ability of RL, has achieved promising results recently in

various fields of application, such as obstacle avoidance,46,47

robot navigation,48,49 robotic manipulation,50,51 video target

tracking,18,52 game playing,53,54 and drug testing.55,56 However,

DRL tends to require a large number of trials and needs to

specify a reward function to define a certain task.57 The former

is time-consuming and the latter is significantly difficult when

training from scratch. To tackle these problems, the idea of
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‘‘learn to learn,’’ called meta-learning, has emerged.58

Compared with DRL, meta-learning makes the learning methods

more transferable and efficient by utilizing previous experience

to guide the learning of new tasks across domains. Therefore,

meta-learning methods perform well especially in environments

lacking data, such as image recognition,59 classification,60 robot

navigation,61 and robotic arm control.62

With the development of DL, learning-based perception and

decision-making algorithms for autonomous systems have

become a hot research topic. Among the reviews of autonomous

systems, Tang et al.63 introduced the applications of learning-

based methods in perception and decision-making for autono-

mous systems. Gui et al.28 gave a detailed overview of various

GANs methods from the perspectives of algorithms, theories,

and applications. Arulkumaran et al.64 detailed the core algo-

rithms of DRL and the advantages of RL for visual understanding

tasks. Unlike previous surveys, we focus on reviewing learning-

based approaches in the perception and decision-making tasks

of autonomous systems from the perspectives of accuracy or

transferability, or both.

The organization of this review is arranged as follows. The next

section introduces transfer learning and one of its related ma-

chine-learning techniques, domain adaptation, and presents

the basic concepts of adversarial learning, RL, and meta-

learning. Following this, we survey some recent developments

by exploring various learning-based approaches in autonomous

systems, taking into account accuracy or transferability or both

of these concepts. We then summarize some trends and chal-

lenges for autonomous systems, followed by our conclusions.

The abbreviations used in this review are listed in Table 1.

Preliminaries
Learning-based methods are used in various perception and de-

cision-making tasks of autonomous systems, such as image

style transfer, image SR, image deblurring/dehazing/rain

removal, semantic segmentation, depth estimation, pedestrian

detection, person re-ID, pedestrian tracking, robot navigation,

and robotic manipulation. However, most traditional learning-

based methods usually achieve good accuracy on the testing

set with the same distribution or the same task. In recent years,

with the research on the transferability of models, several typical

learning-based methods have been widely used, such as adver-

sarial learning and meta-learning.

Overview of the Section

Focusing on the transferability ofmodels, transfer learning is pro-

posed and first introduced in this section, which aims to make a

well-trainedmodel have good transferability, i.e., thewell-trained

model can be transferred to other testing sets and still have a

good accuracy. We then introduce several typical learning-

based methods concentrating on improving the accuracy or

transferability, or both, including adversarial learning, RL, and

meta-learning. In the perception tasks of autonomous systems,

adversarial learning, such as GANs, has capabilities of good ac-

curacy or transferability or both. In the decision-making tasks of

autonomous systems, RL and meta-learning are often used to

improve the accuracy or transferability of the system.

Transfer Learning

Transfer learning is a research topic aiming to investigate the

improvement of learners from one target domain trained with



Table 1. Summary of Abbreviations in This Review

Abbreviation Full Name

AC actor-critic

AI artificial intelligence

cGANs conditional generative

adversarial networks

CNNs convolutional neural

networks

CycleGAN cycle-consistent

adversarial network

DL deep learning

DNNs deep neural networks

DQN deep Q network

DRL deep reinforcement

learning

GANs generative adversarial

networks

GAIL generative adversarial

imitation learning

HR high-resolution

IRL inverse reinforcement

learning

LR low-resolution

LSTM long short-term memory

MAML model-agnostic meta-

learning

re-ID re-identification

RL reinforcement learning

SR super-resolution

TCN temporal convolution

network

ll
OPEN ACCESSReview
more easily obtained data from source domains.65 In other

words, the domains, tasks, and distributions used in training

and testing could be different. Therefore, transfer learning saves

a great deal of time and cost in labeling data when encountering

various scenarios of machine-learning applications. According

to different situations between domains, source tasks, and

target tasks, transfer learning can be categorized into three sub-

settings: inductive transfer learning, transductive transfer

learning, and unsupervised transfer learning.66 The definitions

and differences between these transfer learning settings are pre-

sented in detail in Table 2.

Domain Adaptation. There are many machine-learning tech-

niques that are connected to transfer learning,66 for example,

domain adaptation,67 related to transductive transfer learning,

and multi-task learning68 and self-taught learning,69 related to

inductive transfer learning. Here, we focus on domain adapta-

tion, whereby the source and target domains share the same

feature spaces while the feature distributions are different but

related. The difference between domain adaptation and trans-

ductive transfer learning is that domain adaptation leverages

labeled data in the source domain to learn a classifier for the

target domain, where the target domain is either fully unlabeled

(unsupervised domain adaptation) or has few labeled samples

(semi-supervised domain adaptation).70 Domain adaptation is
promising for the transferability of perception tasks of autono-

mous systems because it is efficient to reduce the domain shift

among different datasets arising from synthetic and real im-

ages,71 different weather conditions,72 different lighting condi-

tions,73 or different seasons,74 among others. Domain adapta-

tion for visual applications includes shallow and deep

methods.31 There is some research studying shallow domain-

adaptive methods, which mainly include homogeneous

domain adaptation and heterogeneous domain adaptation, ac-

cording to whether the source data and target data have the

same representation.67,75,76 Readers who want to learn more

about shallow domain adaptation methods are referred to the

studies by Csurka31 and Patel et al.,77 and the references

therein. In this review, we mainly focus on deep domain adap-

tation methods, including traditional DL67,78,79 and adversarial

learning.80–82

Adversarial Learning

Early adversarial learning modeled the learner and the adversary

as a competitive two-player game.83 Subsequently, adversarial

learning games have expanded into different forms, such as a

Bayesian game,84 a sequential game,85 a bilevel optimization

problem,86 and so forth.87 With the popularity of DNNs, Goodfel-

low et al.29 used adversarial learning to generate tasks, i.e.,

GANs. This model is widely used in various fields of autonomous

systems.

Generative Adversarial Networks. As a powerful learning-

based method for computer vision tasks, adversarial learning

not only improves the accuracy but also helps improve the trans-

ferability of the model by reducing the differences between the

training and testing domain distributions.80 GANs are architec-

tures that use adversarial learning methods for generative

tasks.28 The framework includes two models, a generator G

and a discriminator D, as shown in Figure 1.G captures the prior

noise distribution pzðzÞ to generate fake dataGðzÞ, andD outputs

a single scalar to characterize whether the sample comes from

training data x or generated data GðzÞ. G and D play against

each other, promote each other, and finally reach the Nash equi-

librium.30 G and D focus on a two-player minimax game with the

value function VðG;DÞ:
min
G

max
D

VðG;DÞ = Ex�pdataðxÞ½logDðxÞ�+ Ez�pzðzÞ½logð1�DðGðzÞÞÞ�;

(Equation 1)

where VðG;DÞ is a binary cross-entropy function, which aims to

let D classify real or fake samples. In Equation 1, D tries to maxi-

mize its output,G tries to minimize its output, and the game ends

at a saddle point.30

Conditional Generative Adversarial Networks. In the original

generative model, since the prior comes from the noise distribu-

tion pzðzÞ, the mode of the generated data cannot be

controlled.30 Mirza and Osindero89 then proposed conditional

GANs (cGANs), in which some extra information y is fed to the

generator and discriminator in the model such that the data gen-

eration process can be guided, as shown in Figure 1. Note that y

can be class labels or any other kind of auxiliary information.

Compared with Equation 1, the objective function of cGANs is

as follows:
PATTER 1, July 10, 2020 3



Table 2. Definitions and Differences between Three Transfer

Learning Settings

Transfer

Learning

Settings

Source

and Target

Domains

Source

and Target

Tasks

Source

Domain

Labels

Target

Domain

Labels

Inductive

transfer

learning

the same/

different

but related

different

but related

available/

unavailable

available

Transductive

transfer

learning

different

but related

the same available unavailable

Unsupervised

transfer

learning

the same/

different but

related

different

but related

unavailable unavailable

Copyright 2009, IEEE. Reprinted, with permission, from Pan and Yang.66
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min
G

max
D

VðG;DÞ = Ex�pdataðxÞ
�
logDðxjyÞ�

+ Ez�pzðzÞ½logð1�DðGðzjyÞÞÞ
�
:

(Equation 2)

Cycle-Consistent Adversarial Networks. Unlike models tailored

for specific tasks, such as GANs and cGANs, cycle-consistent

adversarial networks (CycleGANs) use a unified framework for

various image tasks, which make the framework simple and

effective.24 Zhu et al.24 proposed CycleGAN to learn image

translation between the source domain X and the target domain

Y with unpaired training examples fxigNi = 1˛X and fyjgMj =1˛ Y, in

which N, M represent the total number of samples in the source

and target domains, as shown in Figure 1. The framework in-

cludes two generatorsG : X/Y and F : Y/X, and two discrim-

inators DX and DY , where DX distinguishes between images x

and translated images FðyÞ; similarly, DY distinguishes between

images y and translated imagesGðxÞ. The output of the mapping

G is by = GðxÞ, and the output of the mapping F is bx = FðyÞ. Zhu
et al. express the adversarial loss for the generatorG : X/Y and

the discriminator DY as follows:

LGANðG;DY ;X;YÞ = Ey�pdataðyÞ½logDY ðyÞ�
+ Ex�pdataðxÞ½logð1�DYðGðxÞÞÞ�:

(Equation 3)

They similarly define the adversarial loss for the generator

F : Y/X and the discriminator DX as LGANðF;DX ;Y ;XÞ. Based
on the adversarial loss, they proposed a cycle-consistency

loss to encourage FðGðxÞÞzx andGðFðyÞÞzy. The cycle-consis-

tency loss is expressed as:

LcycðG; FÞ = Ex�pdataðxÞ½FðGðxÞÞ� x1�+ Ey�pdataðyÞ½GðFðyÞÞ � y1�:
(Equation 4)

The full objective of CycleGAN is

min
G;F

max
DX ;DY

LðG;F;DX ;DYÞ = LGANðG;DY ;X;YÞ

+LGANðF;DX ;Y ;XÞ+ lLcycðG;FÞ;
(Equation 5)

where l is a hyperparameter used to control the relative impor-

tance of the adversarial loss and the cycle-consistency loss.
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As a powerful generative model, many variants of GANs were

presented by modifying loss functions or network architectures

and were used for various computer vision tasks. In this review,

wemainly focus on the problem of scene transfer and task trans-

fer in autonomous systems using GANs, including image style

transfer, image SR, image denoising/dehazing/rain removal, se-

mantic segmentation, depth estimation, pedestrian detection,

and person re-ID.

Reinforcement Learning

Reinforcement learning is the problem faced by an agent that

learns behavior through trial-and-error interactions in a dynamic

environment.90 In the RL framework, an agent interacts with the

environment to choose the action in the state of a given environ-

ment in order to maximize its long-term reward.91 RL algorithms

can be classified into two kinds, model-based andmodel-free al-

gorithms.92Model-based RL is to learn a transitionmodel that al-

lows the environment to be simulated without directly interacting

with the environment.64 Model-based methods include guided

policy search (GPS)50 and model-based value expansion.93

However, model-free RL uses the experience of states and envi-

ronments directly to generate actions.94 Model-free methods

include deep Q network (DQN),95 deep deterministic policy

gradient (DDPG) method,96 dynamic policy programming (DPP)

method,97 and asynchronous advantage actor-critic (A3C)

method.61 Model-free algorithms can learn complex tasks but

tend to be inefficient in sampling, while model-based algorithms

aremore efficient in sampling but usually have difficulty in scaling

to complicated tasks.48 With further research on the application

of RL methods, several problems occur in that model-based al-

gorithms are no longer applicable to more complex tasks, while

model-free algorithms need more training data. Moreover, when

the given environment changes or training data are insufficient,

the chances are that RLmethods need to train themodel starting

from the scratch, which is inefficient and inaccurate. Therefore,

RL methods are limited when generalizing to different tasks

and domains.48 In this review, we mainly focus on several mod-

ifications on RL methods, such as amending the network struc-

ture98,99 and optimizing the way of training,100,101 to enable the

model to learn the new tasks accurately in the same domain or

transferably across domains.

