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A B S T R A C T   

Compared with electrical resistance tomography, capacitively coupled electrical resistance tomography (CCERT) 
is preferred since it avoids problems of electrode corrosion and electrode polarization. However, reconstruction 
of conductivity distribution is still a great challenge for CCERT. To improve reconstruction quality, this work 
proposes a novel image reconstruction method based on total fractional-order variation regularization. Simu-
lation work is conducted and reconstruction of several typical models is studied. Robustness of the proposed 
method to noise is also conducted. Additionally, the performance of the proposed reconstruction method is 
quantitatively evaluated. We have also carried out phantom experiment to further verify the effectiveness of the 
proposed method. The results demonstrate that the quality of reconstruction has been largely improved when 
compared with the images reconstructed by Landweber, Newton-Raphson and Tikhonov methods. The inclusion 
is more accurately reconstructed and the background is much clearer even under the impact of noise.   

1. Introduction 

Electrical resistance tomography (ERT) is an emerging imaging 
technique which has received considerable attention in monitoring 
multiphase flow [1–3]. Compared with other tomographic methods, 
ERT has advantages of fast response, low cost, non-radiation and 
non-invasiveness [4,5]. It is able to visualize conductivity distribution. 
However, electrodes which are performed as sensor in ERT are in con-
tact with the measured medium. As a result, electrode corrosion or 
electrode polarization occur which affects measurement accuracy. 
Inspired by capacitively coupled contactless conductivity detection 
(C4D), capacitively coupled electrical resistance tomography (CCERT) 
has been developed [6,7]. It is a non-contact conductivity measurement 
method with which imaging of conductivity distribution can be also 
realized. In CCERT, an array of electrodes is installed outside the pipe at 
equal intervals. Since the electrodes are not contact with the medium in 
the pipe, the problems of electrode corrosion and polarization in ERT 
can be avoided. It largely improves the system reliability and reduces the 
maintenance cost. 

It should be remarked that image reconstruction is essential for 

conductivity reconstruction with CCERT. By processing the measured 
data, conductivity distribution in the detected region can be visualized 
with an image reconstruction method. It is known that reconstruction in 
ERT is mathematically a nonlinear ill-posed inverse problem. To cope 
with this problem, various methods have been proposed [8–11]. Similar 
with ERT, it is also a great challenge for imaging of conductivity dis-
tribution with CCERT. Up until now, a number of methods have been 
proposed for image reconstruction in CCERT. In Ref. [12], a hybrid 
image reconstruction method with the combination of Tikhonov regu-
larization and synchronous iterative reconstruction technique is pre-
sented for recovering conductivity distribution. In Ref. [13], image 
reconstruction in CCERT is implemented by combining 
Levenberg-Marquardt (L-M) method with synchronous algebraic 
reconstruction technique. With grey-level distribution of the image ob-
tained by L-M method as the initial iterative value, the reconstruction is 
realized by employing synchronous algebraic reconstruction technique. 
In Ref. [14], an image reconstruction method combing linear back 
projection algorithm with K-means clustering algorithm is proposed. 
The linear back projection algorithm is used to obtain the original 
reconstructed image and the K-means clustering algorithm is used to 
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obtain grey threshold values. Although some satisfactory results have 
been acquired, the reconstruction quality is still needed to be improved. 

To solve a typical ill-posed inverse problem in electrical tomography, 
Tikhonov regularization is a classic approach [15]. By adding a 
smoothing regularization term, the ill-posed problem can be regularized 
and is converted into a well-posed problem. However, the edge of an 
image is not well preserved with this method [16]. Comparatively, total 
variation regularization offers an alternative for edge preservation since 
it allows solutions with discontinuities [17–20]. The disadvantage is that 
undesired blocky effect also known as staircasing artifact is yielded [21]. 
This is due to the fact that this method tends to convert smooth regions 
of solution into piecewise constant regions during functional minimi-
zation [22]. Mathematically, the problem of total variation method can 
be addressed by introducing higher-order or fractional-order de-
rivatives. The success of these methods has been demonstrated in the 
field of image processing [23–25]. In this work, a novel image recon-
struction method based on total fractional-order variation regularization 
（TFVR） is proposed for recovering conductivity distribution in 
CCERT. 

