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Abstract

This work presents an unconventional fully coupled elasto-viscoplastic and damage constitutive model that is suitable for
nvestigating the failure mechanism of metallic materials. The constitutive equations are developed within a finite elastoplasticity
ramework under the assumption of hypoelastic-based plasticity. Anisotropic plastic potential and plastic-induced anisotropy
re modelled by means of the Hill48 yield criterion and a Chaboche-type non-linear kinematic hardening law, respectively. A
odified Voce-type law is assumed for the isotropic hardening behaviour. A novel law is proposed to account for an evolution of

he damage depending on the loading directions. The proposed model was implemented via user subroutine for the commercial
nite elements (FE) software Abaqus/Standard and used for the prediction of the cyclic failure of lead-free solder materials, the
rack formation in anisotropic AISI 316L steel specimens and the description of the failure behaviour of carbon steel notched
ound bars and flat grooved plates.
c 2021 Elsevier B.V. All rights reserved.

eywords: Rate-dependent plasticity; Damage anisotropic evolution; Plastic anisotropy; Kinetic logarithmic spin; Hypoelastic-based plasticity

1. Introduction

Metal failure is a relevant topic in several industrial sectors (i.e. automotive, aerospace, civil infrastructures
tc.), and its description has represented a challenge for many authors. The interest and increased attention to the
opic can be justified by several aspects: the improvement of the design of components or structures to reduce
he costs of production or maintenance; research on new construction or design strategies to introduce solutions
hat are innovative when compared to traditional approaches; the introduction of new materials or technologies
hat have broadened the field of the application of ductile materials (biomedical, aerospace, robotic etc.); better
nderstanding the physically based mechanism of the damaging process to develop better numerical tools for a more
ealistic simulation of the process. In particular, this last aspect became particularly relevant with the increase of
he computational power and the advent of finite elements (FE), extended finite elements (X-FE), discrete elements
DE) methods etc. The ability to push the computation limits with more accurate meshes, geometries and complex
oading or boundary conditions has led to the development of sophisticated constitutive models and damage criteria.

The phenomenon of material failure can be the outcome of very different processes, such as ductile fracture,
ow ductility fracture and progressive failure mechanism (i.e. fatigue or creep). An exhaustive description of the
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aforementioned mechanisms can be found in a recent work of Pantazopoulos [1] or the study by Besson et al. [2].
The present work focuses on ductile fracture where large plastic deformations are usually observed, which alter the
geometry or shape of the structures or components (i.e. necking, shear bands and deformation localisation). The
origin of the damaging process can be observed at a micro level [3–8], and it is generally triggered by the presence of
internal material defects (e.g. voids and inclusions) around which a stress localisation induces crystallographic slips
and progressive decohesion at the interface between the inclusion and the matrix. Alternatively, the inclusion can
break under the effect of the surrounding stress fields. Several recent works (de Geus et al. [9]; Nguyen et al. [10];
Siddiq, [11]; Vajragupta et al. [12]; Zhao et al. [13]; among others) investigated the damage at a micro or mesoscale
of observation by coupling crystal plasticity constitutive equations with scalar or tensorial damage variables. On the
one hand, a micro or mesoscale approach is extremely useful for understanding the mechanism of void formation,
growth and coalescence as well as the main role played by the matrix material anisotropy (either elastic or plastic),
different crystallographic orientations, porosity etc. A macro scale of observation continues to be very useful from
an industrial point of view, as it describes the damage as a progressive degradation of the mechanical properties
of the material. Macroscopic damage models are usually divided into three categories [2,14,15]: empirical failure
criteria [16–21], phenomenological models [22–29] and micromechanics-based models [30–34]. A discussion of
the advantages and disadvantages of the different formulations is not the goal of the present work. A detailed
discussion of the models can be found in Cao [35], while a comparison between different damage criteria and
modelling strategies can be found in other studies [14,36–39].

Despite the different damage models derived by the empirical failure criteria and the phenomenological and
icromechanics-based approaches, almost all the recent constitutive models [19,22,35,40–50] consider the damage

volution as a function of the inelastic strain and two non-dimensional stress parameters, i.e. the stress triaxiality
nd the Lode angle. In particular, damage evolution laws based on the two dimensionless stress parameters allow
ne to predict a realistic deformation at fracture under various loading conditions.

Recently, several efforts have been made to describe the anisotropic fracture, especially while considering
nisotropic metal sheets. Badreddine et al. [48] developed a fully coupled elastoplastic and isotropic damage
onstitutive model at finite strains, which considers plastic-induced anisotropy by the distortion of the yield surface.
he model results were in good agreement with the experimental results obtained by Khan et al. [51] for the
luminium alloy AL1100. In the studies by Badreddine et al. [52] and Badreddine and Saanouni [48], the authors
eveloped a non-associative finite strain anisotropic elastoplastic model fully coupled with anisotropic ductile
amage. The damage was described by a second-order tensor and the coupling with the plastic internal variables was
ealised by means of the equivalent energy principle. Rajhi et al. [53] applied a constitutive model that considered
nisotropic ductile damage fully coupled with the anisotropic plastic flow to describe the anisotropic failure of 316L
tainless steel. The numerical results showed good agreement with the experimental data, thereby pointing out the
ecessity of considering the anisotropy in the failure description of SS316L sheets. Recently, Zhang et al. [54]
roposed an elastoplastic damage model by adopting a Hill48 yield criterion [55] and a scalar damage variable.
he damage evolution accounted for the material anisotropy, Lode angle and stress triaxiality effects, resulting

n a quite good description of the material failure of notched and flat-grooved AA7050-T7451 specimens. Habib
t al. [56] investigated the anisotropic fracture of the ZEK100 magnesium alloy through experiments and numerical
imulations and by considering different stress states and strain rate effects.

The goal of this study is to present a phenomenological coupled elasto-viscoplastic and damage model based
n the constitutive equations of the Extended Overstress Subloading Surface (EOSS) theory [57,58] and developed
ithin the framework of the continuum damage mechanics (CDM). The present model, named Damage Extended

Overstress Subloading Surface (hereafter, DEOSS) model, aims to expand the previous fields of application of the
Subloading Surface theory, and it considers time-dependent irreversible deformations, an anisotropic yield criterion
(i.e. Hill48), anisotropic induced plasticity by means of a Chaboche’s type kinematic hardening law [59] and a
ductile damage evolution capable of taking into account a different damage evolution depending on the loading
directions in relation to the axes of anisotropy. Based on the well-known Lemaitre’s theory [60], a novel ductile
damage evolution law is proposed, capable of considering the effect of the stress triaxiality, the Lode angle and the
material anisotropy. Moreover, the constitutive equations are developed within a finite elastoplasticity framework
under the assumption of hypoelastic-based plasticity using the kinetic logarithmic spin proposed by Jiao and
Fish [61,62], thereby improving the description of the material deformation behaviour given in the previous works

of the authors (e.g. [57,58,63–65]).
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The paper is organised as follows: Section 2 introduces the constitutive equations of the coupled viscoplastic
nd damage model, dedicating an ad hoc session to the discussion of the damage evolution law and the kinematic
ramework. Section 3 deals with the numerical results in two parts. The first part aims to show the features of the
ovel damage evolution law, while the second reproduces certain experimental results found in the literature and
ertain experiments carried out by the authors in a previous work. Section 4 discusses the limitations that continue
o persists in the current formulation of the model, leaving the investigation of such limitations to future works.
inally, the conclusions are presented in Section 5.

. Constitutive equations

The constitutive equations are developed within a finite elastoplasticity framework under the assumption of
ypoelastic-based plasticity. In detail, an Eulerian rate-type formulation is assumed where the constitutive laws
re formulated in terms of objective rates of the Kirchhoff stress τ. Indicating the spatial coordinates of a generic

material particle with x and its spatial velocity with v, velocity gradient can be given as L = ∂v/∂x. Following
he Cartesian decomposition, L can be decomposed into a symmetric part D, i.e. the strain rate tensor, and a
kew-symmetric part W, which is the continuum spin. Thus,

D =
(
L + LT ) /2; W =

(
L − LT ) /2. (1)

he strain rate tensor D is additively decomposed into an elastic strain rate component De and a viscoplastic strain
ate component Dvp:

D = De
+ Dvp. (2)

he stress power ṗ can be written as:

ṗ = τ : D = τ : De
+ τ : Dp. (3)

here the Kirchhoff stress τ = Jσ is defined as the product of the Cauchy stress σ and the determinant of the
eformation gradient J = det(F). In this work negligible elastic volume changes and plastic incompressibility are
onsidered (i.e., J≈1), therefore σ ≈ τ. In the following equations the Cauchy stress or its co-rotational rate will be
dopted similarly to [66,67]. Moreover, a grade zero hypoelastic relation is assumed, adopting a elastic compliance
ensor E−1 independent of the stress as in Jiao and Fish [61]. Isotropic elasticity is considered in this work, assuming
hat the plastic flow and plastic hardening have no effect on the elastic properties [27,48,67] and considering that
lastic strains are generally small compared with plastic deformations in metallic materials. Moreover, the adoption
f an isotropic elastic tensor simplifies the finite step integration of the constitutive equations as shown in the
Appendix. This allows to define the elastic strain rate as De

= E−1
: τ̊ ≈ E−1

: σ̊. The symbol ‘◦’ indicates the
o-rotational rate of the tensors, which is discussed in Section 2.3. The definition of the viscoplastic strain rate will
e given in the following section.

.1. Coupled elasto-viscoplastic and damage equations

The subloading surface (hereafter, SS) theory was formulated by Hashiguchi [68,69] in order to overcome the
rawback of conventional plasticity theories regarding an abrupt formation of irreversible deformations whenever
he stress state lies on the plastic potential during the loading process. The main feature of the SS theory is the
ddition of an internal variable, named the similarity centre s that moves in the stress space, following the evolution
f the irreversible deformation and allowing a smooth generation of the plastic/viscoplastic strain. Since the initial
ormulation, several modifications were introduced to improve the material description. A detailed overview of the
heory with several applications can be found in Hashiguchi [70].

The EOSS model was formulated by the authors Fincato and Tsutsumi [57,58] to improve the description of
he time-dependent deformation of metallic materials under the cyclic loading condition that was still missing in
he subloading surface theory. For sake of brevity, the constitutive equations of the EOSS model have been omitted
ere; the reader can refer to the aforementioned literature for a detailed explanation. The aim of the present work
s to enrich the field of applications of the subloading surface theory to describe the failure behaviour of metals by

onsidering plastic anisotropy. Therefore, this section deals with the coupling of anisotropic damage variables with
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Table 1
State and associated variables in the DEOSS model.