Meta-Learning

Meta-learning, or ‘‘learning to learn’’ and ‘‘learning how to learn,’’

uses previous knowledge and experience to guide the learning of

new tasks to equip the model with the ability to learn across do-

mains.102 The goal of meta-learning is to train a model that can

quickly adapt to a new task using only a few data points and

training iterations.60 Similar to transfer learning, meta-learning

improves the learner’s generalization ability in a multi-task

setting. However, unlike transfer learning, meta-learning focuses

on the sampling of both data and tasks. Therefore, meta-learning

models are trained by being exposed to a large number of tasks,

which qualifies them to learn new tasks from few data settings.

Themeta-learningmethods can be divided into three categories:

recurrent models, metric learning, and learning optimizers.103

Recurrent models are trained by various methods, such as

long short-term memory (LSTM)104 and temporal convolution

network (TCN),105 to acquire the dataset sequentially and then

process new inputs from the task. LSTM104 processes data

sequentially and figures out its own learning strategy from



Figure 1. Generative Adversarial Networks and Several Typical Variants
(A) Generative adversarial networks. Copyright (2018) IEEE. Reprinted, with permission, from Creswell et al.88

(B) Conditional generative adversarial networks. From Mirza and Osindero.89

(C) Cycle-consistent adversarial networks. Copyright (2017) IEEE. Reprinted, with permission, from Zhu et al.24
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scratch. Moreover, TCN105 uses convolution structures to cap-

ture long-range temporal patterns, whose framework is simpler

and more accurate than LSTM.

Metric learning is a way to calculate the similarity between two

targets from different tasks. For a specific task, the input target is

classified into a target category with large similarity judging from

a metric distance function.106 It has been widely used for few-

shot learning,107 during which the data belong to a large number

of categories; some categories are unknown at the stage of

training and the training samples of each category are particu-

larly small.108 These characteristics are consistent with the char-

acteristics of meta-learning. There are four sorts of typical net-

works proposed for metric learning: Siamese network,109

prototypical network,103 matching network,110 and relation

network.111

Learning is optimized, i.e., one meta-learner learns how to up-

date the learner so that the learner can learn the task effi-

ciently.112 This method has been extensively studied to obtain

better optimization results of neural networks. Combined with

RL113 or imitation learning,62 meta-learning is able to learn new

policies accurately or adapt to new tasks effectively. Model-

agnostic meta-learning (MAML)60 is a representative and popu-

lar meta-learning optimization method, which uses stochastic

gradient descent (SGD)114 to update. It adapts quickly to new

tasks due to no assumptions being made about the form of the

model and no extra parameters being introduced for meta-

learning. MAML includes a base-model learner and a meta-
learner. Each base-model learner learns a specific task and the

meta-learner learns the average performance q of multiple spe-

cific tasks as the initialization parameters of one new task.60

From Figure 2, the model is represented by a parameterized

function fq with the parameter q: When adapting to a new task

T i that is drawn from a distribution over tasks pðT Þ; the model’s

parameter is updated to qi
0. qi

0 is computed by one or more

gradient descent updates on task T i: Moreover, LT i represents

the loss function for task T i and the step size a is regarded as

a hyperparameter. For example, we consider one gradient up-

date on task T i;

qi
0 = q� aVqLT i

ðfqÞ: (Equation 6)

The model parameters are trained by optimizing for the perfor-

mance of a parameterized function fqi 0 with parameter qi
0, corre-

sponding to the following problem:

min
q

X
T i�pðT Þ

LT i

�
fq0

i

�
=

X
T i�pðT Þ

LT i

�
fq�aVqLT i

ðfqÞ

�
: (Equation 7)

When extending MAML to the imitation learning setting, the

model’s input, ot, is the agent’s observation sampled at time t;

whereas the output at is the agent’s action taken at time t: The

demonstration trajectory can be represented as t : = fo1; a1;

.oT ;aTg, using a mean squared error loss as a function of policy

parameters 4 as follows:
PATTER 1, July 10, 2020 5



Figure 2. Diagram of the MAML Algorithm, which Optimizes for a
Representation q That Can Quickly Adapt to New Tasks
From Finn et al.60
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LT i
ðf4Þ =

X
tðjÞ�T i

X
t

f4
�
oðjÞ
t

�
� aðjÞ

t

2

2: (Equation 8)

During meta-training, several demonstrations are sampled as

training tasks. The demonstrations help to compute q0i for each

task T i using gradient descent with Equation 6 and to compute

the gradient of the meta-objective by using Equation 7 with the

loss in Equation 8. During meta-testing, we consider using only

a single demonstration as a new task T , updating with SGD.

Therefore, the model is updated to acquire a policy for that

task.115

The Relationship between Adversarial Learning, RL, and

Meta-Learning

RL116 is a method to describe and solve the problem that agents

learn policies to achieve themaximum returns or specific goals in

the interactions with the environment. Pfau and Vinyals117 dis-

cussed the connection between GANs and actor-critic (AC)

methods. AC is a kind of RL method that learns the policy and

value function simultaneously. To be specific, the actor network

chooses the proper action in a continuous action space, while

the critic network implements a single-step update, which im-

proves the learning efficiency.118 Pfau and Vinyals117 argued

that GANs can be viewed as an AC approach in an environment

where actors cannot influence rewards. RL and GANs are inte-

grated for various tasks, such as real-time point cloud shape

completion119 and image synthesis.120

In the field of RL, using the cost function to understand the un-

derlying behavior is called inverse reinforcement learning

(IRL).121 The policy distribution in the IRL can be regarded as

the data distribution of the generator in GANs, and the reward

in the IRL can be regarded as the discriminator in GANs. Howev-

er, IRL learns the cost function to explain expert behavior but

cannot directly tell the learner how to take action, which leads

to high running costs. Ho and Ermon122 proposed generative ad-

versarial imitation learning (GAIL), combining GANs with imita-

tion learning, which employs GANs to fit the states and actions

distributions that define expert behavior. GAIL significantly im-

proves the performance in large-scale and high-dimensional

planning problems.123

Introducing meta-learning to RL methods is called meta-RL

methods,124 which equips the model to solve new problems

more efficiently by utilizing the experience from prior tasks. A

meta-RL model is trained over a distribution of different but
6 PATTER 1, July 10, 2020
related tasks, and during testing it is able to learn to solve a

new task quickly by developing a new RL algorithm.125 There

are several meta-RL algorithms that utilize past experience to

achieve good performance on new tasks. For example,

MAML60 and Reptile126 are typical methods for updating model

parameters and optimizing model weights; MAESN (model-

agnostic exploration with structured noise)127 can learn struc-

tured action noise from prior experience; evolved policy

gradient128 defines the policy gradient loss function as a tempo-

ral convolution over previous experience. Moreover, when

dealing with unlabeled training data, unsupervised meta-RL

methods129 effectively acquire accelerated RL procedures

without manual task design, such as collecting data and labeling

data. Therefore, both supervised and unsupervisedmeta-RL can

transfer previous task information to new tasks across domains.

Autonomous Systems Meet Accuracy and
Transferability
Computer vision and robot control tasks are critical to autono-

mous systems. Currently there is a variety of learning-based

methods for perception and decision-making tasks. As

mentioned at the beginning of the previous section (Prelimi-

naries), most traditional learning-based methods show good ac-

curacy in the same data distribution or task but suffer from poor

transferability; specifically, when considering the application of a

well-trained model to different scenarios, its accuracy often de-

creases heavily. This is due to the obvious domain gap between

different datasets. Therefore, domain adaptation between

different domains is very important for autonomous systems.

Overview of the Section

In this section, we mainly focus on learning-based methods in

the perception and decision-making tasks of autonomous sys-

tems, from the perspectives of accuracy or transferability or

both, such as image style transfer, image SR, image denois-

ing/dehazing/rain removal, semantic segmentation, depth esti-

mation, other geometry information (surface normal and optical

flow) prediction, pedestrian detection/re-ID/tracking, robot nav-

igation, and robotic manipulation in autonomous systems.

Although some traditional DL-based methods mainly focus on

improving the accuracy of the model, in recent years methods

for the above visual tasks have gradually attached importance

to the transferability, using adversarial learning, RL, and meta-

learning. We summarize some typical computer vision tasks

and robot control tasks in autonomous systems in Tables 3

and 4, including their training manners, loss functions, learning

methods, and experimental platforms. As shown in Table 3,

the training manners of some computer vision tasks gradually

change from supervised to unsupervised ones, and their loss

functions change from accuracy to transferability between do-

mains. Table 4 indicates that for robot control tasks, informative

simulation environments and flexible practice platforms will help

to accurately transfer information across domains.

Image Style Transfer

Images can be well transferred between different styles, which is

conducive to the perception and decision-making algorithms of

autonomous systems applicable to various scenarios. Autono-

mous systems inevitably face the problem of the image style

transfer arising from seasonal conversion,74 varying weather

conditions,72 or day conversion.73 In particular, it is more



Table 3. Summary of Methods for Computer Visual Tasks in Autonomous Systems

Year Reference Task Multi-Task GANs-Based Supervisiona Lossb

2016 Gatys et al.130 style transfer Supervised C

2016 Johnson et al.131 style transfer O Supervised B

2017 Li et al.132 style transfer Supervised C

2017 Pix2Pix34 style transfer O O Supervised A, E

2017 CycleGAN24 style transfer O O Unsupervised A, D

2019 DLOW133 style transfer O O Unsupervised A, D

2019 INIT134 style transfer O Unsupervised A, C

2014 SRCNN7 super-resolution Supervised F

2015 SRCNN8 super-resolution Supervised F

2016 FSRCNN135 super-resolution Supervised F

2016 Johnson et al.131 super-resolution O Supervised B

2017 SRGAN26 super-resolution O Supervised A, F

2017 EnhanceNet136 super-resolution O Supervised A, B, F

2018 ZSSR137 super-resolution Unsupervised E

2018 ESRGAN138 super-resolution O Supervised A, B, E

2018 CinCGAN139 super-resolution O Unsupervised A, D, F

2019 Soh et al.140 super-resolution O Supervised A, C, F

2020 Gong et al.141 super-resolution O Unsupervised A, D, E

2018 DeblurGAN27 image deblurring O Supervised A, B

2019 DeblurGAN-v2142 image deblurring O Supervised A, E, F

2019 Dr-Net143 image deblurring O Supervised A, E

2018 Li et al.144 image dehazing O Supervised A, B, E

2018 Cycle-Dehaze145 image dehazing O Unsupervised A, D

2019 Kim et al.146 image dehazing O Supervised A, D, E, F

2019 CDNet147 image dehazing O Unsupervised A, D

2020 Sharma et al.148 image dehazing O Supervised A, B, E, F

2018 Qian et al.35 image rain removal O Supervised A, B, F

2019 Li et al.149 image rain removal O Supervised A, B, F

2019 ID-CGAN36 image rain removal O Supervised A, B, E

2020 AI-GAN150 image rain removal O Supervised A, F

2016 Hoffman et al.71 semantic segmentation Unsupervised F, G

2017 SegNet13 semantic segmentation Supervised F

2017 Mask R-CNN151 instance segmentation Supervised F

2017 CyCADA74 semantic segmentation O Unsupervised A, D, F

2018 FCAN152 semantic segmentation O Unsupervised A, F

2018 Hu et al.153 instance segmentation partially supervisedc F

2018 Hong et al.39 semantic segmentation O Unsupervised A, F, G

2019 CrDoCo154 semantic segmentation O O Unsupervised A, C, D, F

2019 CLAN155 semantic segmentation O Unsupervised A, F

2019 Li et al.156 semantic segmentation O self-supervised A, B, C, F

2020 Erkent et al.157 semantic segmentation O Unsupervised A, F

2014 Eigen et al.14 depth estimation Supervised F

2015 Eigen et al.15 depth estimation O Supervised F

2015 Liu et al.158 depth estimation Supervised F

2018 Atapour-Abarghouei et al.25 depth estimation O Supervised A, C

2019 ASM159 depth estimation O Supervised F

2019 CrDoCo154 depth estimation O O Unsupervised A, C, D, F

2019 GASDA160 depth estimation O Unsupervised A, D, F

2020 ARC161 depth estimation O Supervised A, B, C, D, F

(Continued on next page)
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Table 3. Continued