The remainder of this work is organized as follows. In section II, the 
mathematical model of CCERT is presented. The proposed TFVR method 
is provided in section III. In section IV, numerical simulation and 
phantom experiment are conducted to demonstrate the effectiveness of 
the proposed method. Also, comparison work with other reconstruction 
methods is performed. Section V draws the conclusion. 

2. Mathematical model of CCERT 

A typical CCERT measurement system is mainly composed of an 
array of sensor electrodes, a data acquisition and processing unit, and an 
image reconstruction unit. Fig. 1 shows the arrangement of electrodes in 
CCERT and its equivalent excitation-measurement circuit. As shown in 
Fig. 1(a), twelve electrodes are equidistantly equipped around an insu-
lating pipe filled with conductive medium. With one electrode excited 
by an alternating voltage and one electrode performed as a measure-
ment terminal, an AC path is established between the two electrodes 
[26]. The equivalent circuit is illustrated in Fig. 1(b). Cp1 and Cp2 denote 
the coupling capacitance between two electrodes while Rm represents 
the equivalent resistance of conductive medium. Note that the current 
measured from the detection electrode reflects medium conductivity. 
Based on the measurement obtained by the data acquisition and pro-
cessing unit, conductivity distribution is visualized with the image 
reconstruction unit. 

The electrode is excited at the frequency of 500 kHz. Since the 
wavelength of the excitation signal is much longer than the dimension of 
the detected region, sensitive field in CCERT is a quasi-static electro-
magnetic field. Based on Maxwell equations, the relationship between 
potential distribution and electrical parameters is mathematically 
described by Ref. [27]: 

∇((σ(x, y)+ jωε(x, y))∇ψ(x, y))= 0  (x, y)⫅Ω (1)  

where σ(x, y) represents conductivity distribution, ε(x, y) and ψ(x, y) are 
respectively spatial permittivity and potential distribution, and Ω de-
notes the sensing area. 

Boundary conditions are expressed by 

ψi(x, y) = V0 (x, y)⫅Γi

ψj(x, y) = 0 (x, y)⫅Γj

∂ψk(x, y)
∂n

= 0 (x, y)⫅Γk(k ∕= i, j)

(2)  

where i, j and k are the indexes of excitation electrode, detection elec-
trode and floating electrodes, respectively; V0 is the sinusoidal excitation 
voltage; Γi , Γj , Γk represent the spatial locations of excitation electrode, 
detection electrode and floating electrodes, respectively; n denotes 
outward unit normal vector. 

The current Iij measured on the detection electrode can be obtained 
by [28]. 

Iij =

∫

Γ
J⋅dΓ (3)  

where J represents current density near the electrode. 
The equivalent impedance Zij between the excitation and detection 

electrode pairs can be calculated. It is worth noting that only the real 
part of Zij represents equivalent resistance between electrodes which 
reflects conductivity. Therefore 

Zij =
V0

Iij

Rij = Re
(
Zij
)

(4)  

where Rij is the equivalent resistance between electrode pairs i and j. 
To mathematically describe forward problem of CCERT, variation of 

equivalent resistance ΔR against conductivity change is formulated by 
[29]. 

ΔR= SΔσ (5)  

where S represents sensitivity matrix which reflects the change of 
resistance caused by conductivity variation in the measured domain. 

For simplicity, (5) is rewritten as 

H = Sg (6)  

where H represents ΔR and g stands for Δσ. 