State variables Associated state variables

Observable variables
Elasticity εe σ

Internal variables
Plasticity εvp σ

Similarity centre ε
vp
ss s

Kinematic hardening ε
vp
ks α

Isotropic hardening H F
Isotropic damage D Y

the viscoplastic internal variables as well as the introduction of an anisotropic yield criterion. A summary of the
constitutive equations is reported at the end of Section 2.2 (see Box 1).

Conventionally, two different configurations are considered in the CDM framework: (i) a damaged configuration
hat is characterised by the presence of defects and (ii) a mechanically equivalent fictitious undamaged configuration
here the body does not present defects (cracks). In this work we assumed the so-called rotated frame formu-

ation (RFF) [48,66,71,72] for expressing the constitutive laws in the actual damaged and fictitious undamaged
onfigurations. Briefly, to fulfil the objectivity requirement the constitutive equations are expressed in local rotated
onfigurations unaffected by any superposed spatial rigid body motion and this local configuration is obtained from
he current one by means of a proper orthogonal rotation tensor. Details about the orthogonal rotation tensor are
iven in the Appendix.

In the case of isotropy, a scalar internal variable, i.e. the damage variable D, is used to model the presence and
he evolution of irreversible defects during loading from an initial state D = D0 to the final material failure D = 1.

In most cases, an initial value of D0 = 0 is assumed. In the case of anisotropy, the damage representation should
e carried out with a tensorial variable, such as a set of vectors, second-order tensor [27,73,74] and fourth-order
ensor [75,76] since the crack orientation and evolution are strongly influenced by the material microstructure. In
his study, a scalar damage variable is considered; a discussion of the damage evolution is reported in Section 2.2.
he starting point is the definition of the variables that characterise the failure phenomenon and the distinction of

he variables into two classes: the observable variables and the internal variables (see Table 1).
The state variables εvp

ss and εvp
ks in Table 1 are objective Eulerian quantities that represent the storage viscoplastic

trains associated with the similarity centre and the back stress, respectively. In particular, it is assumed that the sum
f the storage strains (or the strain rates Dvp

ss , Dvp
ks ) and the corresponding dissipative counterparts εvp

sd and εvp
kd (or

heir rates Dvp
sd , Dvp

kd ) additively form the total viscoplastic strain εvp(or total viscoplastic strain rate Dvp). A similar
ssumption was also formulated by Hashiguchi [70].

εvp
= εvp

ss + ε
vp
sd Dvp

= Dvp
ss + Dvp

sd

εvp
= ε

vp
ks + ε

vp
kd Dvp

= Dvp
ks + Dvp

kd

(4)

he back stress variable α is regarded as a linear combination of N non-linear independent kinematic hardening
ontributions αi , following the approach proposed by Chaboche [59]. Each of the back stress αi is associated with
he storage and dissipative parts of the viscoplastic strains (i.e. εvp

= ε
vp
ks,i + ε

vp
kd,i ; Dvp

= Dvp
ks,i + Dvp

kd,i )

α =

N∑
i

αi i = 1, . . . N . (5)

he state variables reported in Table 1 are organised in couples: the elastic strain and the Cauchy stress tensors
εe, σ); the viscoplastic strain and the Cauchy stress tensors (εvp, σ); the storage similarity centre viscoplastic strain
nd the similarity stress tensors

(
ε
vp
ss , s

)
; the storage kinematic hardening viscoplastic strain and the kinematic back

tress tensors
(
ε
vp
ks ,α

)
; the isotropic hardening variable and the isotropic stress (H, F); the isotropic damage and

he damage energy release rate (D, Y ). Moreover, the strain equivalence hypothesis and the concept of effective
tress [60] are here assumed, allowing to express the stress and strain quantities into the fictitious undamaged and

he actual damaged configurations. The variables in the fictitious undamaged configuration are indicated with ‘∼’.

4
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˜
σ =

σ

(1 − D)
;

˜
α =

i ˜
αi =

α

(1 − D)
=

i

αi

(1 − D)
;

˜
s =

s
(1 − D)

;
˜
F =

F
(1 − D)

˜
εe = εe;

˜
εvp

= εvp
;

˜
H = H ;

. (6)

he variables defined in Eq. (6) are used in the state and dissipation potential expressed in the rotated fictitious
ndamaged configuration to derive the complete set of fully coupled constitutive equations. Firstly, the state potential
s analysed while assuming the Helmholtz free energy ψ , which is written for an isothermal case and also assuming
n additive decomposition of the potential in elastic-damage ψed and plastic-damage ψpd terms. Further, it should

be noted that the plastic-damage potential state can be additively decomposed into a kinematic ψpk , a similarity
centre ψps and isotropic ψpi terms. Alternative forms of state coupling are possible [77], depending on whether the
damage affects the free energy associated with the plasticity ψpd or not.

ρψ = ρψed
(
εe, D

)
+ ρψpd

(
εvp

ss , ε
vp
ks , H, D

)
= ρψed

(
εe, D

)
+ ρψpk

(
ε
vp
ks , D

)
+ρψps

(
εvp

ss , D
)
+ ρψpi (H, D)

ρψed
(
εe, D

)
=
(1 − D)

2
εe : E0

: εe

ρψpk
(
ε
vp
ks , D

)
=

∑
i

ρψpk,i
(
ε
vp
ks , D

)
= (1 − D)

∑
i

1
3

Ci
(
ε
vp
ks,i : ε

vp
ks,i

)
ρψps

(
εvp

ss , D
)

= (1 − D)
1
2

csε
vp
ss : εvp

ss

ρψpi (H, D) = (1 − D) F0

[
h1 H +

h1

h2
exp (−h2 H)

]
, (7)

where E0 is a fourth-order elasticity tensor (isotropic elasticity is assumed) in the fictitious undamaged configuration,
0 is the initial yield stress, h1 and h2 are two material constants regulating the isotropic hardening, Ci is a material

constant regulating the kinematic hardening and cs is a material parameter regulating the movement of the similarity
centre.

Sufficient conditions that are required for the Clausius–Duhem inequality (Eq. (8)1) to hold are the elasticity law
in Eq. (8)2 together with the dissipation inequality in Eq. (8)3 (i.e. φd mechanical dissipation).

σ :
(
De

+ Dvp)
− ρψ̇ed

(
De, D

)
− ρψ̇pk

(
Dvp

ks , D
)
− ρψ̇ps

(
Dvp

ss , D
)
− ρψ̇pi (H, D) ≥ 0

σ = ρ
∂ψed (ε

e, D)
∂εe

= (1 − D)E0
: εe

φd = φdp + φdd = σ : Dvp
− α : Dvp

ks − s : Dvp
ss − Ḟr  

viscoplastic dissipation (φdp)

−Y Ḋ  
damage dissipation (φdd )

≥ 0
(8)

he associated state variables α, s, F and Y in Eq. (8)3 are defined as follows:

α = ρ
∂ψpdk

(
ε
vp
ks , D

)
∂ε
vp
ks

= (1 − D)
2
3

C εvp
ks =

∑
i

(1 − D)
2
3

Ci ε
vp
ks,i

s = ρ
∂ψpdk

(
ε
vp
ss , D

)
∂ε
vp
ss

= (1 − D) csε
vp
ss

F = ρ
∂ψpdi (H, D)

∂r
= (1 − D) F0h1

[
1 − exp (−h2 H)

]
Y = Ye + Yk + Ys + Yi = ρ

∂ψed (ε
e, D)

∂D
+ ρ

∂ψpk
(
ε
vp
ks , D

)
∂D

+ ρ
∂ψps

(
ε
vp
ss , D

)
∂D

+
∂ψpi (H, D)

∂D
Ye = ρ

∂ψed (ε
e, D)

∂D
= −

1
2
εe : E0

: εe = −
1

2 (1 − D)2
σ :

[
E0]−1

: σ

Yk = ρ
∂ψpdk

(
ε
vp
ks , D

)
∂D

=

∑
i

ρ
∂ψpk

(
ε
vp
ks,i , D

)
∂D

= −

∑
i

1
3

Ci
(
ε
vp
ks,i : ε

vp
ks,i

)
= −

∑
i

3
4

α : α[
(1 − D)2 Ci

]
Ys = ρ

∂ψpds
(
ε
vp
ss , D

)
∂D

= −
1
2

cs
(
εvp

ss : εvp
ss

)
= −

1
2

s : s[
(1 − D)2 cs

]
Yi =

∂ψpdi (H, D)
= −F0

[
h1 H +

h1 exp (−h2 H)
]

(9)
∂D h2

5
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According to the previous formulation in the study by Fincato and Tsutsumi [57], the EOSS model is characterised
by the following: the dynamic loading surface, which always passes through the current stress state σ; the normal-
yield surface that defines the plastic potential; the subloading surface that allows the generation of irreversible
deformation in the so-called sub-yield domain. All the surfaces are related by means of a similarity transformation,
and the centre of the similarity transformation is the similarity centre s, which defines two similarity ratios Rd (Rd

0) and R (0 < R < 1). Rd expresses the ratio between the sizes of the dynamic loading and the normal-yield
urface, while R defines the ratio between the sizes of the subloading and the normal-yield surface. Depending on
he stress state and, therefore, the value assumed by Rd and R, the following nomenclature was proposed in the

study by Fincato and Tsutsumi [57].

Rd ≤ 1 and R < 1 sub-yield stress state

Rd > 1 and R < 1 mix-stress state

Rd > 1 and R = 1 fully viscoplastic stress state

(10)

Referring to Fig. 1 the analytical definition of the surfaces in the undamaged configuration is reported here for the
sake of completeness; a detailed discussion can be found in the aforementioned literature.

f
(
˜
σ̂y
)

=
˜
F normal − yield sur f ace

f (
˜
σ) = Rd

˜
F dynamic loading sur f ace

f (
˜
σss) = R

˜
F subloading sur f ace

˜
F = (F0 +

˜
F)

˜
ŝ =

˜
s −

˜
α

˜
σ̂y =

˜
σy −

˜
α

˜
σ =

˜
σ−

˜
α

˜
α =

˜
s − Rd

˜
ŝ˜̃σ =

˜
σ− s

˜
σss =

˜
σss −

˜
αss

˜
αss =

˜
s − R

˜
ŝ  

sub-yield stress state

˜
σ =

˜
σ−

˜
α

˜
α =

˜
α

˜
σss =

˜
σss −

˜
αss

˜
αss =

˜
s − R

˜
ŝ  

mix stress state

˜
σ =

˜
σ−

˜
α

˜
α =

˜
α

˜
σss =

˜
σss −

˜
αss

˜
αss =

˜
α  

fully viscoplastic stress state

(11)

imilarly to the study by Hashiguchi [70], in this study, the expressions of the viscoplastic strain rate, the storage
iscoplastic strain rates Dvp

ks and Dvp
ss sub loading Ḣ are obtained by assuming the existence of homogeneous positive

nd convex functions g p(
˜
σ), gk(

˜
α), gs(

˜
s) and gF (

˜
F) in the effective stress space. The definition of the homogeneous

ositive and convex function gD(Y ) for the definition of the damage evolution is discussed in Section 2.2. The
ynamic loading function f in Eq. (11)2 is chosen for g p(

˜
σ) to obtain an associated flow rule for the definition of

vp along the normalised outward normal N to the viscoplastic potential.