Year Reference Task Multi-Task GANs-Based Supervisiona Lossb

2013 ConvNet162 pedestrian detection Unsupervised F

2015 TA-CNN16 pedestrian detection Supervised F

2017 SAF R-CNN163 pedestrian detection Supervised F

2019 Kim et al.41 pedestrian detection O Unsupervised A, E, F

2018 SPGAN42 person re-ID O Unsupervised A, D, F

2018 CamStyle164 person re-ID O Unsupervised A, D, F

2019 ATNet165 Person re-ID O Unsupervised A, D, F

2017 ADNet166 pedestrian tracking O Supervised F

2017 Supancic et al.18 pedestrian tracking supervised –d

2018 Chen et al.167 pedestrian tracking supervised E

2019 ConvNet-LSTM52 pedestrian tracking supervised –d

aFor models that do not explicitly state whether they are supervised in the references, this review considers models that require paired images as su-

pervised and models that do not require paired images as unsupervised.
bWe classify the loss function into several classes. ‘‘A’’ represents adversarial (GAN) loss. ‘‘B’’ represents perceptual loss. ‘‘C’’ represents reconstruc-

tion loss. ‘‘D’’ represents cycle consistency loss. ‘‘E’’ represents pixel-wise loss. ‘‘F’’ represents specific task loss such as depth loss and semantic

loss. ‘‘G’’ represents domain transfer loss such as domain adversarial loss and domain classifier loss.
cPartially supervised learning problems refer to training on the combination of strong and weak labels.153 According to Schwencker and Trentin,168

partially supervised learning includes active learning, general semi-supervised learning, semi-supervised learning with graphs, partially supervised

learning in ensembles, and multiple classifier systems.
dRL-based methods mainly focus on reward and action instead of loss.
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challenging and interesting to consider transferring training data

for night to day, rainy to sunny, or winter to summer, since most

autonomous systems have a better ability to perceive under

good lighting or weather conditions than some harsh environ-

ments. The task of image style transfer is to change the content

of the source domain image to the target domain one while

ensuring that the style is consistent with the target domain.130

In addition, style transfer, as an interesting data augmentation

strategy, can extend the range of lighting and weather changes,

thus further improving the transferability of the model.191 In addi-

tion, using the image style transfer algorithm to achieve the

transfer from the simulated environment to the real world is

very useful for semantic segmentation, robot navigation, and

grasping tasks, because training directly in the real world may

lead to higher experimental costs due to some possible damage

to hardware.191 Traditional methods to achieve style transfer

mainly rely on non-parametric techniques to manipulate the

pixels of the image (e.g., Efros and Freeman,192 Hertzmann

et al.193). Although traditional methods have achieved good re-

sults in style transfer, they are limited to using only low-level fea-

tures of the image for texture transfer, but not semantic

transfer.130

Traditional DL-Based Style Transfer. Convolutional neural net-

works (CNNs) have been used in image style transfer, since they

have achieved impressive results in numerous visual perception

areas. Gatys et al.130 first proposed to utilize CNNs (pre-trained

VGG Networks) to separate content and style from natural im-

ages, and then combined the content of one image with the style

of another into a new image to achieve an artistic style transfer.

This work opened up a new viewpoint for style transfer using

DNNs. To reduce the computational burden, Johnson et al.131

proposed to use the perceptual loss instead of the per-pixel

loss for the image style transfer task. This method achieves re-

sults similar to those of Gatys et al.130 while being three orders
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of magnitude faster. Since Gatys et al.130 used the Gram

matrices to represent the artistic style of an image, the subse-

quent improvement works did not investigate its principles in

depth. Li et al.132 first regarded neural style transfer as a domain

adaptation problem, and theoretically showed that the second-

order interaction in the Gram matrix is not necessary for style

transfer, which is equivalent to a specific maximum mean

discrepancy. In addition, Chen et al.194 presented a stereo neural

style conversion that can be used in emerging technologies such

as three-dimensional (3D) movies or virtual reality. This method

seems promising for improving the perception accuracy of

autonomous systems in unmanned scenes because the trans-

ferred results contain more stereo information in the scene.

GANs-Based Style Transfer. Traditional CNN-based methods

minimize the Euclidean distance between predicted pixels and

ground-truth pixels, which may cause blurry results.34 GANs

can be used for image style transfer, which can produce more

realistic images.34 Isola et al.34 used cGANs to transfer image

style, and the experimental results showed that cGANs (with

L1 loss) not only have satisfactory results for style transfer tasks

but also can produce reasonable results for a wide variety of

problems such as semantic segmentation and background

removal. However, this method requires paired image samples,

which is often difficult to implement in practice. By considering

this issue, Zhu et al.24 proposed CycleGAN to learn image trans-

lation between domains with unpaired examples, as shown in

Figure 3. As mentioned in Preliminaries, the framework of Cycle-

GAN includes two generators and two discriminators to achieve

mutual translation between the source and the target domain.

The main insight of CycleGAN is to preserve the key attributes

between the input and the translated image by using a cycle-

consistency loss. At almost the same time, DiscoGAN195 and

DualGAN196 were presented to adopt similar cycle-consistency

ideas to achieve an image transfer task across domains. To



Table 4. Summary of Traditional RL/Meta-Learning Methods for Scenario-Transfer Tasks

Year Reference Task RL Method

Meta-Learning

Method Simulation Platform Practice Platform

2016 Sadeghi et al.169 UAV navigation F 3D CAD environment Parrot Bebop

2017 Tai et al.170 robot navigation I V-REP Turtlebot

2017 Zhang et al.171 robot navigation H maze-like 3D environment Robotino

2017 Polvara et al.99 UAV navigation H gazebo Parrot AR Drone 2

2017 Zhu et al.61 robot navigation K B AI2-THOR SCITOS

2018 Banino et al.172 robot navigation K A multi-room 2D environment None

2018 Faust et al.22 robot navigation I simulated building plans differential drive robot

2019 Zhu et al.173 robot navigation K A SUNCG Matterport3D

2019 Niroui et al.174 robot navigation K A Turtlebot Stage simulator Turtlebot

2019 Wortsman et al.175 robot navigation A, C, E AI2-THOR none

2019 Jabri et al.176 robot navigation E ViZDoom none

2019 Koch et al.177 UAV navigation I, O, N GymFC none

2020 Gaudet et al.178 UAV navigation E Mars and asteroid

landing simulation

none

2015 Zhang et al.179 robotic manipulation H none Baxter arm

2016 Levine et al.50 robotic manipulation L MuJoCo PR2 robot

2017 Gu et al.180 robotic manipulation M MuJoCo 7-DoF arm

2017 Finn et al.115 robotic manipulation C, D MuJoCo 7-DoF PR2 arm

2018 Haarnoja et al.181 robotic manipulation G MuJoCo 7-DoF Sawyer arm

2018 Zhu et al.182 robotic manipulation N A MuJoCo Jaco robot arm

2018 Zeng et al.101 robotic manipulation H V-REP UR5 robot arm et al.

2018 Yu et al.183 robotic manipulation C, D MuJoCo 7-DoF PR2 arm et al.

2019 Yu et al.184 robotic manipulation N, O, J C MuJoCo none

2019 Zeng et al.185 robotic manipulation B None Amazon Robotics Challenge

2019 Tsurumine et al.186 robotic manipulation P n-DoF simulated manipulator 15-DoF humanoid robot

2020 Singh et al.187 robotic manipulation D bullet physics engine none

We classify the meta-learning methods into several classes. ‘‘A’’ represents recurrent network. ‘‘B’’ represents metric network. ‘‘C’’ represents MAML.

‘‘D’’ represents meta-imitation learning. ‘‘E’’ represents meta-RL. Similarly, we classify the RL methods into several classes. ‘‘F’’ represents Fitted Q-

iteration. ‘‘G’’ represents soft Q-learning. ‘‘H’’ represents DQN. ‘‘I’’ represents DDPG. ‘‘J’’ represents soft AC. ‘‘K’’ represents A3C. ‘‘L’’ represents GPS.

‘‘M’’ represents asynchronous NAF (normalized advantage function).188 ‘‘N’’ represents PPO (proximal policy optimization).189 ‘‘O’’ represents TRPO

(trust region policy optimization).190 ‘‘P’’ represents DPP. DoF, degrees of freedom.
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improve CycleGAN from the aspect of semantic information

alignment at the feature level, Hoffman et al.74 proposed

CyCADA by combining domain adaptation and cycle-consistent

adversarial, which uniformly considers feature-level and pixel-

level adversarial domain adaptation and cycle-consistency con-

straints. CyCADA has achieved satisfactory results in some chal-

lenging tasks, such as from synthesis to practical conversion and

seasonal conversion, which is very important for the generaliza-

tion of autonomous systems. It was shown that CyCADA has a

better transferability than the original CycleGAN model. Since

these methods, such as CycleGAN and CyCADA, can only

realize the translation between two domains, different models

should be trained for each pair of domains in the case of handling

multiple-domain translation tasks, which limits their wide appli-

cation. By considering this point, Choi et al.197 proposed Star-

GAN to perform image translations for multiple domains using

a single generator and a discriminator. StarGAN takes both the

image and its domain label as input, and learns to transfer the

input image into the corresponding target domain. To further

improve the existing adaptive image style transfer methods,
Gong et al.133 proposed a domain flow generation (DLOW)

model, which generates a series of intermediate domains to

bridge two different domains. This method may be helpful for

gradual changes, such as day or season, because it can

generate a continuous sequence of intermediate samples

ranging from the source to target samples. Recent image trans-

lation tasks focused on semantic consistency of images instead

of image style and content. Royer et al.198 proposed XGAN,

which is an unsupervised semantic style transfer task for

many-to-many mapping. Royer et al. used domain adaptation

techniques to constrain the shared embedding and proposed a

semantic consistency loss as a form of self-supervision to act

on two domain translations. This method has a good generaliza-

tion effect when there is a large domain shift between the two

domains. In addition, to obtain fine-grained local information of

images, Shen et al.134 proposed the instance-aware image-to-

image translation approach, which applies instance and global

styles to the target image spatially, as shown in Figure 3. Simi-

larly, the image style transfer was considered at the instance

level by Ma et al.199 and Mo et al.200
PATTER 1, July 10, 2020 9



Figure 3. Generative Adversarial Networks for Image Style Transfer
(A) Results of instance-level day/night translation. Copyright (2019) IEEE. Reprinted, with permission, from Shen et al.134

(B) Results of seasonal conversion. Copyright (2017) IEEE. Reprinted, with permission, from Zhu et al.24

See also Table 3.
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As a data augmentation strategy, image style transfer can help

the scene to be transferred in various lighting conditions, various

weather conditions, simulation of real-world environment, and so

forth. Image style transfer helps autonomous systems perform

their perception and decision-making tasks in better lighting con-

ditions, and effectively reduces hardware losses in the real-world

environment, which is critical for autonomous systems. Although

many traditional DL-based models have achieved good style

transfer results, with the advent of GANs various research works

have been extended based on GANs. The recent developments

of image style transfer have focused on instance-level style trans-

fer. We believe that future works should focus on the image style

transfer for more complex scenes, such as changing the style of

the specified instance without changing the background style in

a wild environment. In addition, future research should also

consider improving the accuracy of style transfer and the speed

of the overall process, striving for real-time performance with

good accuracy. In addition to the style transfer task, we further

consider increasing the resolution of images, i.e., the SR task.