3. Image reconstruction based on total fractional-order 
variation regularization 

It can be found from (6) that conductivity distribution in the detected 
region can be calculated once resistance and sensitivity matrix are 
known. In this paper, a novel total fractional-order variation regulari-
zation (TFVR) strategy is proposed for reconstructing conductivity 

Fig. 1. (a)The sketch of a 12-electrode CCERT sensor (b)Equivalent circuit of an electrode pair.  
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change against homogeneous distribution in CCERT. To cope with the 
ill-posedness of reconstruction, a fractional-order regularization term is 
added to restrict the solution. The proposed TFVR strategy is mathe-
matically modeled as 

ĝ = argmin
g

{
λ
2
‖Sg − H‖

2
2 +‖Dpg‖1

}

(7)  

where ĝ is the estimated optimal conductivity, λ is the regularization 
parameter used to balance the fidelity term and the regularization term, 
Dp is the pth order finite difference in which p is the order and D is the 
gradient operator. 

Eq. (7) can be rewritten as 

ĝ = argmin
g

{
λ
2
‖Sg − H‖

2
2 +‖w‖1

}

, Dpg=w (8) 

Due to non-differentiability and nonlinearity, it is still difficult to 
solve (8) directly and effectively. Therefore, iterative alternating mini-
mization method is introduced to obtain the solution of inverse problem. 
According to Ref. [30], minimized augmented Lagrangian function of 
(8) is formulated as 

min
w,g

LA(w, g)= ‖w‖ − vT( DPg − w
)
+

β
2
⃦
⃦DPg − w

⃦
⃦2

2 − λT(Sg − H)

+
μ
2
‖Sg − H‖

2
2 (9)  

where T denotes the transpose operator, and v, β, μ are the augmented 
Lagrangian multipliers. 

Referring to alternating direction method introduced in Refs. [31] 
and [32], (9) is decomposed into two simple sub-problems termed as w 
sub-problem and g sub-problem which are respectively expressed as: 
⎧
⎪⎪⎨

⎪⎪⎩

min
w
‖w‖ − vT(Dpgm − w) +

β
2
‖Dpgm − w‖2

2

min
g

ξm(g)≜ − vT(Dpg − wm+1) +
β
2
‖Dpg − wm+1‖

2
2 − λT(Sg − H) +

μ
2
‖Sg − H‖

2
2

(10) 

For the w sub-problem, its solution is given by 

wm+1 =max
(⃦
⃦
⃦
⃦Dpgm −

v
β

⃦
⃦
⃦
⃦ −

1
β
, 0
) Dpgm − v

β⃦
⃦
⃦
⃦Dpgm − v

β

⃦
⃦
⃦
⃦

(11) 

The solution of the g sub-problem is computed by: 

gm+1 =
(
β(Dp)

TDp + μSTS
)+

((
DP)Tv+ β(Dp)

Twm+1 + STλ+ μSTH
)

(12) 

Besides, the one-step steepest descent method is adopted to obtain 
the final solution as: 

gm+1 = gm − αmdm (13)  

in which the step length is calculated by 

αm =
ZT

mZm

ZT
mYm  

where d is the gradient direction of the objective function. 
Note that 

Zm = gm − gm− 1 and Ym = dm(gm) − dm(gm+1) (14) 

During the iteration, the nonmonotone Armijo condition is required 
which is expressed as [33]. 

ξm(gm − αmdm)≤Cm − δαmdT
mdm (15)  

in which 

Cm+1 =
ηPmCm + ξm(gm+1)

Pm+1

Pm+1 = ηPm + 1  

where η and δ are selected between 0 and 1. 
To summarize, the proposed TFVR strategy for image reconstruction 

in CCERT can be solved by alternating minimization scheme which is 
tabulated in Algorithm 1.  