Dvp
=
∂g p(

˜
σ)

∂σ
=
∂ f (

˜
σ)

∂σ
=

∂
[√

3/2
˜
σ : H :

˜
σ− Rd

˜
F
]

∂σ
=

λ

(1 − D)
N;

Dvp
ks,i = Dvp

− Dvp
kd,i =

λ

(1 − D)
N − λ

∂gk(
˜
αi )

∂αi

=
λ

(1 − D)
N −

λ

(1 − D)

√
3
2

Bi

Ci ˜
αi =

λ

(1 − D)

(
N −

√
3
2

Bi

Ci ˜
αi

)
Dvp

ss = Dvp
− Dvp

sd =
λ

(1 − D)
N − λ

∂gs(
˜
s)

∂s

=
λ

(1 − D)
N −

λ

(1 − D)

{
N −

(
χ

Rd ˜
σ−

˜
ŝ
)

−
1
cs

[∑
i

(
Ci N −

√
3
2

Bi
˜
αi

)
+

d F
d H

1

˜
F ˜

ŝ

]}

Ḣ = −λ
∂gF (

˜
F)

∂F
=

√
2
3

λ

(1 − D)

N = ˜
σ : H√
˜
σ : H :

˜
σ
/

⏐⏐⏐⏐⏐ ˜
σ : H√
˜
σ : H :

˜
σ

⏐⏐⏐⏐⏐ =
σ : H

√
σ : H : σ

/

⏐⏐⏐⏐ σ : H
√
σ : H : σ

⏐⏐⏐⏐ ; ⏐⏐N⏐⏐ = 1

, (12)

here λ is the viscoplastic multiplier and Bi are material constants defining the evolution of the back stresses. To
ccount for the anisotropic behaviour of the plastic yielding, the second-order tensor H is introduced in Eq. (12),
6
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according to the formulation proposed by Hill [55]. In particular, the present work considers the form reported in
the study by De Borst and Feenstra [78]:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
(H + G) −

1
3

H −
1
3

G 0 0 0

−
1
3

H
1
3
(H + F) −

1
3

F 0 0 0

−
1
3

G −
1
3

F
1
3
(F + G) 0 0 0

0 0 0 2L 0 0
0 0 0 0 2M 0
0 0 0 0 0 2N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

The material coefficients F, G, H, L, M, N can be determined experimentally. The isotropic von Mises yield criterion
s recovered when all the parameters were set to unity. Lastly, the definition of the viscoplastic multiplier is given
s in the study by Fincato and Tsutsumi [57]:

0 ≤ λ =
1
µ

⟨exp [n (Rd − R)] − 1⟩

(Rm − Rd )
, (14)

here µ is the viscoplastic coefficient, n is the non-dimensional rate-sensitivity material constant and Rm is a
aterial parameter limiting the maximum expansion of the dynamic loading surface (see Hashiguchi [70]). The

efinition of the viscoplastic strain rate and the storage viscoplastic strain rates Dvp
ks and Dvp

ss presented in Eq. (12)
re used together with Eqs. (8)2 and (9) to define the stress, back stress and similarity centre rates as follows:

σ̊ = (1 − D)E0
:
(
D − Dvp)

α̊ =

∑
i

(1 − D)
2
3

Ci Dvp
ks,i =

∑
i

(
2
3

Ci N −

√
2
3

Bi
αi

(1 − D)

)
λ

s̊ = csλ

(
χ

Rd

σ

(1 − D)
−

ŝ
(1 − D)

)
+ α̊+

d F
d H

1

˜
F

ŝ
(1 − D)

λ

. (15)

t should be pointed out that the definitions of the tensor rates given in Eq. (15) are not the time derivatives of Eqs.
8)2 and (9) as in the study by Lemaitre and Desmorat [79]. However, they lead to the fulfilment of the equalities
xpressed in Eq. (6). The symbol ‘◦’ is omitted on the strain rate tensors, however, to satisfy the frame invariance,
nd all the tensorial state variables need to be considered in a configuration unaffected by any superposed spatial
igid body motion.

Observing the definition of the variables given in Eqs. (8)2, (9) and (12), it was found that the inequality of
q. (8)3 is satisfied if the damage dissipation is also positive. This implies a restriction on the choice of Ḋ that
eeds to be positive as shown in Section 2.2

.2. The ductile damage evolution law

In the previous section, the coupling of the internal variable with the damage variable was discussed without
ealing with the evolution of the damage itself during the deformation process. In particular, the choice of the
ositive homogeneous function gD(Y ) was not given. However, it was highlighted that the damage rate Ḋ must be
ositive to fulfil the dissipation inequality in Eq. (8)3.

Several experiments [46,80–83] were conducted to understand the failure mechanism and main factors influencing
he damage evolution in terms of void growth and coalescence up to the formation of macroscopic cracks. From the
xperimental results, it was concluded that regardless of the adopted modelling approach (i.e. uncoupled models,
henomenological models and micromechanics-based models), the failure phenomenon is mostly affected by two
imensionless stress parameters, i.e. the stress triaxiality η and the Lode angle θ . The effect of the latter can
e included by using the dimensionless parameter θ

(
−1 ≤ θ ≤ 1

)
. The limits for the Lode angle parameters are

represented by uniaxial tensile and compressive loading conditions where θ is equal to +1 and −1, respectively, and
it assumes intermediate values for all the other loading conditions (θ = 0 under shear or plane strain conditions).

The early work of Lemaitre [24,60] provided a thermodynamically consistent framework where the damage
volution law is derived from a dissipation potential that includes the effect of the stress triaxiality. However, in a
7
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Fig. 1. Schematic representation of the subloading, dynamic-loading and normal-yield surface in the following: (a) sub-yield stress state
during loading, (b) mix-stress state during loading and (c) fully viscoplastic stress state (Fig. 3 in Fincato and Tsutsumi [57]).

low-stress triaxiality regime, the Lemaitre model is sometimes unable to predict a realistic damage evolution due
to the fact the failure phenomenon is mostly influenced by other factors, such as shear deformations. To overcome
this drawback, recent models (e.g., Cao et al. [26]; Malcher and Mamiya, [84]; Mirone et al. [85], among others)
included the effect of the Lode angle in the original Lemaitre’s damage evolution law, thereby obtaining a good
description of the failure even at shear-dominated low-stress triaxiality regimes. However, the damage description
cannot account for anisotropy nor different damage evolution depending on the loading directions (i.e., the same
damage evolution is obtained under similar loading conditions in different sextants of the deviatoric plane). For
instance, the use a scalar multiplier function of the Lode angle parameter in Cao et al. [26] cannot differentiate the
damage evolution under plane strain or shear conditions nor an evolution that depends on the direction of the load
in relation to the axes of anisotropy.

To describe the anisotropic nature of the failure mechanism in metals, three main approaches have been developed
n the literature [2,48]. The first one considers a set of vectors associated with predefined material directions
Costin, [86]; Rabotnov, [87]; among others). The second one uses a second-order damage tensor representation
Brünig, [88]; Desmorat and Cantournet, [89]; Murakami, [90]; among others), which offer the advantage of
escribing the actual state of the damage by symmetric second-order tensors. The third approach considers a fourth-
rder damage tensor (Chaboche, [91]; Ortiz, [92]; among others), and it leads to a consistent representation of the

ffective stress based on the strain equivalence assumption.

8
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The current work aims to modify Lemaitre’s damage evolution law by including the effects of the Lode angle
nd the definition of a multiplier factor that can diversify the damage evolution by considering the direction of
he loading condition in relation to the axes of anisotropy. In particular, the purpose is to give a simple qualitative
henomenological scalar function that can result in a good description of the failure phenomenon and be used as a
redictive tool in engineering applications. The damage evolution law is as follows:

Ḋ = λ
∂gD(Y )
∂Y

=

√
2
3

λ

(1 − D)

(
−

Y
s1

)s2

n : HD
: n; n =

σ

|σ|
|n| = 1

HD
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/3
(
G D

+ H D) κ −1/3H Dκ −1/3G Dκ 0 0 0

−1/3H Dκ 1/3
(
H D

+ F D) κ −1/3F Dκ 0 0 0

−1/3G Dκ −1/3F Dκ 1/3
(
G D

+ F D) κ 0 0 0

0 0 0 2L D 0 0

0 0 0 0 2M D 0

0 0 0 0 0 2N D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

κ = θ
2
+

(
1 − θ

2
)

b1

here s1 and s2 are two material parameters with analogous meanings to those in the original Lemaitre’s model and
is a normalised stress state introduced to take into account the directionality of the loading condition. It should

e pointed out that n is a normalised tensor indicating the stress state in the deviatoric plane.HD is a Hill-like
tensor depending on six material parameters (FD , GD , HD , LD , MD , N D > 0), and κ is a scalar function of the

aterial parameter b1 and the Lode angle parameter θ as defined in the studies by Tsutsumi et al. [19] and Zhang
t al. [40]. It should be mentioned that the scalar function κ does not allow to model dissymmetric material response
n tension and compression along the same loading direction. As seen in Eq. (16)1, the novelty of the proposed
amage evolution law lies in the scalar term n : HD

: n, which is discussed in the following points:

• If the material parameters defining the Hill-like tensor HD are positive, then the damage rate Ḋ is positive,
thereby satisfying the requirement for the dissipation inequality.

• If the material parameters FD , GD , HD , LD , MD , N D and b1 are to be unitary, then the original Lemaitre’s law
is recovered (since |n| = 1), thereby allowing the failure description of the material to be influenced uniquely
by the stress triaxiality.

• If FD
= GD

= HD
= LD

= MD
= N D

= 1 and b1 > 1, the damaging process under plane strain
conditions (i.e. θ = 0) can be enhanced in a manner similar to the enhanced Lemaitre’s model proposed
by Cao et al. [26]. Section 3.5 shows the effect of the b1 parameter on the prediction of the failure behaviour
of carbon construction steel round notched bars and flat grooved plates. The same set of numerical tests was
performed in the study by Tsutsumi et al. [19] by adopting a Mohr–Coulomb failure criterion [16].