Super-resolution

SR is a challenging visual perception task to generate high-res-

olution (HR) images from low-resolution (LR) image inputs.201 SR

is crucial to understanding the environment at high level for

autonomous systems. For example, SR is helpful in constructing

a dense map. In this subsection, we first discuss the recent de-

velopments in SR by focusing on accuracy. We then summarize

the new developments in SR by considering transferability.

There are a number of methods dedicated to improving image

quality, such as single-image interpolation202 and image restora-

tion.203 It is worth pointing out that these are different from SR.

On the one hand, single-image interpolation usually cannot

restore high-frequency details.202 In addition, image restoration

often uses methods such as image sharpening, whereby the

input image and output image remain the same size, although

the output quality can be improved.203 SR does not only improve

the output quality but also increases the number of pixels per unit

area, i.e., the size of the image increases.201 In some cases, the

image SR can be regarded as a method of image enhance-

ment.204 Recently, a large number of SR methods have been

proposed, such as interpolation-based methods205 and recon-

struction-based methods.206 Farsiu et al.207 introduced the ad-

vances and challenges of traditional methods for SR.
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Traditional DL-Based SR. There are some results studying

traditional DL-based methods without adversarial learning for

SR, which are mainly CNN-based. Dong et al.7 considered using

CNNs to handle SR tasks in an end-to-end manner. They pre-

sented the SR convolutional neural network (SRCNN), which

has little extra pre-/post-processing beyond optimization. In

addition, they confirmed that DL provides a better quality and

speed for SR than the sparse coding method208 and the K-

SVD-based method,209 while SRCNN only uses information on

the luminance channel. Dong et al.8 then extended SRCNN to

process three color channels simultaneously to improve the ac-

curacy of SR results. Considering the poor real-time perfor-

mance of SRCNN, Dong et al.135 utilized a compact hourglass-

shape CNN structure to accelerate the current SRCNN. In fact,

most learning-based SRmethods use the per-pixel loss between

the output image and the ground-truth image.7,8 Johnson

et al.131 considered the use of perceptual loss to achieve a better

SR, which is able to better reconstruct details than the per-pixel

loss. Note that the aforementioned SR methods often rely on

specific training data. When there are non-ideal imaging condi-

tions due to noise or compression artifacts, these methods usu-

ally fail to provide good SR results. Therefore, Shocher et al.137

considered ‘‘zero-shot’’ SR (ZSSR), which does not rely on prior

training. To the best of our knowledge, ZSSR is the first unsuper-

vised CNN-based SR method, which achieves reasonable SR

results in some complex or unknown imaging conditions. Due

to the lack of recurrence of blurry LR images, ZSSR is less effec-

tive for SR when facing very blurry LR images. By taking into ac-

count this issue, Zhang et al.210 proposed a deep plug-and-play

SR framework for LR images with arbitrary blur kernels. This

modified framework is flexible and effective in dealing with

very blurry LR images. Recent trends in SR also include SR for

stereo images211 and 3D appearance.212

GANs-Based SR. In addition to the traditional DL-based SR

methods, GANs show their promising results in SR. The use of

GANs for SR has the advantage of bringing the generated results

closer to the natural image manifold, which may improve the ac-

curacy of the result.26 The representative work on GANs-based

SR (SRGAN) was presented by Ledig et al.,26 which combines

a content loss with an adversarial loss by training a GAN. This

method is capable of reconstructing photo-realistic natural im-

ages for an upscaling factor of 43. Although the SRGAN



Figure 4. Generative Adversarial Networks for SR and Image Deblurring/Dehazing/Rain Removal
(A) The super-resolution results of 34 for SRGAN, ESRGAN, and the ground truth. Reprinted by permission of Wang et al.138 Copyright.
(B) Image deblurring results. Copyright (2019) IEEE. Reprinted, with permission, from Kupyn et al.142

(C) Image dehazing results. Copyright (2019) IEEE. Reprinted, with permission, from Dudhane and Murala.147

(D) Image rain removal results. Copyright (2018) IEEE. Reprinted, with permission, from Qian et al.35

See also Table 3.
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achieves good SR results, the local matching of texture statistics

is not considered, which may restrict the improvement of the SR

results to some extent. By considering this point, Sajjadi et al.136

focused on creating realistic textures to achieve SR. They pro-

posed EnhanceNet, which combines adversarial training,

perceptual loss, and a newly proposed texture transfer loss to

achieve HR results with realistic textures. To further improve

the accuracy of SRGAN, Wang et al.138 extended SRGAN to

ESRGAN by introducing residual-in-residual dense block and

improving the discriminator and a perceptual loss. ESRGAN

consistently has a better visual quality and natural texture than

SRGAN,26 as shown in Figure 4.

HR images are conducive to improving the accuracy of

perception tasks in autonomous systems. In autonomous sys-

tems more complicated situations may be encountered, such

as when HR datasets are unavailable or the input LR images

are noisy and blurry, which means that SR cannot be achieved

with paired data. Inspired by the cycle consistency of CycleGAN,

Yuan et al.139 tackled these issues with a cycle-in-cycle network

(CinCGAN), which consists of two CycleGANs. The first Cycle-

GANmaps LR images to the clean LR space, in which the proper

denoising/deblurring processing is implemented on the original

LR input. They then stacked another well-trained deep model

to up-sample the intermediate results to the desired size. Finally,

they used adversarial learning to fine-tune the network in an end-

to-end manner. The second CycleGAN contains the first one to

achieve the purpose of mapping from the original LR to the

HR. CinCGAN achieves results comparable with those of the su-

pervised method.135 Most SR methods trained on synthetic da-

tasets are not effective in the real world. SRGAN and Enhance-

Net increase the perceptual quality by enhancing textures,

which may produce fake details and unnatural artifacts. Soh

et al.140 focused on the naturalness of the results to reconstruct

realistic HR images. On further considering the transferability of
the model, to solve the domain shift between synthetic data and

real-world data, Gong et al.141 proposed to further minimize the

domain gap by aligning the feature distribution while achieving

SR. Specifically, they proposed a method to learn real-world

SR images from a set of unpaired LR and HR images, which

achieves satisfactory SR results on both paired and unpaired da-

tasets. It is difficult to directly extend the image SR methods to

video SR. Recent developments included using the same frame-

work to implement image SR and video SR,213 and real-time

video SR using GANs.214

Image SR is used to increase the resolution of images, which

helps to improve the accuracy of perception tasks. Although

various SR models focus on improving accuracy, recent works

have focused on the transferability of the model, such as the

transfer from synthetic datasets to real-world data. Future works

may consider combining SR task with other tasks so that one

model can achieve multiple tasks including SR. In addition to im-

age SR tasks, we further consider image restoration, such as im-

age deblurring/dehazing/rain removal.

Image Deblurring, Image Dehazing, and Image Rain

Removal

Autonomous systems often encounter poor weather conditions,

such as rain and fog. There also exist blurry images due to poor

shooting conditions or fast-moving objects. It is well recognized

that the accuracy of computer vision tasks heavily depends on

the quality of input images. Hence, it is of great importance to

study image deblurring/dehazing/rain removal for autonomous

systems, which make the high-level understanding of tasks

such as semantic segmentation and depth estimation possible

in practical applications of autonomous systems. It should be

noted that although some image deblurring/dehazing/rain

removal tasks use image enhancement algorithms,215–217 they

aremore relevant to image restoration than image enhancement.

According to Maini and Aggarwal,218 the aim of image
PATTER 1, July 10, 2020 11
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enhancement is to improve the viewer’s perception of the image

in a way that improves the information content, and it is designed

to give emphasis to features of the image. Image restoration

aims to restore the noisy/corrupt image to its corresponding

clean image, and the corruption may include motion blur and

noise.219 Therefore, image deblurring/dehazing/rain removal

can be regarded as image restoration tasks. When adversarial

learning, such as GANs, is used for image deblurring/dehazing/

rain removal tasks, it can not only generate realistic images to

improve the accuracy of image restoration but also improve

the transferability of the models by considering the transfer

from synthetic datasets to real-world images.

Image Deblurring. Image blur, which heavily affects the under-

standing of the surroundings, is widely observed in autonomous

systems. To tackle the problem of image deblurring, several

traditional DL-based methods without adversarial learning

have been successively proposed.9,220,221 Considering the

convincing performance of GANs in preserving image textures

and creating realistic images, as well as being inspired by im-

age-to-image translation with GANs, Kupyn et al.27 regarded im-

age deblurring as a special image-to-image translation task.

They proposed DeblurGAN, which is an end-to-end deblurring

learning method based on cGANs. This method considers both

accuracy and transferability, i.e., DeblurGAN improves deblur-

ring results and it is 5-fold faster than the approach used by

Nah et al.221 for both synthetic and real-world blurry images. Ku-

pyn et al.142 further improved DeblurGAN by adding a feature

pyramid network to G and adopting a double-scale D, which is

called DeblurGAN-v2. DeblurGAN-v2 achieves better accuracy

than DeblurGAN while being 1– to 100-fold faster than compet-

itors, which will make it applicable to real-time video deblurring,

as shown in Figure 4. Recently, Aljadaany et al.143 presented Dr-

Net, which combines Douglas-Rachford iterations and Wasser-

stein-GAN222 to solve image deblurring without knowing the

specific blurring kernel. In addition, Lu et al.223 extracted the

content and blur features separately from blurred images to

encode the blur features accurately into the deblurring frame-

work. They also utilized the cycle-consistency loss to preserve

the content structure of the original images. Considering that

stereo cameras are more commonly used in unmanned aerial

vehicles, Zhou et al.224 focused their research on the deblurring

of stereo images.

Image Dehazing. Haze is a typical weather phenomenon with

poor visibility, which forms a major obstacle for computer vision

applications. Image dehazing is designed to recover clear scene

reflections, atmospheric light colors, and transmission maps

from input images.145 In recent years, a series of learning-based

image dehazing methods have been proposed,10,225,226

Although these methods do not require prior information, their

dependence on parameters and models may severely cause

an impact on the quality of dehazing images. To reduce the ef-

fects of intermediate parameters on the model and to establish

an image dehazing method with good transferability, a series

of GANs-based methods have been proposed for image dehaz-

ing. Li et al.144 tackled image dehazing based on cGAN. Different

from the basic cGAN, the generator in this method includes an

encoder and decoder architecture, which helps the generator

to capture more useful features to generate realistic results.