Algorithm 1: The solution for the proposed TFVR strategy 

Input: S, H, m,δ,ρ,η, w0, g0. 
Initialize:0 < δ,ρ,η < 1,C0 = LA(w0 ,g0). 
Iterations: 
1. While inner stopping condition unsatisfied do 
2. Compute wm+1 using (11); 
3. Set αm through formula (13); 
4. While formula (15) unsatisfied do 
5. Backtrack αm = ραm; 
6. End do 
7. Compute gm+1 by one-step steepest descent method (13); 
8. Set Cm+1 according (15); 
9. m = m+1 
10. End do 
Output:gm+1   

4. Simulation and experimental reconstruction 

4.1. Simulation work 

In this section, image reconstruction is conducted for CCERT. It is 
implemented with Matlab R2016a which is installed on a laptop with 
Intel Core 3.4 GHz processor and 8 GB RAM. In the simulation, forward 
problem is solved by Comsol MultiPhysics which is developed based on 
finite element method and forward solver is the same in all recon-
struction methods. A circular region with inner diameter of 50 mm and 
outer diameter of 54 mm is constructed. Twelve electrodes are equi-
distantly installed outside the circular region and inclusions are located 
in the detected area. The conductivity of the background and the in-
clusions is set to 0.03 S/m and 0.001 S/m, respectively. The circular 
region is meshed into triangular meshes when solving the forward 
problem. With an alternating voltage injected to an electrode, equiva-
lent resistance is calculated from another electrode while other elec-
trodes are set to floating potential. There are totally 132 measurement 
data. The sensitivity matrix is then obtained. Based on the calculated 
sensitivity matrix and the measured resistance, conductivity distribution 
is reconstructed with the proposed TFVR method implemented in Mat-
lab R2016a. To reduce the amount of calculation, square mesh is applied 
in the inverse problem. Note that the number of meshes when solving 
inverse problem is much smaller than that in the forward problem to 
avoid inverse crime. In addition, image reconstructions obtained by 
Landweber, Newton-Raphson and Tikhonov methods are performed and 
used for comparison. Mathematical equations for each compared 
method are expressed as. 

Tikhonov method: 

F(g)= ‖Sg − H‖
2
+ λT‖g‖2 (16) 

Landweber method: 

gm+1 = gm − ‖S‖− 2
2 ST(Sgm − H) (17) 

Newton-Raphson method: 

gm+1 = gm − ‖S‖− 2
2 ST(Sgm − H) (18)  

where λT denotes the regularization parameter for Tikhonov method 
which is determined by empirical method. By setting the parameter in a 
certain range, repetitive calculation is conducted until satisfactory 
reconstruction is obtained and the optimal regularization parameter is 
then determined. 
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In the study, six different models are reconstructed. The inclusion in 
the models has the same conductivity. These models cover inclusions 
with different quantities, different sizes and different locations. In model 
1, an inclusion with the diameter of 8 mm is placed close to Electrode 4. 
In model 2, two inclusions with the diameter of 8 mm are respectively 
positioned near Electrode 4 and Electrode 10. In model 3, the larger 
inclusion has the diameter of 14 mm and is placed close to Electrode 4 
while the smaller inclusion with the diameter of 10 mm is near Electrode 
10. In model 4 and model 5, three and four inclusions with the diameter 
of 8 mm are separately uniformly positioned. In model 6, an inclusion 
with the diameter of 12 mm is positioned in the center. Images recon-
structed by the TFVR method are shown in Fig. 2. During reconstruction, 
the conductivity of the inclusion and the background has been respec-
tively normalized to 1 and 0. Also, the reconstruction is compared with 
results of Landweber, Newton-Raphson and Tikhonov methods. 

From Fig. 2, it can be observed that the quality of images recon-
structed by Landweber method is the worst. The reconstructed inclusion 
tends to be much larger than the original object. For models when there 
are multiple inclusions in the detected region, the boundary of in-
clusions can not be clearly identified from the reconstructed image. 
Moreover, the solution is not very accurate because this method is semi- 

convergent and the optimal solution may not be found. Compared with 
Landweber method, images reconstructed by Newton-Raphson method 
are generally improved. The boundary is clearer and it is easier to 
identify the boundary between inclusions. Images recovered by Tikho-
nov method are similar with the results of Newton-Raphson method. 
However, it takes much less time for the reconstruction with Tikhonov 
method. Note that inclusions are still not well reconstructed and there 
are obvious artifacts in the reconstructed images. Comparatively, images 
reconstructed by the proposed TFVR method have been largely 
improved. The inclusion is the most accurately reconstructed among the 
four methods. Moreover, the boundary of the inclusion is the clearest 
and almost no artifact is observed in the background. 