• The damage evolution varies depending on the material parameters FD , GD , HD , LD , MD , N D , b1 and the
stress state given by the unitary tensor n. This allows one to take into consideration the tendency for damage to
accumulate fast or slow, depending on the loading conditions. Section 3.4 reports the numerical results obtained
in the failure description of the stainless steel 316L samples previously investigated by Rajhi et al. [53].

• The idea is to diversify the effect on the damage evolution induced by the normal and shear components of
the stress. For instance, in the case of shear-dominated loading, the material parameters LD , MD , N D can
be set independently to enhance the damage evolution since the normal components of the unitary normal
are negligible, as in the numerical example reported in Section 3.2. On the contrary, in the absence of shear
components, the constants FD , GD , HD and b1 govern the damage evolution. These two sets of parameters
should be calibrated in separate tests (i.e. tensile and shear tests).

• Depending on the deviatoric stress state, the term n : HD
: n affects the damage evolution uniquely. Therefore,

the influence on the damage given by the stress triaxiality still depends on the damage energy release rate.

he following box summarises the constitutive equations of the DEOSS model. The computation of the similarity
atios Rd and R or the loading criterion is not discussed here. Details can be found in the study by Fincato and
sutsumi [57].
9



R. Fincato and S. Tsutsumi Computer Methods in Applied Mechanics and Engineering 387 (2021) 114165

I

s

m

• Viscoplastic split of the strain rate tensor

D = De
+ Dvp.

• Linear elastic law (rate form)

σ̊ = (1 − D)E0
:
(
D − Dvp) .

• Dynamic loading surface

f (σ) =

√
3/2σ : H : σ− (1 − D) Rd

˜
F;

˜
F = (F0 +

˜
F) .

• Viscoplastic flow rule

Dvp
=

1
µ(1 − D)

⟨exp [n (Rd − R)] − 1⟩

(Rm − Rd )
N; λ =

1
µ

⟨exp [n (Rd − R)] − 1⟩

(Rm − Rd )

N =
∂ f (σ)
∂σ

/⏐⏐⏐⏐∂ f (σ)
∂σ

⏐⏐⏐⏐ ; ⏐⏐N⏐⏐ = 1
.

• Isotropic hardening law

˜
F = F0

[
1 + h1 (1 − exp (−h2 H))

]
; H =

∫ T

0

√
2
3

λ

(1 − D)
dt, t ∈ [0, T ] .

• Back stress and similarity centre rates

α̊ =

∑
i

(1 − D)
2
3

Ci Dvp
ks,i =

∑
i

(
2
3

Ci N −

√
2
3

Bi
αi

(1 − D)

)
λ

s̊ = csλ

(
χ

Rd

σ

(1 − D)
−

ŝ
(1 − D)

)
+ α̊+

d F
d H

1

˜
F

ŝ
(1 − D)

λ

.

• Damage evolution law and energy release rate

Ḋ =

√
2
3

λ

(1 − D)

(
−

Y
s1

)s2

n : HD
: n; n =

σ

|σ|
|n| = 1

Y = Ye + Yk + Ys + Yi

• Similarity ratio R (viscoplastic loading process)

R =
2
π
(1 − Re) cos−1

[
cos

(
π

2
⟨R0 − Re⟩

1 − Re

)
exp

(
−
π

2
u

H − H0

1 − Re

)]
+ Re

H0, R0 initial conditions
.

• Similarity ratios Rd and R (elastic unloading process)

Rd =

(
σ̃ : H : ŝ

)
+

√(
σ̃ : H : ŝ

)2
+
( 2

3 F2 −
(
ŝ : H : ŝ

)) (
σ̃ : H : σ̃

)( 2
3 (1 − D)2 F2 −

(
ŝ : H : ŝ

))
R = Rd

.

Box 1. Summary of the DEOSS constitutive model.

n Box 1, u is a material parameter regulating the amount of plastic deformation in the sub-yield and mix-stress

tates and Re is a material parameter defined by Tsutsumi et al. [93] to introduce a small elastic domain for better

odelling of the material behaviour (R > 0.2 usually for metals).
e

10



R. Fincato and S. Tsutsumi Computer Methods in Applied Mechanics and Engineering 387 (2021) 114165

w
a
b
s
e
a
t

f
f
T
r
o
r
o
i
A
a
b
h
r

J
e
p
l
b
k

T

w
c
a

s
o
b
a
k
w
o

F

2.3. The co-rotational spin

The co-rotational Cauchy stress rate σ̊ introduced in the previous section can be written as follows:

σ̊ = σ̇− Ωσ+ σΩ, (17)

here σ is the second-order Cauchy stress tensor (negligible elastic volume changes and plastic incompressibility are
ssumed σ ≈ τ) and Ω is a skew-symmetric second-order tensor, which is usually called the spin tensor. Hypoelastic-
ased plasticity with the additive decomposition of the strain rate has been adopted by several authors due to the
implicity of implementation in commercial finite element codes and the possibility of extending the constitutive
quation of small deformation material models to finite strains, thereby defining a corotational framework. To obtain
description that is frame-invariant, extensive work has been carried out to define the appropriate co-rotational stress

ensor in Eq. (17) by adopting several definitions of the spin tensor Ω.
Among the theoretically infinite choices [94], the Jaumann [95] and Green–Naghdi [96] stress rates have been

requently used in FE simulations for metallic materials. The Jaumann co-rotational stress rate has also been selected
or the evaluation of the elastoplastic deformation of metals in the previous works of the authors (e.g. Fincato and
sutsumi, [57,64]; Tsutsumi and Fincato, [19,97]). A comparison of the material description given by different stress

ate definitions can be found in certain studies [98–101]. However, the models based on the additive decomposition
f the strain rate tensors are known to suffer from several drawbacks, such as a non-unique definition of the elastic
ate of deformation [102], the oscillation of the stress in simple shear if the Jaumann rate is adopted [72,103]
r artificial elastic energy dissipation [104,105]. To overcome these shortcomings, a new co-rotational stress rate,
.e. the logarithmic stress rate, was proposed by Xiao et al. [106,107], and subsequently adopted by Zhu et al. [108].
lternatively, hyperelastic-based plasticity models were formulated based on the slip theory of crystals [109] that

ssumes the deformation gradient as the product of elastic and plastic deformation gradients. The work published
y Brepols et al. [66] offered an interesting comparison between hyperelastic-based plasticity formulation and
ypoelastic-based plasticity algorithms that adopt the Jaumann, the Green–Naghdi and the logarithmic stress rates,
espectively.

Despite the large numbers of models based on the logarithmic stress rate [108,110–113], two recent works by
iao and Fish [61,62] pointed out how even the approach proposed by Xiao et al. [106] suffers from a “nonphysical
nergy dissipation during unloading processes after the yield”, which is known as unloading stress ratcheting; they
roposed a hypoelastic-based plasticity model based on the kinetic logarithmic spin [62] or the modified kinetic
ogarithmic spin [61] in the case of plastically induced anisotropy. The work of Jiao and Fish proved the equivalence
etween the multiplicative hyperelastic-based plasticity and the additive hypoelastic-based plasticity that uses the
inetic logarithmic stress rate.

The kinetic logarithmic stress rate defined by means of the kinetic logarithmic spin is also adopted in this work.
he expression of the co-rotational rate of the Cauchy stress in Eq. (17)3 can be written as follows:

σ̊k log
= σ̇− Ωk logσ+ σΩk log

Ωk log
=
(
W − Wp)

− Wk log (Bk (σ, D) ,D
)

Wp
= α

[
σDp

− Dpσ
] , (18)

here σ̊k log is the co-rotational kinetic logarithmic stress rate, Ωk log is the kinetic logarithmic spin, W is the
ontinuum spin defined in Eq. (1)2, Wp is the plastic spin tensor defined by means of the material constant α
ccording to Zbib and Aifantis [114], Wk log

is a skew-symmetric second-order tensor valued function dependent
on the total strain rate D as well as on the kinetic left Cauchy–Green deformation tensor Bk . Eq. (18) defines the
pin with respect to the axes of anisotropy characterised by the material substructure in average terms, and it allows
ne to consider the eventual rotation induced during the loading. The concept of plastic spin was first introduced
y Dafalias [115], and it has been widely adopted by many authors (Duchene et al. [116]; Hashiguchi, [70]; Jiao
nd Fish, [62]). It should be mentioned that a different formulation of the kinetic logarithmic spin, called modified
inetic logarithmic spin, was proposed by Jiao and Fish [61] to consider the effect of the strain-induced anisotropy
ithout the introduction of the plastic spin tensor of Eq. (18). Instead, the aforementioned work proposed the use
f a skew-symmetric second-order tensor whose contribution vanishes in the absence of kinematic hardening.

For details about the variables and functions in Eq. (18), the reader can refer to the studies by Jiao and
ish [61,62]. The definition of the kinetic left Cauchy–Green deformation tensor in the present work is also a
11
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Table 2
Viscoplastic and damage material constants.

Elastic modulus 206 [GPa]
υ 0.3
h1, h2 7.5, 1.55
Re 0.25
C, B 15 000 [MPa], 300
u 1500
cs 200
χ 0.9
F0 225 [MPa]
s1, s2 350 [MPa], 1.05
µ, n, Rm 50 [s], 1.0, 50

Table 3
Damage parameters for the HD tensor.

Case FD GD HD LD MD N D b1

A 1 1 1 1 1 1 1
B 1 0.3 1 1 1 1 1
C 1 1 0.3 1 1 1 1
D 1 1 1 3 3 3 1
E 1 1 1 3 3 3 1.5
F 1 1 1 1 1 1 1.5

function of the damage D. Details can be found in the Appendix where the description of the incrementally objective
ntegration algorithm of the DEOSS constitutive equations is given for the user subroutine UMAT (Abaqus).

. Numerical calculations and results

The constitutive equations of the DEOSS model were implemented via user subroutine for the commercial code
baqus (ver 6.14). The present section deals with the results obtained from numerical tests, and it is divided into

wo parts. The first part aims to show some examples to clarify the features of the novel damage evolution law
see Section 3.1) and proves the correct implementation of the algorithm in a simple shear test with rotation of
he anisotropy axes (see Section 3.2). The second part numerically reproduces the experimental results obtained by
onnaud and Gudmundson [117] on a lead-free solder material (see Section 3.3), those obtained by Rajhi et al. [53]
n a 316L stainless steel (see Section 3.4) and the results obtained by Tsutsumi et al. [57] on a construction carbon
teel (see Section 3.5). The analyses in Sections 3.4 and 3.5 consider a critical value Dc for the damage, after which

the macro crack can be considered as formed. The additional term is used to avoid numerical problems due to the
localisation of the damage and viscoplastic deformations as discussed in Section 4.