The addition of cGAN makes the method in Li et al.144 achieve
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ideal results on both synthetic datasets and real-world hazy im-

ages. Considering the transferability of different scenarios and

datasets as well as independence of paired images, Engin

et al.145 proposed the Cycle-Dehaze network by utilizing Cycle-

GAN. This approach adds the cyclic perception-consistency

loss and the cycle-consistency loss, thereby achieving image

dehazing across datasets with unpaired images. Similar bidirec-

tional GANs for dehazing have also been studied by Kim et al.146

It is difficult for the Cycle-Dehaze network to reconstruct real

scene information without color distortion. Therefore, Dudhane

and Murala147 proposed the cycle-consistent generative adver-

sarial network (CDNet), which utilized the optical model to find

the haze distribution from the depth information. CDNet ensures

that the fog-free scene is obtained without color distortion. The

image dehazing results of Cycle-Dehaze and CDNet are shown

in Figure 4. Most image dehazing methods only consider objects

at the same scale-space, whichwill make dehazed images suffer

from blurriness and halo artifacts. Sharma et al.148 considered

improving the accuracy and transferability of image dehazing,

and presented an approach that can remove haze based on

per-pixel difference between Laplacians of Gaussian of hazed

images and original haze-free images at a scale-space. The

model showed compelling results from simulated datasets to

real-world maps, from indoors to outdoors. Recent develop-

ments in image dehazing also included targeting different chan-

nels, such as color channel,227 dark channel,228 and multi-scale

networks.229

Image Rain Removal. Image rain removal is a challenging task

because the size, number, and shape of raindrops are usually

uncertain and difficult to learn. A number of methods have

been proposed for image rain removal, but most of them require

stereo image pairs,230 image sequences,231 ormotion-based im-

ages.232 Eigen et al.11 proposed a single-image rain removal

method, which is limited to dealing with relatively sparse and

small raindrops.

To improve the accuracy of the image rain removal results and

considering the outstanding performance of GANs in the image

in painting or completion problems, a series of GANs-based

methods have been used for image rain removal. Qian et al.35

tackled the heavy raindrop removal from a single image using

an attentive GAN. This method uses an attention map in both

the generator and the discriminator. The generator produces

an attention map through an attention-recurrent network and

generates a raindrop-free image together with the input image.

The discriminator evaluates the validity of the generation both

globally and locally. The rain removal results of Eigen et al.11

and Qian et al.35 are shown in Figure 4. Nevertheless, this

method is not suitable for torrential rain removal and is limited

to raindrop removal. Heavy rain, strongly visible streaks, or

dense rain accumulations make the scene less visible. Li

et al.149 considered the heavy-rain situation and introduced an

integrated two-stage CNN, which is able to remove rain streaks

and rain accumulation simultaneously. In the first physics-based

stage, a streak-aware decomposition module was proposed to

decompose entangled rain streaks and rain accumulation to

extract joint features. The second refinement stage utilized a

cGAN that inputs the reconstructed map of the previous level

and generates the final clean image. This method considered

the transferability between the synthetic datasets and real-world
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images, and has achieved convincing results in both synthetic

and real heavy-rain scenarios. To improve the stability of GANs

and reduce artifacts introduced by GANs in the output images,

Zhang et al.36 proposed an image deraining conditional genera-

tive adversarial network (ID-CGAN), which uses a multi-scale

discriminator to leverage features from different scales to deter-

mine whether the derained image is from real data or generated

data. ID-CGAN has obtained satisfactory image rain removal re-

sults on both the synthetic dataset and real-world images. Jin

et al.150 considered that existing methods may cause over-

smoothing in derained images, and therefore solved the problem

from the perspective of feature disentanglement. They intro-

duced an asynchronous interactive GAN (AI-GAN), which not

only has achieved good results for image rain removal but also

has strong generalization capabilities, which can be used for im-

age/video encoding, action recognition, and person re-ID.

Image deblurring/dehazing/rain removal tasks help to extract

more useful information from bad-weather scenes, which can

help autonomous systems to better perceive the scene. We

focus on introducing GANs-based models, which improve the

accuracy or transferability or both of these tasks. Future works

may include the image deblurring/dehazing/rain removal tasks

as the premise of perception and then integrate a deeper model

to achieve scene perception. After the introduction of tasks

including image style transfer, image SR, and image deblur-

ring/dehazing/rain removal, we consider high-level perception

tasks such as semantic segmentation.

Semantic Segmentation

In emerging autonomous systems, such as autonomous driving

and indoor navigation, scene understanding is required by

means of semantic segmentation. Semantic segmentation is a

pixel-level prediction method that can classify each pixel into

different categories corresponding to their labels, such as air-

planes, cars, traffic signs, or even backgrounds.233 In addition,

instance segmentation combines semantic segmentation and

object detection to further distinguish object categories in the

scene.151 Some traditional DL-based methods without adversa-

rial learning have been proposed and have achieved good accu-

racy of semantic segmentation13,152 and instance segmenta-

tion.151,153 In practice, such annotations of pixel-level semantic

information are usually expensive to obtain. Considering that

the semantic labels of synthetic datasets are easy to obtain, it

is helpful to consider semantic segmentation on labeled syn-

thetic datasets and then transfer the results to real-world appli-

cations. Due to the domain shift between synthetic datasets

and real-world images, it is worth exploring how to transfer the

model trained on synthetic datasets to real-world images. By

considering this point, adversarial learning is used to implement

domain adaptation to improve the transferability of the model.

Like other computer vision tasks in this review, the trend is

now moving from improving accuracy to enhancing transfer-

ability. In this subsection, we focus on accuracy or transfer-

ability, or both, to review semantic segmentation and instance

segmentation tasks.

Traditional DL-Based Semantic Segmentation. Traditional DL-

based semantic segmentation algorithms are mainly based on

end-to-end convolutional network frameworks. To the best of

our knowledge, Long et al.12 were the first to train an end-to-

end fully convolutional network (FCN) for semantic segmenta-
tion. The main insight is to replace fully connected layers with

fully convolutional layers to output spatial maps. In addition,

they defined a skip architecture to enhance the segmentation re-

sults. More importantly, the framework is suitable for input im-

ages of arbitrary size and can produce the correspondingly sized

output. This work is well recognized as a milestone for semantic

segmentation using DL. However, because the encoder network

of this method has a large number of trainable parameters, the

overall size of the network is large, which results in the difficulty

to train FCN. Badrinarayanan et al.13 proposed SegNet, which

has significantly fewer trainable parameters and can be trained

in an end-to-end manner using SGD. SegNet is important in

that the decoder performs the non-linear upsampling using the

pooling index computed in the max-pooling step of the corre-

sponding encoder, which eliminates the need to learn upsam-

pling. Based on the encoder-decoder network of SegNet, Deep-

Lab uses multi-scale contextual information to enrich semantic

information. DeepLab proposed a series of semantic segmenta-

tionmethods, such asDeepLabv3+,234 which combines a spatial

pyramid pooling module and an encoder-decoder structure for

semantic segmentation. In addition, the depthwise separable

convolution is applied to both atrous spatial pyramid pooling

and the decoder module to make the encoder-decoder network

faster and stronger.

The accuracy of unsupervised semantic segmentation tasks is

usually worse than that of supervised methods, while supervised

semantic segmentation often requires a lot of manual labeling,

which is very costly. Note that a synthetic dataset with computer

simulation such as Grand Theft Auto235 can automatically label a

large number of semantic tags, which is very important to

improving the accuracy of the semantic segmentation model.

However, due to the domain shift between the synthetic dataset

and the real-world scene, it is necessary to consider domain

adaptation in the semantic segmentation task. To address the

domain gap problem and improve the transferability of the

model, Hoffman et al.71 proposed a domain adaptation frame-

work with FCN for semantic segmentation, as shown in Figure 5.

This method considers aligning both global and local features

through some specific adaptation techniques. The method

makes full use of the label information of the synthesized dataset

and successfully transfers the results from a synthetic dataset to

the real scene, in which a satisfactory semantic segmentation

result is achieved in practical applications. The same combina-

tion of FCN with domain adaptation for semantic segmentation

was also presented by Zhang et al.,152 whereby fully convolu-

tional adaptation networks also successfully explored domain

adaptation for semantic segmentation. The model combines

appearance adaptation networks and representation adaptation

networks to synthesize images for domain adaptation at both the

visual appearance level and the representation level. Recent de-

velopments also involved 3D semantic segmentation236,237 and

3D instance segmentation.238

Traditional DL-Based Instance Segmentation. The more chal-

lenging task is instance segmentation, which combines both ob-

ject detection and semantic segmentation.151 Li et al.239 first

proposed an end-to-end fully convolutional method for

instance-aware semantic segmentation. However, the method

produced spurious edges on overlapping instances. He

et al.151 proposed Mask R-CNN, which is a classic instance
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Figure 5. Generative Adversarial Networks for Semantic Segmentation and Multi-Task
(A) CycleGAN for semantic segmentation Copyright (2017) IEEE. Reprinted, with permission, from Zhu et al.24

(B) Qualitative results on adaptation from cities in SYNTHIA fall to cities in SYNTHIA winter. From Hoffman et al.71

(C) Multi-task includes semantic segmentation (top row), depth prediction (middle row), to optical flow estimation (bottom row). Copyright (2019) IEEE. Reprinted,
with permission, from Chen et al.154

See also Table 3.
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segmentation algorithm. Mask R-CNN is easy to train and to

generalize to other tasks, i.e., it performs breakthrough results

in instance segmentation, bounding-box object detection, and

person keypoint detection. This method includes two stages.

The first stage proposes a candidate object bounding box. In

the second stage, the prediction class and the box offset are in

parallel, and the network outputs a binary mask for each region

of interest. Mask R-CNN implements instance segmentation in a

supervised manner, which is very expensive to semantic labels.

In view of this, Hu et al.153 proposed a solution to large-scale

instance segmentation by developing a partially supervised

learning paradigm, in which only a small part of the training pro-

cess has instancemasks and the rest have box annotations. This

method has demonstrated exciting new research directions in

large-scale instance segmentation.

GANs-Based Semantic Segmentation. GANs are flexible

enough to reduce the differences between the segmentation

result and the ground truth, and further improve the accuracy

of the semantic segmentation results without manual labeling

in some cases.240 Regarding the use of GANs for semantic seg-

mentation, the typical methods are Pix2Pix34 and CycleGAN.24

The semantic segmentation result for CycleGAN is shown in

Figure 5. There are several variants based on Pix2Pix and Cycle-

GAN.74,241,242 These methods not only achieve satisfactory re-

sults in image style transfer but also work well in semantic seg-

mentation. Most of the adversarial domain-adaptive semantic

segmentation methods for subsequent improvements of Cycle-

GAN and Pix2Pix improve the training stability and transferability

by improving loss functions or network layers. Hong et al.39 pro-

posed a method based on cGAN for semantic segmentation.

The network integrated cGAN into the FCN framework to reduce

the gap between source and target domains. In practical tasks,

objects often appear in an occluded state, which brings great

challenges to the perception tasks of autonomous systems. To

solve this problem, Ehsani et al.38 proposed SeGAN, which

jointly generated the appearance and segmentation mask for

invisible and visible regions of objects. Luo et al.155 further

considered a joint distribution at the category level that was

different from global alignment strategies such as CycleGAN.

They proposed a category-level adversarial network to enhance

local semantic consistency in the case of global feature align-

ment. Note that traditional semantic segmentation methods
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may suffer from the unsatisfactory quality of image-to-image

conversion. Once the image-to-image conversion fails, nothing

can be done to obtain satisfactory results in the subsequent

stage of semantic segmentation. Li et al.156 tackled this problem

by introducing a bidirectional learning framework with self-su-

pervised learning, in which both translation and segmentation

adaptation models can promote each other in a closed loop.

This segmentation adaptation model was trained on both syn-

thetic and real-world datasets, which improved the segmenta-

tion performance of real-world data. In addition, Erkent and Lau-

gier157 considered a method of semantic segmentation adapted

to different weather conditions, which can achieve satisfactory

accuracy for semantic segmentation without the need of labeling

the weather conditions of the source or target domain.

Semantic segmentation, as a high-level perception task of

autonomous systems, predicts the semantic information of

each pixel with a specific class label. Because early supervised

algorithms are expensive in collecting labeled datasets from the

real world, many algorithms consider the transferability between

synthetic datasets and real-world data. Recent developments

include semantic segmentation in more complex environments

based on GANs, such as bad weather conditions. Meanwhile,

we consider that instance segmentation based on GANs is

also an open question. In addition to semantic segmentation,

depth estimation is another high-level perception task of auton-

omous systems, whereby it is very challenging to estimate the

depth value of each pixel in the image.