For quantitative estimation of the proposed method in the recon-
struction, blur radius (BR) is introduced to evaluate artifacts. It is 
defined as 

BR=

̅̅̅̅̅
A0

A

√

(19)  

where A0 is the area of the reconstructed inclusion and A is the whole 
detected area [34]. 

Table 1 compares the calculated BR values when the reconstruction 

Fig. 2. Image reconstruction of different models without noise.  
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is conducted with the four methods. From (19), it can be found that a 
smaller BR value indicates fewer artifacts and higher reconstruction 
quality. Among the four methods, the proposed method shows the 
lowest BR values for all the six models. It further proves the excellent 
performance of this method in image reconstruction. 

In addition, correlation coefficient (CC) and relative error (Re) are 
also introduced to quantitatively describe the reliability of the proposed 
method in reconstructing circular inclusions with different size. Note 
that CC and Re respectively represents similarity and difference between 
the reconstructed image and the real image which are calculated as [35]. 

CC=

∑t

e=1

(

ge
c − gc

)(

ge
a − ga

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑t

e=1

(

ge
c − gc

)2 ∑t

e=1

(

ge
a − ga

)2
√ (20)  

Re=
‖gc − ga‖

2
2

‖ga‖
2
2

(21)  

where gc represents calculated conductivity, ga is actual conductivity, t is 
the number of pixels of gc, ge

c and ge
a is the eth elements of gc and ga, gcand 

gaare the average of gc and ga. 
Comparison of CC and Re values under noiseless condition is tabu-

lated in Table 2. It can be found that the largest CC and the smallest Re 
can be obtained with the proposed method. The results demonstrate that 
the TFVR method is more reliable when used to reconstruct conductivity 
distribution. 

It is also of great importance to estimate computing time of the image 
reconstruction method. In Table 3, time performance of Landweber, 
Newton-Raphson and Tikhonov methods and the proposed method are 
compared. It can be found that Newton-Raphson method takes the 
longest time as multiple iterations are required. The proposed method 
shows a significant improvement in reconstruction time over Landweber 
and Newton-Raphson methods. Since Tikhonov method requires no 
iteration, calculation time of the proposed method is a little longer than 
Tikhonov method. Although non-iterative Tikhonov algorithm is 
preferred for the reconstruction time, its reconstruction quality is very 
poor which may be suitable for rough estimation of dynamic process. 
However, in some industrial processes, it requires to calculate fraction of 
different phases. For such cases, reconstruction quality is also the focus 
of study. Therefore, reconstruction quality and time performance are 
both important for an image reconstruction algorithm. Besides, 
computing time of the proposed method would be reduced if a computer 
with higher performance is adopted. 

It is known that it is difficult to reconstruct inclusions with different 
conductivity. Aside from reconstruction of inclusions with the same 
conductivity, it is also essential to study the performance of the proposed 
method in reconstructing inclusions with different conductivity. Fig. 3 
shows reconstruction of a model with the four methods. In this model, 
two inclusions respectively having the conductivity of 0.001 S/m and 
0.005 S/m are positioned in the detected region. As can be seen from 
Fig. 3, the image reconstructed by the proposed method is obviously 
much better than other three regularization methods. The inclusion is 
the most accurately reconstructed. Also, the background is the clearest 
and no artifacts are observed. 

