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A B S T R A C T   

Silicon heterojunction solar cells have been gaining remarkable attention in the photovoltaic industry in recent 
years owing to their low temperature coefficient and high efficiency. This study aimed to maximize the short 
circuit current density (Jsc), which is directly correlated with the absorbance of the solar cells. An advanced ray 
tracking model and hall effect measurement was used to improve the optical properties of Al2O3/ITO as a double- 
layered anti-reflection coating (DLARC) on the solar cell. RF/DC power sputtering system was used to deposit 
ITO layer, while atomic layer deposition was used to deposit Al2O3 on ITO to create a DLARC. An average 
decrease in reflection from 9.33% to 4.74% and enhancement in EQE from 76.89% to 84.34% were observed for 
the DLARC in the wavelength spectrum at 300–1100 nm. It also exhibited a higher Jsc value of 41.13 mA/cm2 

and maximum conversion efficiency of 21.6%. The findings of both simulation and experiments showed that the 
Al2O3/ITO DLARC has better anti-reflection properties than a single-layer ITO coating.   

Introduction 

Silicon heterojunction (SHJ) solar cell is getting considerable interest 
in photovoltaic research and have been extensively studied. High effi
ciency SHJ solar cells are produced by linking the amorphous silicon (a- 
Si) and crystalline silicon (c-Si) technologies [1–6]. They have a cost- 
effective fabrication process along with an improved temperature co
efficient when compared with standard c-Si solar cell [3–9]. Further
more, SHJ solar cells are suitably shaped for applications in thin c-Si 
wafer. [10]. However, cells made with a thin wafer has low absorption 
efficiency in the red and near-infrared portions of the solar spectrum 
resulting in a lower Jsc. The hydrogenated a-Si (a-Si:H) emitter layer 
causes excessive reflection losses in SHJ solar cells owing to their high 
refractive index [11]. Therefore, lowering the optical losses would 
improve the absorption properties of a solar cell, which is the crucial 
aspect for attaining high efficiency. Accordingly, these cells must have 
excellent anti-reflection activity to trap light. Current SHJ solar cells 
utilize pyramidal texturing through alkali etching to achieve proper 
light trapping and anti-reflection properties [12–14]. Transparent 

conductive oxide (TCO) on a textured surface reduces reflectance while 
also increasing the injection of photons from the solar spectrum into the 
device [12,13,15–18]. TCO layer optimization in SHJ solar cell needs to 
balance series resistance, optical and recombination losses [19]. The 
TCO criteria include, but are not restricted to the following: (1) the 
refractive index should be less than 2 to assist as an anti-reflection 
coating (ARC) on a silicon wafer; (2) the front contact layer should be 
transparent in the wavelength spectrum of 300–1100 nm; (3)TCO on the 
front side of the cell should have the required lateral conductivity [19]; 
(4) both TCOs should be able to make strong ohmic interactions with 
doped a-Si films and corresponding metal electrodes where there is a 
possibility to form Schottky barriers [20]; and (5) the underlying a-Si 
layer should not be damaged by TCO deposition [21] and it should not 
cause any interaction that would lower the SHJ solar cell’s efficiency in 
the c-Si/a-Si heterojunction [22]. The TCO material indium tin oxide 
(ITO) fulfills the aforementioned requirements and is widely used in SHJ 
solar cell technology [23–26]. ITO is also used for an antireflection 
purpose in SHJ solar cell [11]. Multilayer ARC is observed to be the most 
effective structure for optimizing the performance of SHJ solar cells 
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through the minimization of incident solar radiation reflectance losses 
[27–30]. Moreover, adding a dielectric coating on the top of the TCO 
layer lowers the cost and enhances the stability and efficiency of the 
solar cell and module [31]. The dielectric Al2O3 coating have gained 
popularity owing to their excellent stability, high dielectric strength, 
toughness under harsh conditions and high transparency [32]. In recent 
years, Al2O3 coatings have been used in a variety of practical applica
tions such as refractory coatings, anti-corrosive coatings [33], and anti- 
reflective coatings [27,34]. The addition of Al2O3 on TCO layer is 
promising for enhancing the efficiency of SHJ solar cell. To best of our 
knowledge, the antireflection effect of dielectric layer Al2O3 on the top 
of ITO has not been practically analyzed for SHJ solar cell and it need to 
be thoroughly investigated. 