Depth Estimation

Depth estimation is an important task to help autonomous sys-

tems understand the 3D geometry of environments at high level.

A series of classical and learning-basedmethodswere proposed

to estimate depth based onmotion243 or stereo images,244 which

is computationally expensive. As widely known, due to the lack

of complete scene 3D information, estimating the depth from a

single image is an ill-posed task.158 For the monocular depth

estimation task, a series of traditional DL-based algorithms

without adversarial learning have been proposed to improve

the accuracy of themodel. However, considering that it is expen-

sive to collect well-annotated datasets in depth estimation tasks,

it is appealing to use adversarial learning methods, such as

GANs, to achieve domain adaptation from synthetic datasets

to real-world images. In addition, the adaptive method is used
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to improve the transferability of the model, so that the model

trained on the synthetic dataset can be well transferred to real-

world images. Here, we introduce traditional DL-based depth

estimation frameworks as well as methods to improve the trans-

ferability of depth estimation models by introducing adversarial

learning.

Traditional DL-Based Depth Estimation. Traditional DL-based

depth estimation methods mainly focus on improving the accu-

racy of the results by using deep convolution frameworks. Eigen

et al.14 first proposed using a neural network to estimate depth

from a single image in an end-to-endmanner, which pioneeringly

showed that it is promising for neural networks to estimate the

depth from a single image. This framework consists of two com-

ponents: the first one roughly estimated the global depth struc-

ture and the second one refined this global prediction using local

information. Considering the continuous property of the monoc-

ular depth value, depth estimation is transformed into a learning

problem of a continuous conditional random field (CRF). Liu

et al.158 presented a deep convolutional neural field model for

single monocular depth estimation, which combined deep

CNN and continuous CRF. This method achieved good results

on both indoor and outdoor datasets. To reduce the dependence

on the supervised signal and improve the transferability between

different domains, unsupervised domain adaptation methods

were presented for depth estimation by Nath Kundu et al.245

Some other developments in considering optical flow, camera

pose, and intrinsic parameters from monocular video for depth

estimation can be found in Chen et al.246 By considering the

intrinsic parameters of the camera, similar to Gordon et al.,247

accurate depth information can be extracted from any video.

GANs-Based Depth Estimation. For the depth estimation task,

it is too expensive to collect well-annotated image datasets. An

appealing alternative is to use the unsupervised domain adapta-

tion method via GANs to achieve domain adaptation from syn-

thetic datasets to real-world images. Atapour-Abarghouei

et al.25 took advantage of the adversarial domain adaptation to

train a depth estimation model in a synthetic city environment

and transferred it to the real scene. The framework consists of

two stages. At the first stage, a depth estimationmodel is trained

with the dataset captured in the virtual environment. At the sec-

ond stage, the proposed method transfers synthetic style im-

ages into real-world ones to reduce the domain discrepancy.

Although this method considers the transfer of synthetic city

environment to the real-world scene, it ignores the specific geo-

metric structure of the image in the target domain, which is

important for improving the accuracy of depth estimation. Moti-

vated by this problem, Zhao et al.160 proposed a geometry-

aware symmetric domain adaptation network (GASDA), which

produces high-quality results for both image style transfer and

depth estimation. GASDA is based on CycleGAN,24 which per-

forms translations for both synthetic-realistic and realistic-syn-

thetic simultaneously with a geometric consistency loss of real

stereo images. Zhao et al.161 further considered high-level

domain transformation, i.e., mixing a large number of synthetic

images with a small amount of real-world images. They pro-

posed the attend-remove-complete (ARC) method, which learns

to attend, remove, and complete some challenging regions. The

ARC method can ultimately make good use of synthetic data to

generate accurate depth estimates.
Depth Estimation via Joint Tasks Learning. Each pixel in one

image usually contains surface normal orientation vector infor-

mation and semantic labels, and surface normal prediction, se-

mantic segmentation, and depth estimation are related to the ge-

ometry of objects, which makes it possible to train different

structured prediction tasks in a consistent manner. To the best

of our knowledge, there are some works that apply a single

model to multiple related tasks. Note that for different tasks,

the model should be fine-tuned15,248 or use different loss func-

tions,154,159 Applying a single model to multiple related tasks

through fine-tuning or using different loss functions shows that

the model has a good transferability. Eigen et al.15 developed a

more general network for depth estimation and applied it to other

computer vision tasks, such as surface normal estimation and

per-pixel semantic labeling. It is worth noting that Eigen et al.

used a single framework for depth estimation, surface normal

estimation, and semantic segmentation with only fine-tuning,

which improved the framework of their previous network14 by

considering a third scale at a higher resolution. Considering

that GANs perform well in structured prediction space, Hwang

et al.159 proposed adversarial structure matching (ASM), which

trains a structured prediction network through an adversarial

process. Thismethod achieved ideal results onmonocular depth

estimation, semantic segmentation, and surface normal predic-

tion. Although the ASM model has good transferability for multi-

ple tasks through different loss functions, its limitation is that

specified datasets should be used for specific tasks and cannot

be generalized to other datasets. To solve this limitation, Chen

et al.154 embedded the pixel-level domain adaptation into the

depth estimation task. Specifically, they proposed CrDoCo, a

pixel-level adversarial domain-adaptive algorithm for dense pre-

diction tasks. The core idea of this method is that although the

image styles of two domains may be different during the

domain-transfer process, the task predictions (e.g., depth esti-

mation) should be exactly the same. Since CrDoCo is a pixel-

level framework for dense prediction, it can be applied to seman-

tic segmentation, depth prediction, and optical flow estimation,

as shown in Figure 5. CrDoCo can be applied to multi-tasking

only by adjusting its loss function, and it also shows a good

transferability between different datasets for a specific task.

Depth estimation helps autonomous systems understand the

3D structure of the surrounding scene. The transferability of

depth estimation includes not only the transfer of synthetic to

real-world data but also the transfer of indoor to outdoor environ-

ments. Since depth, surface normals, and semantic labels are all

related to object geometric information, recent works have also

considered improving the accuracy of depth estimation by utiliz-

ing the interconnection between different tasks. We believe that

future works should include the consideration of depth estima-

tion under poor weather and light conditions. Following the

autonomous systems perception tasks reviewed above, we

now introduce pedestrian detection, re-ID, and tracking tasks

involved in autonomous systems.

Pedestrian Detection, Re-identification, and Tracking

Pedestrian detection, re-ID, and tracking are very important for

autonomous systems, especially for autonomous driving. The

related works of pedestrian detection mainly focused on

improving the accuracy of the results. Various developments

have been made on improving the accuracy of complex visual
PATTER 1, July 10, 2020 15
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environments, such as nighttime and occlusion. Person re-ID,

which is more complicated than pedestrian detection, requires

matching pedestrians in disjointed camera views. Traditional

learning-based methods of person re-ID mainly focused on

improving the accuracy of results, while recent GANs-based al-

gorithms focused on transferability between domains. To further

complicate the person re-ID, some developments consider

locating targets in a sequence of time, i.e., video tracking. The

RL-based pedestrian tracking methods focus on not only accu-

racy but also transferability of the algorithms. In this subsection,

we review pedestrian detection, re-ID, and tracking tasks,

focusing on accuracy or transferability, or both.

Pedestrian Detection. In recent years, pedestrian detection

has been widely taken into account in autonomous systems,

especially for autonomous driving and robot movement,249,250

Pedestrian detectionmethods are generally divided into two cat-

egories: models based on hand-crafted features and deep

models.16 Various models based on hand-crafted features

have been proposed in the past few decades.251–253 Although

these models have made good progress, models based on

hand-crafted features fail to extract semantic information. Ser-

manet et al.162 used sparse convolutional feature hierarchies

for pedestrian detection, which is named ConvNet. The network

first performs layer-wise training on the whole multi-stage sys-

tem, then uses the labeled data to fine-tune the complete archi-

tecture for the detection task. Although ConvNet learns features

from training data, it treats pedestrian detection as a single bi-

nary classification task, which may confuse positive and nega-

tive samples. Therefore, Tian et al.16 proposed a task-assistant

CNN (TA-CNN), which can learn features from multiple tasks

and multiple datasets. TA-CNN combines semantic tasks,

including pedestrian attributes and scene attributes, to optimize

pedestrian detection results. To further improve the accuracy of

pedestrian detection in natural scenes, Li et al.163 considered

that the problem of large variance in pedestrian scale with

different spatial scales may cause dramatically different fea-

tures. Therefore, they developed a scale-aware fast R-CNN

(SAF R-CNN) framework, which combines a large-size subnet-

work and a small-size subnetwork, as well as using the scale-

aware weighting mechanism to deal with various sizes of pedes-

trian in scenes.163 Although SAF R-CNN can detect pedestrian

instances of different scales, it does not consider factors such

as illumination conditions. To solve the problem of pedestrian

detection under challenging illumination conditions at nighttime,

Kim et al.41 used adversarial learning for cross-spectral pedes-

trian detection with unpaired setting. This methodmakes the co-

lor and thermal features of prominent areas where pedestrians

exist to be similar by using adversarial learning, thereby

improving the accuracy of pedestrian detection results at night-

time. Recent developments in pedestrian detection include tiny-

scale pedestrian detection254 and occluded pedestrian

detection.255

Person Re-identification. A similar while more difficult task than

pedestrian detection, person re-ID requires matching pedes-

trians in disjointed camera views. At present, there are several

learning-based methods focusing on person re-ID.17,256,257

However, these methods have poor transferability, i.e., the per-

son re-ID models trained on one domain usually fail to generalize

well to another domain. Considering that CycleGAN shows
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impressive results in transferability using unpaired images,

Deng et al.42 introduced the similarity preserving cycle-consis-

tent generative adversarial network, an unsupervised domain

adaptation approach to generate samples that not only have

the target domain style but also preserve the underlying ID infor-

mation. This method showed that applying domain adaptation to

person re-ID can achieve competitive accuracy. Taking into ac-

count the data augmentation of different cameras, Zhong

et al.164 introduced the camera style (CamStyle) adaptation.

CamStyle smoothes disparities in camera styles, transferring

labeled training image styles to each camera to augment the

training set. CamStyle helps to learn pedestrian descriptors

through camera-invariant properties to improve re-ID experi-

mental accuracy. The above approaches, such as SPGAN42

and CamStyle,164 treated the domain gap as a black box and at-

tempted to solve it by using a single style transformer. Liu

et al.165 proposed a novel adaptive transfer network (ATNet),

which investigates the root causes of the domain gap. ATNet re-

alizes the domain transfer of person re-ID by decomposing

complicated cross-domain transfers and transferring features

through sub-GANs separately. Recently, a theory-based anal-

ysis by Song et al.258 bridged the theoretical gap between unsu-

pervised domain adaptation and re-ID tasks. Recent develop-

ments in person re-ID also involved considering occluded

parts259 and different visual factors such as viewpoint, pose, illu-

mination, and background.260

Pedestrian Tracking. Video tracking isan improvement inperson

re-ID and needs to locate the target in a sequence of time,which is

difficult to handlebecause of trackingobstacles.When it comes to

accuracy and transferability, RL-based methods in pedestrian

tracking are concerned with whether the action in each frame is

discrete or continuous and whether the labeled bounding boxes

at each frameare limitedornot. Trackingpedestriansbysearching

a series of discrete actions in each frame is a solution. Yun et al.166

proposed theaction-decisionnetwork (ADNet) togenerateactions

to find the location and the size of the target object in a new frame.