3.1. Tensile tests

For sake of simplicity, the numerical analyses were carried out on single hexahedral elements with reduced
integration (C3D8R Abaqus elements), quasi-static loading conditions and an isotropic yield criterion (i.e. the Hill48
parameters are set to unity). Moreover, the material parameters were selected to be representative of generic carbon
steel, and they are reported in Table 2. Two types of analyses were conducted by varying the damage material
parameters FD , GD , HD , LD , MD , N D , b1 for a total of 5 cases (i.e. A, B, C, D, E, F, see Table 3).

The first set of analyses considers a simple monotonic tensile test on a cubic element that is isostatically
constrained. The Lode angle parameter θwas constantly unitary, so no effect could be induced by a modification
of the b1 constant. To verify the frame invariance to a superposed rigid body rotation, the analyses were carried
out without (i.e. w/o R) and with a 45◦ rotation along the z-axis (i.e. w R), thereby imposing the same prescribed
displacement condition on the top of the cube (see Fig. 2a and b). Case A considers an isotropic damage variable.
Since all the damage coefficients were set to unity, the damage evolution is influenced only by the viscoplastic
multiplier and the damage energy release rate Y without the influence of the loading direction by means of the
12
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Fig. 2. (a) Tensile test without superposed rotation (w/o R), (b) Tensile test with 45◦ superposed rotation (w R), (c) Von Mises stress vs.
max principal strain curves, (d) Damage and n : HD

: n evolutions vs. cumulative plastic strain H.

n : HD
: n, which remained unitary. Moreover, the two solutions obtained with and without the superposed rigid

body rotation overlap perfectly. A modification of the GD parameter (i.e. case B) does not induce any modification
in the damage evolution since GD affects only the x and z components while the cube is still pulled along the y
direction. On the contrary, after setting the parameter HD to 0.3 (i.e. case C), the damage evolution is delayed since
the term n : HD

: n constantly becomes ∼0.65 through the analysis. Once again, the superposition of a rigid body
rotation did not alter the solution as evident from the perfect overlap between the solid purple line and the green
triangle markers in Fig. 2c and d.

The second set of analyses considers a parallelepipedic shape element (the thickness was 0.1 for the other two
sides). The base is constrained along the y-axis, the left vertical side is constrained along the x-axis, and the two
faces perpendicular to the z-axis are constrained as well. Two uniform pressures of 500 MPa magnitude were applied
in compression on the right side and in tension on top to generate a plane strain state. The Lode angle parameter
θ is constantly null during the loading.

This second set of analyses aims to show the role of the b1 parameter; therefore, the constants FD , GD , HD ,
ffecting the normal components of the normal vector were set to a unitary value. Cases D and E in Fig. 3b and
show the different evolution of the Mises stress and damage under different values of the parameter b1. As can

e seen, the n : HD
: n scalar term assumes exactly the constant value of 1 and 1.5, respectively (see Fig. 3c). Due

o the plane strain condition, the shear components of the stress do not affect the damage evolution as observed by
omparing cases E and F where b = 1.5, and the constants LD , MD , N D were set to 3 and 1, respectively.
1

13
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Fig. 3. (a) Sketch of the element deformation (b) Von Mises stress vs. max principal strain curves, (c) Damage and n : HD
: n evolutions

s. cumulative plastic strain H.

.2. Simple shear

The purpose of this analysis is to show the ability of the DEOSS model to take into account the rotation of
he anisotropy axes by reproducing the experimental results obtained by Duchene et al. [116]. As mentioned in
ection 2.3, the kinetic logarithmic spin is defined with respect to the axis of anisotropy, and it allows one to
onsider the rotation of the substructure due to the loading conditions. This aspect is quite fundamental in FE
imulations, as without the effect of the plastic spin, the Hill’s yield criterion would be defined with respect to a
eference system that does not follow the substructure rotation, leading to inaccurate results.

Duchene et al. [116] conducted a simple shear test on a low-carbon IF mild steel (FeP06t) rectangular sample
dimension 30 × 3 × 3 mm) up to the shear strain γxy = 70%, corresponding to an angle of about 35◦. The loading
ate was kept constant and equal to γ̇xy =

√
3 [s−1]. The sample was obtained from a steel sheet produced by cold

rolling and annealed. The measurement of the texture was conducted by X-ray diffraction technique at mid-thickness
of the sheet at the initial and final stage of the load. Table 4 reports the material parameters adopted by Duchene
et al. [116] in their numerical simulations as well as in the present study. Table 5 displays the Hill’s coefficients of
the steel sheet. This numerical example does not consider the effect of the damage. The following Eq. (19) reports
the hardening law adopted and the function of the three material parameters K, ε0 and n. The numerical simulations

ere conducted on a single hexahedral element with reduced integration (i.e. C3D8R Abaqus element) under simple
hear loading conditions as shown by Duchene et al. [116].

F = K (ε0 + H)n (19)

Fig. 4 displays the results of the numerical analyses conducted while considering an isotropic yield (i.e. von Mises

riterion) and the Hill48 yield criterion. Moreover, in the case of material anisotropy, the importance of considering

14
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Fig. 4. Results on a single finite element. (a) Sketch of the sample and loading conditions (b) Shear stress vs. shear strain (xy components)
(c) Rotation and rate of rotation of the axes of anisotropy (around the z-axis). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 4
FeP06t constants.

Elastic modulus 210 [GPa]
υ 0.3
K 550.3 [MPa]
ε0 0.0011
N 0.278
u, Re 1500, 0.7
C 200
χ 0.9
α 0.0065

Table 5
Hill’s parameters of the steel sheet.

F G H L M N

0.53 0.57 1.43 1.9 1.9 1.9

the contribution of the plastic spin in the definition of the co-rotational rate is described by the two solid blue and
red curves in Fig. 4a. The formulation of Wp requires the definition of the material constant α of Eq. (18)3 that has
been calibrated to overlap the experimental stress–strain curve.

The effect of the rotation generated by the plastic can be observed by plotting the rotation angle and the rate
of rotation of the anisotropy axes against the shear strain as in Fig. 4c. The rotation angle and its rate refer to the
xy component of the rotation tensor obtained by applying the exponential map to the kinetic logarithmic spin. The
details about the procedure of defining the rotation tensor can be found in the Appendix. As it can be seen, the
solution marked as ‘w Wp’ shows a higher decrease of the rotation angle compared to the solution ‘w/o Wp’. This
aspect is reflected in a smaller rotation of the anisotropy axes for the red solid curve with a final rotation angle
of around 25◦. It was observed that in case Wp is neglected, the value of the final rotation coincides exactly with

◦
the rigid body rotation impressed during a simple shear test, which was 35 in this case. Experimentally, Duchene
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Table 6
Elastoplastic and damage material constants.

Elastic modulus 195 [GPa]
υ 0.3
h1, h2 7.6, 1.5
Re 0.99
C, B 7000 [MPa], 150
u 5000
F0 300 [MPa]
α 0.04
s1, s2 530 [MPa], 1.0

Table 7
Hill’s parameters.

F G H L M N

0.922 0.894 1.1.106 1.4 1.5 1.5

Table 8
Damage parameters for the HD tensor.

Case FD GD HD LD MD N D b1

G 1 1 1 1 1 1 1
H 5 3 2.5 1 4 6 1.5
I 1 1 1 2 1 1 1
L 5 3 2.5 2 4 6 1.5

et al. [116] measured a rotation of the substructure of around 27◦, confirming the choice of the material constant
adopted in this simulation.
The following set of numerical analyses reproduces the simple shear numerical tests carried out by Badreddine

t al. [67] (model 3 with m = 4 in Badreddine et al. [67]). The simulations were carried out in quasi-static loading
onditions applying a simple shear displacement controlled loading condition on top of a hexahedral element
ith reduced integration (see Fig. 5). The displacement boundary condition was applied up to the shear strain

xy = 100%. The material constants for the DEOSS model and the coefficients for the definition of the anisotropic
ill’s tensor H were obtained from the referenced paper. The contribution of the similarity centre is neglected in this
umerical example. The material constant α for the plastic spin was calibrated reproducing the shear stress–strain
urve of the uncoupled solution reported in Badreddine et al. [67]. All the parameters are reported in Tables 6 and
.

Four different analyses were carried out varying the coefficients of the HD tensor as reported in Table 8. Case G
in Fig. 5b reports the stress–strain curves obtained considering a damage evolution where the damage parameters
FD , GD , HD , LD , MD , N D , b1 were set to unity to describe the analyses carried out in Badreddine et al. (2010).
As it can be seen, the DEOSS is able to reproduce the same material result as in the referenced paper. It is worth
mentioning that Badreddine et al. conducted the analyses by means of the commercial software Abaqus/Explicit
with element deletion feature that allows to model a drop in stress around 100% shear strain. The present work
does not consider this aspect, however, the purpose of the analyses is to show the ability of the DEOSS to control
the damage evolution depending on the shear loading condition.

Subsequently, the damage coefficients were changed in case H with the exception of the parameter LD to prove
the invariance of the model response. As it can be seen, case G and H report the same stress–strain evolutions. This
aspect is justified by the multiplier n : HD

: n in Fig. 5c that assumes a constant unitary value in both the analyses.
As mentioned in Section 2.2, the formulation in Eq. (16) allows to diversify the damage evolution induced by shear
stress independently from the normal components of the stress tensor. In a simple shear load on the xy plane, the

amage evolution can be delayed (i.e., 0 ≤ L D < 1) or accelerated (i.e., L D > 1) by modifying the values of the
D coefficient in HD. For instance, case I and L show that the damage evolution could be accelerated by setting
D

= 2, remaining independent from the other damage parameters.
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Fig. 5. Results on a single finite element. (a) Sketch of the sample and loading conditions (b) Shear stress vs. shear strain (xy components)
(c) Damage and n : HD

: n evolution.