This work is supported by simulation, designing, and fabrication of a 
Al2O3/ITO DLARC on textured SHJ solar cells and investigation of its 
optoelectronic properties in the wideband spectrum of 300 to 1100 nm. 
The focus is to maximize the light absorbance in the cell, thereby 
enhancing Jsc. The optimized thickness of DLARC was adjusted by 
having a tradeoff between optical and electrical properties. The desired 
solar cell was then fabricated to validate the simulation design for 
maximizing the efficiency. 

Experimental 

The p-doped czochralski-grown monocrystalline Si wafer (160 
µm,1–10 Ω) was utilized for the fabrication of the desired SHJ solar cell. 
The typical RCA-1 and RCA-2 process supported by ultrasonic treatment 
was used to clean the Si wafer. Plasma-enhanced chemical vapor 
deposition was used under a SiH4:H2: B2H6 (1%) environment with a gas 
ratio of 3:22:0.09, power of 14mW cm2, chamber temperature of 200 ◦C 
and a deposition pressure of 100 mTorr. Using this system, a-Si:H(i) 
films having a thickness of 5 nm were deposited on both sides of the 
wafer. Consequently, 7 nm a-Si:H(n) and a-Si:H(p) films were added to 
the front and rear of the wafer, respectively. RF/DC sputtering system 
having 300/200 W power with a target which was made up of 90 wt% 
In2O3 and 10 wt% SnO2 with 99.999% purity (purchased from baco 
solution) was used to deposit ITO layer on the glass (eagle 2000, 
Corning) and silicon wafer having a thickness of 70 nm. While, on the 
rear part of the cell, the thick 130 nm ITO film was deposited. Argon gas 
(30 sccm) was utilized for the sputtering process at a chamber temper
ature of 180 ◦C. ITO deposition was completed by placing a metallic 
mask on the a-Si layer to make a shaped ITO. A high vacuum with an 
initial pressure of 10− 5 Torr and a working pressure of 10− 3 Torr was 
created. Silver paste was used to fabricate metallic electrodes using a 
low-temperature screen printing process. Finally, NCD Lucida D100 
atomic layer deposition system was used to deposit 50 nm Al2O3 on ITO 
to create a DLARC. A schematic illustration of the textured SHJ solar cell 
with Al2O3/ITO as a DLARC is depicted in Fig. 1. 

The thickness and refractive index measurement of ITO and Al2O3 
layers was done by using spectroscopic ellipsometry system (Nano view, 
MF-1000) and spectroscopic ellipsometer (Elli-SE-1000). The sheet 
resistance of ITO layer was calculated using a hall effect measurement 
system (Ecopia HMS-3000). The reflectance and transmittance were 
measured by an ultra-violet spectrophotometer (SCINCO-3100). The 
surface morphology of the DLARC films was seen through field emission 
scanning electron microscopy (JEOL JSM-7600F). The external quan
tum efficiency (EQE) of the textured SHJ solar cell was investigated 
using a spectral response measurement system (QE/IPCE, QEX7). The 
electrical parameters of the fabricated SHJ solar cell were analyzed 
using current density–voltage (J-V) technique in Air Mass (AM) 1.5, 1 
sun illumination conditions (100 mW/cm2). OPAL-2 software by PV 
Lighthouse was used to perform an optical simulation to optimize the 
thickness and optical properties of the Al2O3/ITO DLARC [35]. 

Results and Discussions 

To evaluate the suitability of ARC on a fabricated cell, it is necessary 
to consider the AM 1.5 solar spectrum [36] as shown in Fig. 2. The 
wavelength spectrum between 300 and 1100 nm was selected for the 
research, because the spectral power density for wavelengths shorter 
than 300 nm is negligible, while the upper wavelength for useful irra
diation for c-Si is 1100 nm [37]. 