It should be noted that noise has a large impact on the measurement. 
To evaluate the anti-noise performance of the proposed TFVR method in 
the image reconstruction, Gaussian white noise with a noise level of 1% 
is considered to simulate a practical system. Under the effect of noise, 
reconstruction result is shown in Fig. 4. It is obvious that images 
reconstructed by the four methods are affected by the noise. In some 
reconstructions, the recovered inclusions are deformed and more arti-
facts are observed. Nevertheless, the TFVR method proposed in this 
work shows the strongest robustness to the noise among the four 
methods. The inclusion is still the best reconstructed and the back-
ground shows the fewest artifacts. 

Under the noise level of 1%, Table 4 compares the BR values when 
reconstruction of six models is performed with the four methods. Again, 
the proposed TFVR method shows the smallest BR value among these 
methods which further demonstrates the robustness of this method to 
noise. 

For the six models under the noise level of 1%, comparison of CC and 
Re values is given in Table 5. Compared with the results under noiseless 
condition, CC becomes smaller while Re gets larger. Nevertheless, the 
proposed TFVR method still shows its better anti-noise performance 
than other three methods. 

In addition, Fig. 5 shows the anti-noise performance of the proposed 
TFVR method in reconstructing inclusion with different conductivity. 
Reconstructed images are compared with the results obtained by 
Landweber, Newton-Raphson and Tikhonov methods. It is found that 
shape of inclusions can be much better reconstructed by the TFVR 
method and reconstruction is less affected by noise. Comparatively, 
serious deformation of inclusions is generated and lots of artifacts are 
observed in the reconstructed images of other three methods. 

4.2. Phantom experimental validation 

To validate the feasibility and effectiveness of the proposed TFVR 
image reconstruction algorithm, we carried out phantom experiments 
on a 12-electrode CCERT system in our laboratory [36]. A tank with 
inner and outer diameter of respectively 106 mm and 110 mm is filled by 
tap water with the conductivity of 0.018 S/m. Twelve electrodes with 
the angle of 25◦ are equidistantly arranged outside the tank. Several 
combinations of plastic rods with the diameter of 26.5 mm, 29.5 mm and 
34.5 mm are employed as the inclusion. In the experiment, the tem-
perature is 24 ◦C. Data acquisition frame rate is 30 frames/s. The fre-
quency and amplitude of the excitation voltage are 500 kHz and 3.3V 
respectively. By injecting an AC voltage into an excitation electrode, 
current reflecting conductivity of sensing area can be successively 

Table 1 
Comparison of blur radius values with different methods.  

Method model Landweber Newton-Raphson Tikhonov TFVR 

1 0.4312 0.3747 0.3562 0.1823 
2 0.5830 0.5264 0.5000 0.2301 
3 0.5061 0.4629 0.4508 0.2506 
4 0.7681 0.6248 0.6058 0.2579 
5 0.8773 0.6714 0.6452 0.2741 
6 0.5702 0.4938 0.4799 0.2046  

Table 2 
CC and Re values under noiseless condition.  

Model Landweber Newton-Raphson Tikhonov TFVR 

CC/Re CC/Re CC/Re CC/Re 

1 0.4480/0.3813 0.5430/0.3352 0.5276/0.3418 0.7251/0.1528 
2 0.4291/0.4143 0.5314/0.4046 0.5144/0.4078 0.7203/0.1714 
3 0.6026/0.3460 0.6597/0.3210 0.6788/0.3084 0.7700/0.2451 
4 0.4784/0.5231 0.5241/0.4645 0.4856/0.4689 0.5426/0.3696 
5 0.4434/0.5401 0.4966/0.4942 0.4551/0.5323 0.5178/0.4174 
6 0.5458/0.3488 0.7218/0.2311 0.6718/0.2598 0.8577/0.1372  

Table 3 
Comparison of time performance with different methods.  