3.3. Cyclic loading on rate-dependent lead-free solder material

Bonnaud and Gudmundson [117] conducted a series of tests on lead-free solder round bars to investigate the
strain rate sensitivity and the damaging mechanism of the material. The same set of experiments was reproduced
numerically by Khoei and Eghbalian [118] by adopting a viscoplastic and damage model and implementing
Lemaitre’s damage evolution law. A previous work of the authors Fincato and Tsutsumi [58] showed the ability
of the EOSS model to capture the strain rate dependency of the material; however, the damaging behaviour was
not considered. The present work reproduces the cyclic loading analyses to characterise the progressive degradation
of the mechanical properties. Briefly, Bonnaud and Gudmundson [117] conducted three monotonic tensile tests at
different strain rates 0.2 [s−1], 1 [s−1] and 5 [s−1] and a fully reversed cyclic loading condition at 1 [s−1] strain
ate for a total of 50 loading cycles. The round smooth bar was obtained from row cast bars, which were neither
olled nor extruded to keep the microstructure unaltered; so, the von Mises yield criterion was adopted for the
umerical simulations. The details of the geometry and the mesh adopted can be found in the study by Fincato and
sutsumi [58]. The elasto-viscoplastic parameters of the EOSS model have been discussed previously; they were
dopted in this study and are presented in Table 9.

Due to the assumption of the isotropic plastic potential, the constants for the HD tensor were set to unity. It
hould also be pointed out that the lack of variation in loading direction during the experiments does not allow
o characterise the anisotropic behaviour of the damage. The details of the mesh and boundary conditions can be
ound in the study by Fincato and Tsutsumi [58]. The only parameters calibrated for the damage were s1 and s2,

which were obtained to minimise the difference between the experimental and numerical stress–strain curves in the
first two and the 50th cycles (only experimental data available). Figs. 6a and 5b report the numerical results for
the monotonic tensile tests under three different loading rates as well as the first two cycles of the fully reversed
cyclic loading analysis. The blue solid lines in Fig. 6b, c and d indicate the solution carried out with the EOSS
17
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Table 9
Viscoplastic and damage material constants for the lead-free solder material.

Elastic modulus 15 [GPa]
υ 0.36
h1, h2 0.48, 5.5
Re 0.2
C1, B1 9500 [MPa], 1400
C2, B2 210 [MPa], 6.5
u 800
F0 40 [MPa]
s1, s2 340 [MPa], 1.05
µ, n, Rm 1.25 [s], 7.9, 27
cs 50
χ 0.8

model, without the damage effect. The DEOSS result seems to be in good agreement with the experimental data and
improves the material description given by Khoei and Eghbalian [118]. Even though the description of the damaging
phenomenon given by Khoei and Eghbalian’s model can be considered already satisfactory in this numerical
example, it is important to highlight some general aspects to justify the adoption of the DEOSS theory with a
larger number of material parameters. Firstly, Khoei and Eghbalian’s model cannot predict a smooth development
of plastic deformation in the sub-yield domain, as evident in the first three loading cycles of Fig. 6b. In particular,
the smooth generation of inelastic strain predicted by the DEOSS theory assumes a critical role in describing the
material ratcheting, and therefore damaging, in unidirectional cyclic loading conditions or cyclic loading conditions
in the neighbourhood of the macroscopic yield stress [58,65,70]. Moreover, in general, the theory developed in [118]
cannot consider plastic anisotropy, it is developed within an infinitesimal strain framework and it takes into account
the contribution of a single non-linear back stress law. Here, five additional parameters had to be calibrated with
the DEOSS model, due to an additional non-linear back stress contribution, the movement of the similarity centre
and one material constant required for the definition of the viscoplastic multiplier (i.e. Rm).

The nominal stress vs. nominal strain curves for all the 50 loading cycles are reported in Fig. 6c for both the
EOSS and DEOSS models. The EOSS model shows an increasing hardening behaviour through cycles that tends
to saturate at around ±80 MPa, while the viscoplastic and damage analyses results in an initial hardening, which
is followed by softening induced by the damage.

Fig. 6d provides a detailed comparison of the experimental results and the numerical curves obtained by Khoei
and Eghbalian [118] and by the DEOSS model. The experimental data shows a much stiffer elastic response during
the elastic unloading. Overall, however, the tensile and compressive peaks are described quite well by the current
model. Lastly, Fig. 6e displays the tensile and compressive peaks through cycles, showing the initial hardening
followed by a linear softening. Lastly, it should be pointed out that the present form of the ductile damage evolution
law in Eq. (16) does not consider the microcracks closure effect; therefore, the damage evolves in the same manner
both in tension and compression. This aspect will be discussed later on, and it will be considered for the future
development of the theory.

3.4. Anisotropic behaviour of SS316L stainless steel

The set of analyses discussed in this section deals with the anisotropic behaviour of 316L stainless steel samples
under monotonic tensile loading conditions. Rajhi et al. [53] conducted a series of experiments and numerical
analyses to characterise the damaging behaviour of specimens obtained from a rolled large sheet. To characterise
the anisotropic behaviour, the tensile tests were conducted on specimens cut along three different directions: the
rolling direction (hereafter, RD), along the direction transversal to the rolling process (hereafter, TD), and along
the direction forming an angle of 45◦ degree with respect to the RD (hereafter, 45◦) (see the sketch in Fig. 7).

ll the experiments were carried out by applying a displacement loading condition on one side of the sample with
3 mm/s speed while keeping the opposite side constrained. The geometry of the samples (see Rajhi et al. [53]

or the dimensions) was modelled with 3559 hexahedral elements with reduced integration (i.e. C3D8R Abaqus
lements). A mesh refinement was adopted in the central part of the specimen.
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Fig. 6. (a) Nominal stress vs. nominal strain for the monotonic tensile tests under three different loadings rates, (a) fully reversed cyclic
loading stress–strain curves for the 1 [s−1] strain rate condition, (b) first two cycles, (c) all cycles (50 cycles), (d) 50th cycle, (e) envelope of
he tensile and compressive peaks against cycles. (For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

The simulation considers the same material parameters adopted by Rajhi et al. [53] as reported in Table 10. In

ddition, the material parameters Re, u, proper of the DEOSS and the viscoplastic parameters µ, n and Rm were

alibrated to fit the experimental stress and strain curves. Since the analyses are limited to monotonic tensile tests
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Table 10
Viscoplastic and damage material constants for the 316L steel.

Elastic modulus 200 [GPa]
υ 0.3
h1, h2 7.25, 1.475
Re 0.25
C1, B1 15 000 [MPa], 300
u 1500
F0 225 [MPa]
s1, s2 140 [MPa], 1.0
µ, n, Rm 1.75 [s], 25, 20
Dc 0.2

Table 11
Hill’s parameters of the 316L steel sheet.

F G H L M N

1.60 1.52 0.48 1.025 1.0 1.0

Table 12
Parameters for the damage multiplier n : HD

: n.

FD GD HD LD MD ND b1

0.3 1 1 1 1 1 1

Fig. 7. Sketch of the specimens with respect to the reference system.

the constant cs was set to 0, neglecting the effect of the similarity centre. Moreover, Rajhi et al. [53] reported
the Hill48 parameters displayed in Table 11. The calibration of the damage parameters for the tensor HD was
conducted by assuming the failure behaviour of the RD specimen as a reference and setting GD and HD to unity;
subsequently, the coefficient FD was calibrated by running the tensile simulation for the specimen TD to achieve the
experimental final displacement to failure. The components LD , N D , MD and b1 were assumed as unitary since they

lay a secondary role in uniaxial tensile loading conditions. The validation of the set of parameters was conducted
n the specimen 45◦. It should be pointed out that due to the lack of experimental data, the constants in Table 12
re not the only possible choice, since a proper description of the material failure behaviour needs to be obtained
y performing additional tests, for instance, with different loading conditions (a tensile test along the z-axis and
hear tests) or by adopting different geometries for the samples (flat grooved plates to investigate the plane strain
onditions and the role of the b1). However, the choice of the constants provides a good description of the material
nder tensile loading conditions on the xy plane of anisotropy.

Fig. 8a reports the experimental (round solid markers) and numerical (solid lines) force vs. displacement curves.
verall, the simulations seem to be in good agreement with the experimental data in terms of force–displacement

rends and final displacement to failure. As mentioned earlier, the constants GD and HD are unitary, so the n : HD
: n

ultiplier keeps a constant unitary value during the simulation (see blue line in Fig. 8c). FD was set to 0.3 to catch
D
‘delayed’ material failure along the TD direction. The term n : H : n in Fig. 8c assumes almost a constant value
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Fig. 8. (a) Force vs. displacement curves for the three samples where the black markers indicate the experimental breaking points, (b)
Damage evolution vs. displacement for the elements with the highest damage accumulations (c) n : HD

: n multiplier for the three samples.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

f 0.65 throughout the analysis, and it determines a damage accumulation 35% lower along TD compared to the
D direction. This choice of FD was validated for the sample 45◦ as reported using a green solid line in Fig. 8a.
he force– displacement curve is well described by the model as well as the final displacement to failure. A slight
verestimation of the damage accumulation is predicted. The damage evolution for the elements with the highest
amage accumulation is reported in Fig. 8c for the three specimens. The different accumulation of the damage is
direct consequence of the values assumed by the multiplier n : HD

: n.
An additional test was conducted to verify the frame invariance of the kinematic framework of the DEOSS. The

umerical results for the TD sample in Fig. 8 (indicated hereafter with the label ‘w/o R’) were compared with
he numerical data obtained by performing the same tensile test with a superposed rotation of 90◦ (indicated with
w R’) as schematically represented in Fig. 9a and b. The graphs in Figs. 9c and 8d display a perfect match of
he global (force vs. displacement curves) and local (damage and n : HD

: n evolutions) results, proving the correct
implementation of the algorithm.

3.5. Carbon steel notched round bars and flat grooved plates

This last numerical test deals with the failure behaviour of low-carbon construction steel. The experimental

characterisation and the numerical simulations of three notched round bars and four flat grooved plates were
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Fig. 9. (a) Sketch of the TD tensile test without rotation ‘w/o R’ (b) Sketch of the TD tensile test with rotation ‘w R’ (c) Force vs.
isplacement curves, (d) Damage and damage multiplier evolution vs. displacement.

onducted in a previous work of the authors Tsutsumi et al. [19]. In particular, the previous work adopted a partially
oupled elasto-plastic and damage model developed by Fincato and Tsutsumi [25] with a Mohr–Coulomb failure
riterion [16]. The present paper aims to reproduce the experimental results using the DEOSS model.