The ADNet is updated by performing tracking simulation on the

training sequence and utilizing action dynamics with the help of

RL. After pre-training ADNet by supervised learning, online adap-

tation is applied to the network to accommodate the appearance

changes or deformation of the target during tracking test se-

quences. Therefore, the pre-trained ADNet features can be trans-

ferred toanew frameduringonlineadaptation.When thebounding

boxes at each frame are limited, the algorithm can also be trained

successfully and transferred to new frames with the help of larger

training datasets. Supancic and Ramanan18 used RL to train

trackers with more limited supervision on far more massive data-

sets.The results illustrated that thealgorithmcan trackpedestrians

on a never-before-seen video, and the video can be used for both

evaluation of the current tracker and for training the tracker for

futureuse. Inbrief, the learning structure is informative and the fea-

tures contained in the video will be transferred to another training

process. Furthermore, to exploit continuous actions for visual

tracing, which improves training efficiency and accuracy, Chen

etal.167 introduceda real-timeAC framework toexploit continuous

action space for visual tracking. For online tracking, the ‘‘actor’’

model provides an offline dynamic search strategy to locate the

target object in each frame efficiently by only one action output,

and the ‘‘critic’’ model acts as a verification module to make the



Figure 6. UAV Indoor Navigation via DRL Algorithm
DRL algorithm is entirely trained in a simulated 3D CAD model and generalized to real indoor flight environment. From Sadeghi and Levine.169 See also Table 4.
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tracker more robust. The real-time performance of the trackers is

better than that of state-of-the-art methods such as MDNet261

and ADNet.166 Similar to Chen et al.,167 Luo et al.52 used the

sameRLmethod todealwithcontinuous trackingproblems.More-

over, they introduced an environment augmentation technique,

i.e., virtual environments named ViZDoom,262 to boost the

tracker’s generalization ability.

The current methods of pedestrian detection focus on

improving the accuracy of the detection results, while the

GANs-based person re-ID methods mentioned in this survey

center on improving the transferability of the algorithm. The

RL-based pedestrian tracking methods concentrate on equip-

ping both the accuracy and transferability. Future works should

include pedestrian detection, re-ID, and tracking in severe oc-

clusion situations. In addition, future research may also involve

pedestrian detection, re-ID, and tracking tasks at the semantic

level. In addition to perception tasks, we now introduce some

decision-making tasks, such as robot navigation. Robot navi-

gation focuses on navigating a robot to avoid collision or to a

target, considering accuracy or transferability, or both,

of tasks.

Robot Navigation

Robot navigation, which has recently become crucial and a hot

topic in autonomous systems, mainly focuses on navigating a

robot to a target position or to avoid obstacles in a known/un-

known environment. Here we consider whether the trained

model can accurately learn the task features or successfully

transfer the previous information to new tasks or domains. A

variety of RL and meta-learning methods, such as DQN,171

LSTM structure,263 and MAML,127 can accurately or transfer-

ably handle the changes arising from the environment or task

when using the previously trained model. As shown in Table

4, we summarize the RL and meta-learning methods to handle

accurate learning and domain-transfer tasks in robot and un-

manned and autonomous vehicle (UAV) navigation issues. As

For the experimental platform, AI2-THOR (the house of interac-

tions)61 performs well due to its shared task features and data-

sets, ensuring the learned skills transfer to new tasks. More-

over, meta-learning methods usually have more satisfactory

transferability than RL methods when lacking training and

testing data by means of extracting or memorizing previous

training data in simulation.
RL-Based Robot Navigation. To improve training efficiency

and accuracy, dividing a single task to several subtasks and

training them separately is a solution. Polvara et al.99 proposed

two distinct DQNs, called double DQNs, whichwere used to train

two subtasks: landmark detection and vertical landing. Due to

the separate training of each single task at the same time,

training efficiency and accuracy were improved to an extent.

Moreover, training the model with various auxiliary tasks, such

as pixel control,264 reward prediction,265 and value function

replay,100 also helps the robot to adapt to the target faster and

more accurately.

To equip the model with better transferability when encoun-

tering a new situation, task features53,171 and training policies47

can be transferred to novel tasks in the same domain or across

domains. Parisotto et al.53 and Rusu et al.54 transferred useful

features among different ATARI games and then the correspond-

ing features were utilized to train a new ATARI game in the same

domain. In addition, when dealing with the tasks whose trials in

the real world are usually time-consuming or expensive, the

characteristic of tasks can be transferred across domains effec-

tively. Zhang et al.171 proposed a shared DQN between tasks in

order to learn informative features of tasks, which can be trans-

ferred from simulation to the real world. Similarly, as shown in

Figure 6, Sadeghi and Levine169 proposed a novel realistic trans-

lation network, which transforms virtual image inputs into real im-

ages with a similar scene structure. Moreover, policies can be

transferred from simulation to simulation. Similar to Polvara

et al.,99 the primary training policy of Sadeghi and Levine169

can be divided into several secondary policies, which acquire

certain behaviors. These behaviors are then combined to train

the primary policy, which helps to make the primary policy

more transferable across domains. Chen et al.47 used AC net-

works to train the secondary policies as well as the primary pol-

icy. In navigation, the primary behavior learned by a high-degree-

freedom robot is to navigate straight to the target within a sample

environment. Chen et al. then randomized the non-essential as-

pects of every secondary behavior, such as the appearance, the

positions, and the number of obstacles in the scene, to improve

generalization ability of the final policy.

Due to the sampling constraints of model-free RL methods

and transferring limits of model-based RL methods as

mentioned in Preliminaries, it is difficult to equip a model with
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good transferability and sampling efficiency at the same time. An

easy way to handle this contradiction is to combine model-free

methods with model-based methods. Kahn et al.48 used a

generalized computation graph to find the navigation policies

from scratch by inserting specific instantiations between

model-free and model-based ones. Therefore, the algorithm

not only learns high-dimensional tasks but also has promising

sampling efficiency.

Meta-Learning-Based Robot Navigation. RL-based methods

tend to need sufficient training data to acquire transferability.

When a new task has insufficient data during training and testing,

meta-learning methods can also promote the model to be trans-

ferable across domains. Firstly, recurrent models, such as LSTM

structure, weaken the long-term dependency of sequential data,

which acts as an optimizer to learn an optimization method for

the gradient descent models. Mirowski et al.266 proposed a

multi-city navigation network with LSTM structure. The main

task of the LSTM structure was used to encode and encapsulate

region-specific features and structures to add multiple paths in

each city. After training in multiple cities, it was proved that the

network is sufficiently versatile. Moreover, metric learning can

be utilized to extract image information and generalize the spe-

cific information, which is helpful in navigation. Zhu et al.61 com-

bined Siamese network with AC network to navigate the robot to

the target only with 3D images. Siamese network captures and

compares the special characteristics from the observation im-

age and target image. The joint representation of images is

then kept in scene-specific layers. AC network uses the features

in scene-specific layers to generate policy and value outputs in

navigation. To sum up, the deep Siamese AC network shares pa-

rameters across different tasks and domains so that the model

can be generalized across targets and scenes. Even if the

models trained by these two meta-learning methods acquire

both accuracy and transferability, when the models encounter

new cross-domain tasks they also need plenty of data to be re-

trained. To fine-tune a new model with few data, MAML is bene-

ficial. Finn et al.60 verified that MAML performs well in 2D naviga-

tion and locomotion simulation compared with traditional policy

gradient algorithms. It was shown that MAML could learn a

model that adapts muchmore quickly in a single gradient update

while continuing to improve with additional updates without

overfitting. When the training process is unsupervised, MAML

is not applicable and needs to be adjusted, such as by construct-

ing a reward function during themeta-training process129 and la-

beling data using clustering methods.267 Wortsman et al.175 pro-

posed a self-adaptive visual navigation (SAVN) method derived

from MAML to learn adaptation to new environments without

any supervision. Specifically, SAVN optimizes two objective

functions: self-supervised interaction loss and navigation loss.

During training, the interaction and navigation gradients are

back-propagated through the network, and the parameters of

the self-supervised loss are updated at the end of each episode

using navigation gradients, which are trained by MAML. During

testing, the parameters of the interaction loss remain fixed while

the rest of the network is updated using interaction gradients.

Therefore, the model equips the MAML methods with good

transferability in a no-supervision environment.

RL or meta-learning methods help the robot navigate to tar-

gets or avoid obstacles. When using RL methods, separating
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tasks or adding auxiliary tasks during the training process will

improve the accuracy of the navigation results. Moreover, there

are many ways to improve transferability in robot navigation,

including task transfer, parameter transfer, and policy transfer.

Compared with RL methods, meta-learning methods promote

the transferability well, especially when the training and testing

data are limited. In the future, with the popularity of MAML, we

believe that MAML will become capable of handling more com-

plex tasks in reality and achieving more satisfactory transfer-

ability by means of combining with state-of-art methods such

as metric learning and LSTM structure. After outlining robot nav-

igation tasks in autonomous systems, we now focus on another

robotic issue, robotic manipulation.

Robotic Manipulation

We now focus on transferability in robotic manipulation issues

according to domain-transfer tasks implemented by various ro-

botic arms. Compared with robot navigation, robotic manipula-

tion mainly considers precise control of robotic arms by means

of multiple degrees of freedom. RL methods enable the robotic

arm to transfer between different environments and tasks by

means of special inputs268 and reformed training networks.269

Moreover, meta-learning and imitation learning can be utilized

to handle difficult tasks with few or even one demonstration dur-

ing the meta-testing process in the same domain or across

domains115,183 in order to speed up the learning process and

transfer previous task features. Table 4 summarizes RL and

meta-learning methods to deal with domain-transfer robotic

manipulation problems. As experimental platforms, MuJoCo

(multi-joint dynamics with contact)270 and the PR2 arm are pop-

ular because robotic arms with multiple degrees of freedom and

shared information have better accuracy and transferability.

Moreover, compared with RL, meta-learning is capable of

training with fewer data and adapting more quickly to new tasks

to acquire model transferability.

RL-Based Robotic Manipulation. When considering improve-

ment of the transferability of robotic arm systems, synthetic

data as input179 and separate networks in training98 are

possible RL-based solutions. Synthetic inputs help to transfer

experience learned from different settings in simulation to the

real world. Zhang et al.179 were the first to produce a three-joint

robot arm that learned control via DQN merely from raw-pixel

images without any prior knowledge. The robot arm reaches

the target in the real world successfully only when it takes syn-

thetic images that are generated by the 2D simulator as inputs

according to real-time joint angles. Therefore, the input of syn-

thetic images inevitably offsets the gap between the simulation

and real world, thereby improving the transferability. Moreover,

when the data are limited and unable to be synthesized, DQN

can be divided into perception and control modules, which

are trained separately. The perception skills and the controller

obtained from simulation will then be transferable.98 Similarly,

DQN can also train several networks and combine the experi-

ence learned together. Zeng et al.101 used DQN to jointly train

two fully convolutional networks mapping from visual observa-

tions to actions. The experience transfers between robot push-

ing and grasping processes, and thus these synergies are

learned. To compare some popular RL methods focusing on

generalization ability in robotic manipulation, Quillen et al.271

evaluated simulated benchmark tasks, whereby robot arms
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were used to grasp random targets in comparison with some

DRL algorithms, such as double Q-learning (DQL), DDPG,

path consistency learning, and Monte Carlo (MC) policy evalu-

ation. In the experiment, the trained robot arms coped with

grasping unseen targets. The results revealed that DQL per-

forms better than other algorithms in low-data regimes and

has a relatively higher robustness to the choice of hyperpara-

meters. When data are becoming plentiful, MC policy evalua-

tion achieves a slightly better performance.