Optical simulation for SHJ solar cell 

The textured SHJ solar cell was used to perform the optical simula
tion. It is established that the average weighted reflectance (R) of the 
textured surface is considerably lower than that of flat smooth polished 
surface due to light gets opportunity to strike multiple points on the 
textured surface and more possible ways to enter the wafer as shown in 
Fig. 3(a) [11]. A ray-tracing model was utilized to simulate the DLARC 
on a textured pyramid surface. The pyramids were randomly distributed 
with an angle of 54.7◦. As the bandgap energy of c-Si is 1.1 eV [30], so 
the absorbable wavelength region up to 1100 nm was considered. First, 
the weighted average absorbance (Ac-Si) in c-Si with ITO single-layer 
anti-reflective coating (SLARC) was computed relative to the ITO 
thickness, as depicted in Fig. 3(b) [11]. The figure shows that the 
maximum Ac-Si can be obtained when the thickness of ITO is ~ 70 nm. 
The same ITO thickness was previously calculated for textured SHJ solar 
cells [11]. 

The refractive index values of ITO and Al2O3 at 550 nm are ~ 1.9 

Fig 1. Fabricated structure of SHJ solar cell having an Al2O3/ITO DLARC.  
Fig 2. Photon flux density as a function of wavelength for solar spectrum of 
AM 1.5. 
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and ~ 1.7, respectively. Given that the refractive index of Al2O3 is 
located between that of air and ITO, it may be added on the ITO surface 
to create a DLARC. Ac-Si and R at varying ITO/Al2O3 coating thicknesses 
was analyzed using simulation tool, as shown in Fig. 4(a, b). It was 
observed that 60 nm ITO shows minimum R and maximum Ac-Si but the 
sheet resistance (Rsheet) at this thickness was higher than those of higher 
ITO thicknesses. Fig. 4 (c) shows the Rsheet values at varying ITO thick
nesses. Increasing the ITO thickness increases the parasitic light ab
sorption from the TCO itself [31]. This parasitic absorption would a 
hinderance in the absorption of light in c-Si and limiting the conversion 
efficiency [38]. A trade-off between optical and electrical properties was 
used to achieve optimum efficiency performance. The Rsheet of 70 nm 
ITO (70 Ω/sq) is less than that of 60 nm ITO (86 Ω/sq). Moreover, the R 
and Ac-Si for 50/70 nm Al2O3/ITO are better than those of other DLARC 
Al2O3/ITO thicknesses. Therefore, 50/70 nm Al2O3/ITO as the DLARC 
thickness was chosen to maximize the efficiency of the textured SHJ 

solar cell. 

Surface Morphology 

To reduce the surface reflection and increase the light absorbance, a 
Al2O3/ITO DLARC with a thickness of 50/70 nm was deposited. The 
corresponding scanning electron microscopy image showing the surface 
morphology with a cross-sectional view is shown in Fig. 5. The 3D 
morphological textured surface of the SHJ solar cell, where pyramids 
can be easily observed, is shown in Fig. 5(a). The cross-sectional view of 
Al2O3/ITO layers deposited on the solar cell (Fig. 5(b)) indicates no 
intermediate layer is present. 

Optical Properties 

The DLARC can significantly minimize the optical loss in the cell. To 

Fig 3. (a) Representation of light path in flat and textured surface. (b) Ac-Si by varying the ITO thickness.  

Fig 4. The simulated (a) R and (b) Ac-Si in relation to the ITO and Al2O3 thickness. (c) Variation of sheet resistance of ITO with thickness.  
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quantitatively analyze the optical properties of DLARC, the study of 
refractive index of a material was carried out. The DLARC was consid
ered as an optical material having different refractive index stack 
together. The average refractive index of Al2O3 and ITO for the wave
length spectrum of 300–1100 nm are 1.71 and 1.95, respectively. The 
refractive index values in DLARC increases from top to bottom layer. It 
reduced the energy loss and enhanced the performance of DLARC. Fig. 6 
shows the refractive indexes of Al2O3 and ITO material for the wave
length region of 300–1100 nm. 

The average transmittance and reflectance of the 70 nm ITO layer 
were 84.29% and 7.87% respectively for wavelength spectrum of 
300–1100 nm. For Al2O3/ITO DLARC, it was 86.95% and 6.63%, 
respectively. The reflectance and transmittance of the ITO SLARC 
coating and Al2O3/ITO DLARC were computed after experiment and are 
shown in Fig. 7. 

An increase in transmission by 3.05% and a decrease in reflectance 
by 15.76% can be observed for having DLARC. In the wavelength 
spectrum of 400–700 nm, the average transmittance and reflectance of 
the SLAR ITO layer were 81.97% and 9.39%, respectively. Meanwhile, it 
was 92.05% and 4.33%, respectively for the DLARC, possessing an in
crease in transmission of 10.95% and a decrease in reflectance of 
53.89%. Moreover, the reflectance measurement on SHJ solar cell 
showed that R reduced from 9.33% in case of ITO SLARC to 4.74% in the 
case of Al2O3/ITO DLARC for the wavelength spectrum of 300–1100 nm. 