The details of the experiments and additional information on the geometry and modelling of the specimens can be
ound in the study by Tsutsumi et al. [19] (see Fig. 10). Briefly, the notched round bars have notch radii of 2, 8.75 and
7.5 mm, respectively. The same dimension of the grooves was used for the flat plates with the addition of a fourth
ample with a groove radius of 35 mm. All the analyses considered monotonic tensile loading conditions up to failure
nd accounted for quasi-static loading conditions. Since the material did not show a relevant anisotropic behaviour,
he parameters for the Hill48 criterion were set to unity, recovering a von Mises plastic potential. Similarly, the
oefficients for the HD were also assumed to be unitary with the exception of the b1 constant, which is relevant
or the diversification of the damage evolution under plane strain conditions (i.e. θ = 0). Table 13 reports the

viscoplastic and damage constants of the DEOSS model used in the simulations. Since the analyses are limited to
monotonic tensile tests the constant cs was set to 0, neglecting the effect of the similarity centre. In particular, the
hoice of the s1 and s2 parameters was assumed to cause a sudden material failure in the proximity of the final

elongation to failure. This assumption was made due to further investigation of the low-carbon construction steel,
which pointed out the low presence of impurities and no void formation even under large plastic deformations.
Therefore, the mechanism of void formation, growth and coalescence was assumed to rapidly progress towards the
end of the tensile tests. The values assigned to s1 and to the exponent s2 are able to phenomenologically describe
the phenomenon.

Figs. 11a and 10b report the axial stress and damage evolution vs. the axial strain for the notched bars and
round plates. The dashed curves indicate the experimental data where the breaking points of the specimens are
marked with a hollow ‘x’; the solid lines were obtained using the DEOSS model. The failure in the numerical
22
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Table 13
Viscoplastic and damage material constants for the 316L steel.

Elastic modulus 206 [GPa]
υ 0.3
h1, h2 0.17, 6.5
Re 0.3
C1, B1 2000 [MPa], 9
C2, B2 190 [MPa], 0.1
u 10 000
F0 340 [MPa]
s1, s2 365 [MPa], 7.0
b1 2.0
Dc 0.2

Fig. 10. (a) Schematic representation of the boundary conditions and geometry adopted for (a) notched bars and (b) flat grooved plates as
in Fig. 5 in the study by Tsutsumi et al. [19].

simulation is indicated with a coloured ‘x’ marker. The numerical results seem to be in good agreement with
the experiments. A slight underestimation of the axial stress is observed with the exception of the flat grooved
plate R2.0. Better calibration of the hardening parameters could help overcome this drawback. Moreover, the final
deformation to fracture is well described with small discrepancies between the experiments and the simulations.
The only exception is presented by the flat plate with an 8.75 mm groove where the model seems to overestimate
the material performance. Overall, the results can be considered acceptable.

Figs. 11c and 10d show the evolution of the stress triaxiality, the Lode angle parameter and the damage multiplier
n : HD

: n against the cumulative plastic strain. The two graphs report the variable for the elements with the highest
damage accumulation. First, the DEOSS results are consistent with the numerical results reported by Tsutsumi
et al. [19], displaying the same location for crack formation (see Fig. 12) and the same trends for stress triaxiality
evolution. Second, the role of the parameter b1 can be evaluated by observing Fig. 11b and d. The lode angle

arameter for the flat plates assumes a unitary value at the beginning of the loading; however, it rapidly decreased
o 0 around 0.25% axial strain. As a consequence of this aspect, the damage multiplier n : HD

: n also assumes
n initial unitary value, and it increases to the value of b1 when the plane strain condition is achieved, giving an
cceleration to the damage evolution. The results are visible in Fig. 11b where the damage evolution is reported
y considering b1 = 1 and b1 = 2. In the first case, the ductile damage evolution law is identical to the original
emaitre’s formulation and overestimates the final axial deformation to fracture (i.e. dotted lines). On the contrary,

n the second case, the Lode angle effect can be accounted for, and a more realistic failure description for the plates
s obtained.
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Fig. 11. Axial stress vs. axial strain (a) for the notched round bars, (b) flat grooved plates. Stress triaxiality, Lode angle parameter and
damage multiplier n : HD

: n against the cumulative plastic strain (c) for the notched round bars, (d) for the flat grooved plates.

Fig. 12. Damage contour field at failure for the round notched bars and flat grooved plates.
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4. Limitation of the present formulation of the DEOSS model

The current formulation presents certain limitations. In this section, some of the aspects that need further
mprovements or that have been neglected are considered.

• The novel damage law defined in Eq. (16) offers quite a simple criterion to judge the damage evolution,
thereby allowing one to enhance the damage rate depending on the stress state and the loading conditions.
The additional term, introduced by the tensors n and HD, returns a scalar multiplier that cannot consider the full
complexity of an anisotropic damage variable. It can simply be representative of the tendency of the damage
to accumulate faster (or slower) along certain directions than others. Moreover, it requires the calibration of
seven constants, which, however, can be obtained with simple tensile and shear tests.

• The model has been developed within the framework of phenomenological damage models [35] following
the approach initially proposed by [119] and Lemaitre [24,60]. The approach does not consider plastic
volume variation since the coupled yield criterion is a function of the deviatoric part of the stress [2].
Hammi and Horstemeyer [120] proposed a phenomenological model with a damage evolution law accounting
for nucleation, growth and coalescence. Micro-mechanical based models [30,31,33,42,50] can give a better
description of the void nucleation, growth and coalescence process however they are characterised by other
drawbacks [2,14,35].

• As the damage progresses, the material decreases its load-bearing capacity and becomes prone to strain and
damage localisations. This pathological mesh dependency is not related to the FEM itself, but it occurs due to
the definition of the constitutive behaviour of the material. In the present work, the localisation of the damage
and the plastic strain was avoided by the definition of a critical damage value that was much lower than unity
(∼0.2 ÷ 0.25). Whenever the damage reaches the value of Dc the crack can be considered as formed, allowing
one to avoid an excessive loss of stiffness and the related loss of quadratic rate of convergence in the return
mapping scheme as pointed out by de Souza Neto et al. [15]. However, to overcome this drawback, alternative
and better strategies can be adopted. In general, two main approaches have been developed: the addition of a
‘spatial averaging term’ in terms of a characteristic length in the material formulation (e.g. Andrade et al. [121];
Marotti de Sciarra, [122,123]) or the adoption of a gradient-like definition of the internal variables such as
the plastic strain and the damage [124–128]. Both approaches result in mesh-independent solutions, but the
implementation of gradient-type formulations seems to be more straightforward, especially in terms of adopting
user-defined subroutines for commercial codes. Future works will aim to analyse this aspect.

• The set of analyses presented in Section 3 dealt with relatively simple loading conditions where the load was
applied proportionally. In a previous work [63], the authors investigated the effect of the non-proportionality
of the loading condition on the damage evolution by means of the tangential plasticity contribution. In the
present formulation, this aspect was not considered. Nevertheless, the adoption of an anisotropic yield function
in combination with a damage evolution law that considers the directionality of the load might be able to
simulate the material failure under non-proportional loading. This aspect will be verified in future works.

• Except for the cyclic loading analysis on the lead-free solder material, all the numerical simulations
reproducing experimental data were carried out within a relatively small range of stress triaxialities (1/3 ≤

η). Proper verification of the DEOSS model’s ability to describe the material failure should be conducted by
investigating a wider range of loading conditions and the geometries of different samples as in some previous
works [22,129,130].

• The present work does not consider the micro-cracks closure effect (Andrade Pires et al. [131]; Badreddine
and Saanouni, [48]; Kumar and Dixit, [132]; Yue et al. [133]; Zhang et al. [22]; among others) that was
observed for loading paths’ alternating tension and compression phases. This additional aspect must be taken
into consideration for future works on low cycle fatigue or for loading paths while considering compression.

• Several experimental works (e.g., Benaarbia et al. [134]; Oppermann et al. [135]; Roy Chowdhury et al. [136,
137]; among others) pointed out that temperature plays a fundamental role in the mechanical response of
metallic materials. The inclusion of the temperature as an internal variable in the constitutive equations of the
DEOSS model represents a future challenge.
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5. Conclusions

The paper extends the work of the authors carried out in a previous study (i.e. the EOSS model in the study by
incato and Tsutsumi, [57]) and enriches the set of constitutive equations to describe the ductile damage behaviour
f pressure insensitive metallic materials within the framework of the CDM. Moreover, a few other aspects of the
OSS model are improved. The current formulation can account for plastic anisotropy with the inclusion of the
ill48 yield criterion together with a different computational kinematic framework based on the kinetic logarithmic

pin, thereby eliminating several drawbacks connected with the use of the Jaumann co-rotational spin.
A novel scalar damage evolution law is proposed as a simple and practical criterion to describe the material

ailure under several loading conditions. By means of simple tensile tests, it is possible to calibrate the material
arameters affecting the damage variable to consider a damage evolution that depends on the loading directions in
elation to the axes of anisotropy. Moreover, it was found that the model is able to catch a different deformation to
racture observed under plane strain conditions. Several numerical examples were provided to explain the role of
he material parameters in the novel damage evolution law. Several experimental data were reproduced using the
EOSS model and dealing with cyclic loading on a lead-free solder material with the tensile tests on a 316L steel

nd the tensile tests on low-carbon construction steel notched round bars and flat grooved plates resulting in an
cceptable description of the mechanical behaviours in all the tests.

The limitations of the current formulation of the theory were discussed along with the possible strategies and
olutions adopted by several authors in the literature. Future works will develop the DEOSS model further to
liminate the aforementioned shortcomings.

omenclature

CT O : consistent tangent operator;
E0: fourth-order elasticity tensor (undamaged conf.);
E: fourth-order elasticity tensor (damaged conf.);
H: Hill48 yield criterion tensor;
HD: damage Hill-like tensor;
D, ε: strain rate tensor, strain tensor;
De, εe: elastic strain rate tensor, elastic strain tensor;
Dvp, εvp: viscoplastic strain rate tensor, viscoplastic strain tensor;
Dvp

ss , ε
vp
ss , similarity centre storage viscoplastic strain rate tensor and viscoplastic strain tensor;

Dvp
sd , ε

vp
sd , similarity centre dissipative viscoplastic strain rate tensor and viscoplastic strain tensor;

Dvp
ks , ε

vp
ks , back stress storage viscoplastic strain rate tensor and viscoplastic strain tensor;

Dvp
kd , ε

vp
kd , back stress dissipative viscoplastic strain rate tensor and viscoplastic strain tensor;