Method model Landweber Newton-Raphson Tikhonov TFVR 

1 0.1467 0.4681 0.0128 0.0828 
2 0.1392 0.4560 0.0126 0.0809 
3 0.1358 0.4630 0.0138 0.0817 
4 0.1345 0.4592 0.0142 0.0810 
5 0.1355 0.4655 0.0129 0.0825 
6 0.1383 0.4551 0.0132 0.0803  
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obtained on the detection electrode. The measurement cycle continues 
until each electrode has been selected as excitation electrode. For a 12 
electrodes CCERT system, a total of 66 independent measurements are 
then obtained. Fig. 6 shows reconstruction results. Also, comparison is 
made with the images reconstructed by Landweber, Newton-Raphson 
and Tikhonov methods. From Fig. 6, it can be observed that the pro-
posed TFVR method outperforms other three methods during the 
reconstruction of conductivity distribution. The reconstructed object is 
the most similar with the true inclusion. Furthermore, the boundary of 
inclusions is the clearest and the artifacts in the background are the 

Fig. 3. Reconstruction of a model with inclusions having different conductivity.  

Fig. 4. Image reconstruction under noise level of 1%.  

Table 4 
Comparison of blur radius values under noise level of 1%.  

Method model Landweber Newton-Raphson Tikhonov TFVR 

1 0.4773 0.4589 0.4298 0.1683 
2 0.6099 0.5659 0.5648 0.2135 
3 0.5205 0.5000 0.4988 0.2163 
4 0.7728 0.6058 0.7453 0.2531 
5 0.8710 0.7616 0.8200 0.2718 
6 0.6877 0.6078 0.6209 0.1985  
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least. Although the laboratory scenario is a bit different when measuring 
with pumps and motors working around, clear images can still be 
reconstructed if effective shielding measures are taken to protect the EIT 
equipment from noise interruption. 

5. Conclusion 

In this paper, a novel TFVR method is proposed for recovering con-
ductivity distribution in CCERT. According to the measurement princi-
ple, the mathematical model of CCERT is firstly established. To acquire 
conductivity distribution, iterative alternating minimization scheme is 
adopted to solve the proposed method. To verify the performance of the 
proposed TFVR strategy, reconstruction of several typical models with 
inclusions having the same conductivity is studied by simulation work. 
An additional model with inclusions having different conductivity is also 
studied. The results show that images reconstructed by the proposed 
method are obviously much better than other three regularization 
methods. By introducing the concept of blur radius, quantitative eval-
uation of the proposed method in inhibiting artifacts is conducted. It is 
found that BR values of the proposed method are the lowest which in-
dicates the fewest artifacts and highest reconstruction quality. Addi-
tionally, reliability of the proposed method is also quantitatively 
validated by CC and Re values. Calculation time of the proposed method 

Table 5 
The values of Re and CC under noise level of 1%.  

Model Landweber Newton-Raphson Tikhonov TFVR 

CC/Re CC/Re CC/Re CC/Re 

1 0.4405/0.3976 0.4870/0.3839 0.4159/0.3995 0.7156/0.1693 
2 0.4182/0.4332 0.4952/0.4172 0.4450/0.4126 0.6913/0.3106 
3 0.5911/0.3627 0.6081/0.3434 0.5747/0.3716 0.6480/0.3135 
4 0.4614/0.5859 0.5015/0.4851 0.4923/0.4905 0.5317/0.3781 
5 0.4331/0.5523 0.4850/0.5042 0.4402/0.5348 0.5059/0.4185 
6 0.5029/0.4597 0.5833/0.3877 0.5451/0.4203 0.7749/0.2377  

Fig. 5. Image reconstruction of inclusions with different conductivity under noise level of 1%.  

Fig. 6. Reconstructed images based on experimental cases.  
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is acceptable. Furthermore, anti-noise performance of the four methods 
is compared and the strongest robustness to noise is observed for the 
proposed TFVR method. Phantom experiments demonstrate the effec-
tiveness of the proposed method. Therefore, the proposed method can be 
considered as a promising candidate for reconstruction of conductivity 
distribution in CCERT. 
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