The reduction in R from 7.37% in case of ITO SLARC to 1.69% in the case 
of Al2O3/ITO DLARC for the wavelength spectrum of 500–1000 nm as 
shown in Fig. 9. This reduction in reflection causes more light to be 
trapped on the solar cell. Furthermore, the improved optical properties 
indicate more photocurrent in the solar cell, and hence the conversion 
efficiency of the fabricated SHJ solar cell was enhanced favorably. 

Electrical Properties 

After meaningful enhancement in the optical properties, similar 
improvements in the electrical properties are expected for Al2O3/ITO 
DLARC. The Jsc of a PV device is an important parameter to describe its 
power conversion efficiency [39–41]. A Jsc map at the AM 1.5G spec
trum is very valuable because it predicts the final Jsc output after 
catering all the optical and electrical losses in a complete solar cell [41]. 
The Jsc and efficiency (η) of the ITO SLARC were 39.91 mA/cm2 and 
20.95%, respectively. The Al2O3/ITO DLARC exhibited a higher Jsc and η 
of 41.13 mA/cm2 and 21.60% respectively which is 2.97% and 3% 
higher than those of the ITO SLARC. Fig. 8 shows the J-V curves of the 
ITO SLARC and Al2O3/ITO DLARC. 

The EQE calculates the total number of electrons leaving the cell 
divided by the total sum of incident photons at every wavelength [42]. 
EQE analysis is extremely important for examining the influence of the 
ARC on the complete performance of SHJ solar cells [43]. The average 
EQE enhancement from 76.89% to 84.34% was observed in the 

Fig 5. (a) The 3D morphological view and (b) cross-sectional view of the Al2O3/ITO layers on top of the cell.  

Fig 6. Measured refractive indices of ITO and Al2O3 in the wavelength spec
trum of 300–1100 nm. 

Fig 7. Optical reflectance and transmittance of Al2O3/ITO DLARC on a 
glass substrate. 

M.A. Zahid et al.                                                                                                                                                                                                                                



Results in Physics 28 (2021) 104640

5

wavelength spectrum of 300–1100 nm. The addition of Al2O3 layer 
shows significant increase in the EQE for mostly visible and near 
infrared wavelength region. The increase in EQE from 85.87% to 
96.20% was observed in the wavelength spectrum of 500–1000 nm as 
shown in Fig. 9. The EQE curve shows that Al2O3 layer can effectively 
improve the Jsc of the solar cell. The Jsc increased from 39.91 mA/cm2 to 
41.13 mA/cm2 because of EQE enhancement which is directly related to 
absorbance in the solar cell. This EQE enhancement for Al2O3/ITO 
DLARC effectively increases the Jsc of 1.22 mA/cm2 when compared 
with ITO SLARC. The EQE and reflectance curves for the ITO SLARC and 
optimized Al2O3/ITO DLARC are shown in Fig. 9. 

The graph shows higher EQE values for the entire wavelength range, 
except for wavelength over >~1040 nm. This is assumed that the light 
with a higher wavelength reflects less in SLARC than DLARC; however, it 
would not significantly affect the performance of the cell. Therefore, the 
overall DLAR exhibited improved electrical properties. 

Conclusion 

This work is focused on the fabrication and investigation of an SHJ 
solar cell with Al2O3/ITO as a DLARC on the front side based on the 

maximum average absorbance. Both the simulated and experimental 
results shows that the Al2O3/ITO DLARC has better anti-reflection effect 
which improves the optical and electrical properties. The fabricated 
textured SHJ solar cell with the Al2O3/ITO DLARC exhibited enhance
ment in EQE from 76.89% to 84.34%, reduction of average reflectance 
from 9.33% to 4.74% and an increase in Jsc from 39.91 mA/cm2 to 
41.13 mA/cm2 as compared to the ITO SLARC. The improved optical 
and electrical properties lead to increase the cell efficiency from 20.95% 
to 21.60%. These results suggest that the fabricated Al2O3/ITO DLARC 
can be effectively used in industrial SHJ solar cell applications. 
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