MAML-Based Robotic Manipulation. However, in robotic

manipulation issues, traditional RL methods tend to need plenty

of training data. Even if they can transfer to new tasks or do-

mains, they also have poor generalization ability.180,272 MAML

combinedwith imitation learning is able to utilize past experience

across different tasks or domains, which can learn new skills

from a very small number of demonstrations in various fields of

application. Duan et al.62 let the robot arm demonstrate itself in

simulation, i.e., the input and output samples were collected

by the robot arm itself. The inputs of the model are the position

information of each block rather than images or videos. They first

sampled a demonstration from one of the training tasks, then

sampled another pair of observation and action from a second

demonstration of the same task. Considering both the first

demonstration and second observation, the network was trained

to output the corresponding action. In a manipulation network,

the soft attention structure allows themodel to generalize to con-

ditions and tasks that are invisible in training data. Thus, Finn

et al.115 used visual inputs from raw pixels as demonstration.

The model requires data from significantly fewer prior demon-

strations in training and merely one demonstration in testing to

learn new skills effectively. Moreover, it not only performs well

in simulation but also works in a real robotic arm system.

MAML is modified to two-head architecture, which means that

the algorithm is flexible for both learning to adapt policy param-

eters and learning the expert demonstration. Therefore, the num-

ber of demonstrations needed for an individual task is reduced

by sharing the data across tasks. Taking robot arm pushing as

an example, during the training process the robot arm can see

various pushing demonstrations that contain different objects,

and each object may have different quality and friction. In the

testing process, the robot arm needs to push the object that it

has never seen during training. It needs to learn which object

to push and how to push it according to merely one demonstra-

tion. As shown in Figure 7, compared with Finn et al.,115 Yu

et al.183 increased the difficulty of imitation learning, i.e., only us-

ing a single video demonstration from a human as input, whereby

the robot arm needs to accomplish the same work as in Finn

et al.115 by domain adaptation. The authors proposed a

domain-adaptive meta-learning method that transfers the data

from human demonstrations to robot arm demonstrations.

MAML was utilized to deal with the setting of learning from video

demonstrations of humans. Due to the clone of behavior across

the domain, the loss function also needs to be reconstructed,

and TCN is used to construct the loss network inMAML structure

in the robotic arm domain. Specifically, the robot arm will learn a

set of initial parameters in the video domain, then after one or a

few steps of gradient descent on merely one human demonstra-

tion the robot arm is able to perform the new task effectively.

Recently, based on the study by Finn et al.115 Singh et al.187
improved the one-shot imitation model by using additional

autonomously collected data instead of manually collecting

data. It is novel that they put forward an embedding network to

distinguish whether two demonstration embeddings are close

to each other. By the use of metric learning, they compute the

Euclidean distance to find the distance between two videos. If

they are close, it is regarded that the demonstrations falls into

the same task. Therefore, the demonstrations from the same

task are viewed as autonomously collected data that can be

used to be trained in different tasks.

In robotic manipulation tasks, synthetic data as input and

separate networks in training are RL-based ideas to equip ro-

botic arms with transferability. Moreover, MAML with imitation

learning methods do well in task and domain transfer with rela-

tively few data. In the future, training with unlabeled data will

be a trend, at which point autonomous systems need to label

the training data by means of unsupervised methods. On the

other hand, the testing demonstrations inmeta-imitation learning

will be much fewer, even with no demonstrations, so that an ac-

curate and transferable model is needed.

Discussion and Future Works
This review shows the powerful effects of traditional DL, ad-

versarial learning, RL, and meta-learning on complex visual

and control tasks in autonomous systems. In particular,

some traditional DL-based methods may not guarantee the

accuracy when transferred to another domain; however, ad-

versarial learning, RL, and meta-learning are able to treat

transferability well. Although adversarial learning, such as

GANs, produce better, clearer, and more transferable results

than other traditional DL-based methods, meta-learning

methods or combining them with RL and imitation learning

methods tend to be equipped with an efficiency or transfer-

ability, or both of these.

Discussion

In this review, we introduce several typical perception and deci-

sion-making tasks of autonomous systems from the perspec-

tives of accuracy and transferability. Since autonomous systems

may have a better perception accuracy under good lighting en-

vironments than in harsh environments, we first introduce image

style transfer, which can change the training data from night to

day, rain to sunny, and so forth. Moreover, image style transfer

can realize the transfer of synthetic datasets to real-world im-

ages, which greatly reduces the hardware loss caused by

directly using autonomous systems for real scenes. We then re-

view image enhancement and image restoration. Autonomous

systems usually involve tasks such as image SR and image de-

blurring/dehazing/rain removal. We review recent developments

from the perspectives of accuracy and transferability. When the

image quality reaches a good perceptible state, we consider two

typical high-level perception tasks of autonomous systems, i.e.,

semantic segmentation and depth estimation. Since obtaining

the ground-truth labels is difficult with these two tasks, various

methods have been proposed for the transferability between

the synthetic datasets and real-world data. In addition, we re-

view the tasks of pedestrian detection, person re-ID, and pedes-

trian tracking that are often involved in autonomous systems.

Among them, pedestrian detection mainly aims to improve the

accuracy of the detection results; person re-ID is a similar task
PATTER 1, July 10, 2020 19



Figure 7. Demonstrations and Robotic Actions in Simulation and Real World
(A) Robot demonstrations used for meta-imitation learning. From Finn et al.115

(B) Human and robot demonstrations used for meta-imitation learning with large domain shift. From Yu et al.183

See also Table 4.
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but is more difficult, requiring the matching of pedestrians in

disjointed camera views; pedestrian tracking pays attention to

transferring network and video features and promoting frame-

work accuracy. Furthermore, we consider two perception and

decision-making tasks of robotic systems, i.e., robot navigation

and robotic manipulation. Robot navigation tasks focus on accu-

rately learning task features and transferring information across

tasks or domains by RL or meta-learning. Robotic manipulation

deals with domain-transfer tasks with more precise robotic arm

control. These two tasks have simulation platforms or practice

platforms, or both, to verify the accuracy or transferability.

Future Works

There are still important challenges and future works worthy of

our attention. In this subsection, we summarize some trends

and challenges for autonomous systems.

GANs with Good Stability, Quick Convergence, and Controllable

Mode. GANs employ the gradient descent method to iterate

the generator and discriminator to solve theminimax game prob-

lem. In the game, the mutual game between the generator and

discriminator may cause model training to be unstable and diffi-

cult to converge, and even cause themode to collapse. Although

there are some preliminary studies aimed at improving these de-

ficiencies of GANs,273,274 there is still much room for improve-

ment in terms of the modal diversity and real-time performance.

In addition, controlling the mode of data enhancement remains

an open question. How to make the generated data mode

controllable by controlling additional conditions and keep the

model stable, and to achieve purposeful data enhancement, in

particular for the computer vision tasks in autonomous systems,

is an interesting research direction in the future.

GANs for Complex Multi-Tasking. Although GANs have

achieved great results in some typical computer vision tasks of

autonomous systems, it still remains difficult to consider the

development of more complex multi-tasking in the future. Since

some visual tasks are often related to each other, this phenom-

enonmakes it possible to seamlessly reuse supervision between

related tasks or solve different tasks in one system without add-

ing complexity.275 For example, it is promising to consider

training a general-purpose network that can be used for multi-

task image restoration in a bad weather condition with only

fine-tuning, such as image rain removal, snow removal, dehaz-

ing, seasonal change, and light adjustment. In addition, in severe
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rain and foggy weather, how to perform image SR while

removing rain/dehazing at the same time is challenging. In short,

the use of GANs for more complex multi-tasking remains an

open question and is worth exploring.

GANs for More Challenging Domain Adaptation. In autono-

mous systems, transferability is important for computer vision

tasks. Although some results introduce GANs into domain adap-

tation to improve domain transfer,25,276 there is still much room

for development. When considering more diverse domains,

more differentiated cross-domains, and cross-style domains,

such as road scenarios in different countries, the existing

methods often cannot guarantee good transferability among

these domains. However, GANs are promising for development

of more diverse domain adaptations by showing unprecedented

effectiveness in domain transfer. It is of interest to study the

further use of GANs for more differentiated cross-domain trans-

ferability.

Multi-Modal, Multi-Task, and Multi-Agent RL. Most of the RL

methods in applications focus primarily on visual input only.

However, when considering information from multiple models,

such as voice, text, and video, agents that can better understand

the scenes and the performance in experiments will be more ac-

curate and satisfactory.49,277 Moreover, in multi-task RLmodels,

the agent is simultaneously trained on both auxiliary tasks and

target tasks,264,265 so that the agent has the ability to transfer

experience between tasks. Furthermore, thanks to the distrib-

uted nature of the multi-agent, multi-agent RL can achieve

learning efficiency from sharing experience, such as communi-

cation, teaching, and imitation.278

Meta-Learning for Unsupervised Tasks. Traditional meta-

learning consists of supervised learning during training and

testing whereby both training data and testing data are labeled.

However, if we use the unlabeled training data—in other words,

there is no reward generated in training—how can we also

achieve better results on specific tasks during testing?

Leveraging unsupervised embeddings to automatically

construct tasks or losses for unsupervisedmeta-learning is a so-

lution,129,175,267 after which the training tasks for meta-learning

are constructed. Therefore, meta-learning issues can be trans-

formed into a wider unsupervised application. It will be inter-

esting to use unsupervised meta-learning methods in more real-

istic task distributions so that the agent can explore and adapt to
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new tasks more intelligently and the model can solve real-world

tasks more effectively.

The Application Performance of RL andMeta-Learning. To deal

with the differences between simulation environments and real

scenes, the tasks or the networks can be transferred successfully

using RL or meta-learning. Chances are that most of the existing

algorithms with good performance in simulation cannot perform

as well in the real world,279 which limits the applications of the

models in simulation. Therefore, content-rich and flexible simula-

tion frameworks, namely physics engines such as AI2-THOR,61

MuJoCo,270 or GymFC,177 synthetic datasets such as SUNCG,171

and robot operating platforms such as V-REP (virtual robot exper-

iment platform),280 will help to keep the learned information in

more detail so that when transferred into the real world the perfor-

mance is potentially good.115,183 In the future, more informative

simulation environments and more flexible real-world platforms

will shorten the gap between simulation and real world, thereby

making the model more accurate and transferable. For example,

a humanoid robotic hand with multiple degrees of freedom is

able to deal with tasksmore accurately;281 3D simulation involving

shared tasks, simulators, and datasets ensures that the learned

skills can be transferred successfully to reality.282 In sum, due to

the high similarity between simulation and real-world platforms,

various high-complexity applications trained in simulation can

be accurately transferred into practice.

Conclusion
In this review, we aim to contribute to the evolution of autonomous

systems by exploring the impacts of accuracy or transferability, or

both of them, on complex computer vision tasks and decision-

making problems. To this end, we mainly focus on basic chal-

lenging perception and decision-making tasks in autonomous

systems, such as image style transfer, image SR, image deblur-

ring/dehazing/rain removal, semantic segmentation, depth esti-

mation, pedestrian detection, person re-ID, pedestrian tracking,

robot navigation, and robotic manipulation. We introduce some

basic concepts and methods of transfer learning and its special

case domain adaptation, then briefly discuss three typical adver-

sarial learning networks, namely GANs, cGANs, and CycleGAN.

We also present some basic concepts of RL, explain the idea of

meta-learning, and discuss the relationship between adversarial

learning, RL and meta-learning. Additionally, we analyze some

typical DL methods and focus on the powerful performance of

GANs in computer vision tasks, and discussRL andmeta-learning

methods in robot control tasks in both simulation and the real

world. Moreover, we provide summary tables of learning-based

methods for different tasks in autonomous systems,which include

the training manners, loss function of models, and experimental

platforms in visual and robot control tasks. Finally, we discuss

main challenges and future works from the aspects of perception

and decision-making of autonomous systems by considering ac-

curacy and transferability.
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