W: continuum spin tensor;
Wp: plastic spin tensor;
Ωk log: kinetic logarithmic spin;
Bk : left Cauchy–Green deformation tensor;
∆Λ, δΛ: incremental rotation tensors from the current to the rotation-insensitive configuration;
L: velocity gradient;
τ: Kirchhoff stress tensor;
σ: Cauchy stress tensor;
σy : Cauchy stress tensor on the normal-yield surface;
σss : Cauchy stress tensor on the subloading surface;
α: back stress tensor;
σ̊: co-rotational rate of the Cauchy stress;
α̊: co-rotational rate of the back stress;
σ: conjugate Cauchy stress for the dynamic loading surface;
σss : conjugate Cauchy stress for the subloading surface;
α: conjugate back stress for the dynamic loading surface;
αss : conjugate back stress for the subloading surface;
σ̃: Cauchy stress observed from the similarity-centre;
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s: similarity centre tensor;
ŝ: similarity-centre observed from the back stress;
N : normalised outward normal tensor to the plastic potential;
G: shear modulus;
υ: Poisson’s ratio;
F: isotropic hardening function;
F0: initial size of normal-yield surface (i.e., yield stress);
H: cumulative plastic strain variable;
R: subloading surface similarity ratio;
Rd: dynamic loading surface similarity ratio;
Re: constant defining the size of the elastic subdomain;
Rm : constant limiting the maximum size of the dynamic loading surface;
α: plastic spin anisotropic constant;
λ: viscoplastic multiplier;
µ: viscoplastic coefficient;
n: rate-sensitivity material constant;
Ci , Bi : material constants for the kinematic hardening;
s1, s2: damage coefficients;
Y: damage energy release rate;
F, G, H, L, M, N: Hill48 anisotropic coefficients;
FD , GD , HD , LD , MD , N D , b1: damage anisotropic coefficients;
ψ : total Helmholtz free energy;
ψed : free energy associated with the elasticity;
ψpk : free energy associated with the back stress;
ψps : free energy associated with the similarity centre;
ψpi : free energy associated with the isotropic hardening;
φd : total mechanical dissipation;
φdp : viscoplastic dissipation;
φdd : damage dissipation;
f : generic stress function expressing the plastic potential;
h1, h2: material parameters for the isotropic hardening;
u: material constant for the similarity ratio evolution;
χ : parameter limiting movement of s;
cs : constant influencing s translation speed;
η: stress triaxiality;
θ : Lode angle parameter.
EOSS: Extended overstress subloading surface model (rate-dependent);
DEOSS: Damage extended overstress subloading surface model (rate-dependent);
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ppendix

The constitutive equations of the DEOSS model require the use of an incrementally objective integration
lgorithm to maintain the frame invariance with respect to rigid body motions. This incrementally objective
ntegration algorithm is well established and has been adopted in several commercial and non-commercial FE codes;
etails can be found in the studies by de Souza Neto et al. [15], Hughes and Winget [138] and Simo and Huges [71],
mong others. The idea is to solve the system of constitutive equations formulated in the current configuration in
configuration unaffected by any superposed spatial rigid body motion. Only the main aspects of the integration

lgorithm are discussed here; a step-by-step and exhaustive description of the incrementally objective update formula
27
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for hypoelastic-based plasticity models can be found in the studies by Brepols et al. [66], Jiao and Fish [61] and
Palizi et al. [139].

Considering the body in equilibrium at a generic time tn ⊂ [0, t], the purpose is the computation of the set
f unknowns xn+1 =

[
σn+1, Rd,n+1, Hn+1, Rn+1, Dn+1, sn+1,αn+1

]
defining the new mechanical equilibrium at the

ubsequent time tn+1 = tn + ∆t with tn+1 ⊂ [0, t]. The formulation of all the variables in this rotation-neutralised
onfiguration passes through the definition of two orthogonal rotation tensors ∆Λ and δΛ obtained by means of
he skew-symmetric spin tensor Ωk log as follows:

∆Λ ≈ exp
(∫ tn+1

tn
Ωk logdt

)
; δΛ ≈ exp

(
1
2

∫ tn+1

tn
Ωk logdt

)
(20)

he tensors ∆Λ and δΛ are incremental rotations from the n to the n + 1 configuration and from the n + 1/2 to
the n + 1 configuration that can be used to rotate the variables in the current configuration to obtain an updated
formula of the unknowns that is rigid-motion-insensitive.

The resolution strategy adopts a multi-equation Newton–Raphson scheme, which is also known as the return
apping method, in the form discussed in previous works of the authors [57,64,140]. At the beginning of the

omputation, the trial elastic is performed to evaluate the stress state at the time tn+1 (i.e. σn+1), thereby providing
he increment of strain ∆ε = ∆t D and ‘freezing’ all the plastic and damage internal variables. If the new stress
tate represents an admissible state for the material, then the equilibrium at tn+1 is fulfilled; otherwise, a viscoplastic
orrection is performed through a series of k sub-iterations until the fulfilment of the equilibrium. Hereafter, the
iscoplastic correction procedure is briefly explained.

In the context of FE codes with reference to the Abaqus UMAT user subroutine, the integration is performed on
he Gauss points at a local level. Different input and output need to be provided for the computational step at the
ime tn+1:

• INPUT: the set of unknowns and the information about the orientation of the axes of anisotropy at the previous
equilibrium point xn =

[
σ n, Rd,n, Hn, Rn, Dn, sn,αn

]
; Hn and HD

n ; the two deformation gradients Fn+1 and
Fn+1; the time interval ∆t and the relevant state variables.

• OUTPUT: an updated set of unknowns xn+1; the updated information about the orientation of the axes of
anisotropy Hn+1 and HD

n+1; the consistent tangent operator CT O for the convergence of the global mechanical
equilibrium and the updated state variables.

irst, an approximation of the two rotation tensors in Eq. (20) can be rewritten as in Eq. (21) where the contribution
f the plastic spin is neglected since an elastic trial is assumed, but Wp needs to be considered in the viscoplastic
orrection algorithm:

∆Λ(k) ≈ exp
[
∆tWn + Wk log

n

(
Bk (σn, Dn) ,∆tDn

)]
δΛ(k) ≈ exp

[
1
2

(
∆tWn + Wk log

n

(
Bk (σn, Dn) ,∆tDn

))]. (21)

where W and D are the same terms introduced in Eq. (1) and are re-written here as follows:

Dn ≈
1

2∆t
F−T

n

(
FT

n+1Fn+1 − FT
n Fn

)
F−1

n

Wn ≈
1 (

Fn+1F−1
− F−T FT ) (22)
2∆t n n n+1
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The trial elastic was performed as follows:

D(k)
n+1 = Dn

σ
(k)
n+1 = ∆Λ(k)σn∆ΛT,(k)

+

(
1 − D(k)

n+1

)
E0

:
[
δΛ(k)

(
∆t Dn+1/2

)
δΛT,(k)]

α
(k)
n+1 = ∆Λ(k)αn∆ΛT,(k)

s(k)n+1 = ∆Λ(k)sn∆ΛT,(k)

H(k)
n+1 = ∆Λ(k)∆Λ(k)Hn∆ΛT,(k)∆ΛT,(k)

HD,(k)
n+1 = ∆Λ(k)∆Λ(k)HD

n ∆ΛT,(k)∆ΛT,(k)

H (k)
n+1 = Hn; R(k)n+1 = Rn; R(k)d,n+1 = Rd,n

(23)

where the isotropy of the elasticity tensor is exploited and the term ∆t Dn+1/2 can be obtained from the
deformation gradients ∆t Dn+1/2 = 1/2F−T

n+1/2

(
FT

n+1Fn+1 − FT
n Fn

)
F−1

n+1/2. In case viscoplastic correction is needed,
the procedure the set of equations reported in Box 1 (Section 2.2) can be written as follows:

b(k)n+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
3/2

⏐⏐⏐σ(k)n+1 : H(k)
n+1 : σ

(k)
n+1

⏐⏐⏐− (
1 − D(k)

n+1

)
R(k)d,n+1

˜
F
(

H (k)
n+1

)
σ
(k)
n+1 −

(
1 − D(k)

n+1

)
(1 − Dn)

∆Λ(k)σn∆ΛT,(k)
+

(
1 − D(k)

n+1

)
E0

:
[
δΛ(k)

(
∆t Dn+1/2

)
δΛT,(k)]

+
1
µ

⟨
exp

(
n
[

R(k)d,n+1 − R(k)n+1

])
− 1

⟩
(

Rm − R(k)d,n+1

) 2GN(k)
n+1∆t

s(k)n+1 −

(
1 − D(k)

n+1

)
(1 − Dn)

∆Λ(k)sn∆ΛT,(k)
− s̊(k)n+1∆t

H (k)
n+1 − Hn −

√
2
3

1
µ

⟨
exp

(
n
[

R(k)d,n+1 − R(k)n+1

])
− 1

⟩
(

1 − D(k)
n+1

) (
Rm − R(k)d,n+1

) ∆t

R(k)n+1 − Re −
2
π
(1 − Re) cos−1

[
cos

(
π

2
R0 − Re

1 − Re

)
exp

(
−u

π

2
Dvp

n+1∆t
1 − Re

)]

D(k)
n+1 − Dn −

√
2
3

λ(
1 − D(k)

n+1

) (−
Y (k)

n+1

s1

)s2

n(k)n+1 : HD,(k)
n+1 : n(k)n+1

αn+1 −

(
1 − D(k)

n+1

)
(1 − Dn)

∆Λ(k)αn∆ΛT,(k)
− α̊

(k)
n+1∆t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

The co-rotational rates of the back stress and the similarity centre are not rotated by δΛ as well as the viscoplastic
correction term in the equation of the stress; therefore, an approximation used in the study by Jiao and Fish (2018)
is adopted. The updated set of unknowns is computed as follows:

x(k+1)
n+1 = x(k)n+1 −

[
A(k)

n+1

]−1
b(k)n+1 = x(k)n+1 − δx(k+1)

n+1 (25)

where A represents the matrix of the partial derivatives, i.e. the Jacobian matrix, which is obtained by deriving
the set of equations in Eq. (24) against the unknowns. It should be pointed out that the definition of the tensors
∆Λ and δΛ depends on the damage as well as on the plastic strain. Once updated, the unknowns, all the variables

(k+1) N(k+1) (k+1)
(e.g. Fn+1 , n+1 ,nn+1 . . .) to the k + 1 sub-iteration and the tensors ∆Λ and δΛ are evaluated again, and the
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Fig. 13. Flow chart of the DEOSS model for the user subroutine UMAT (Abaqus).

rotation of the Hn and HD
n tensors is performed:

∆Λ(k+1)
≈ exp

[
∆tWn − Wp (σn+1,∆tDp

n+1

)
+ Wk log (Bk (σn, Dn) ,∆tDn

)]
δΛ(k+1)

≈ exp
[

1
2

(
∆tWn − Wp (σn+1,∆tDp

n+1

)
+ Wk log (Bk (σn, Dn) ,∆tDn

))]
H(k+1)

n+1 = ∆Λ(k+1)∆Λ(k+1)Hn∆ΛT,(k+1)∆ΛT,(k+1)

HD,(k+1)
n+1 = ∆Λ(k+1)∆Λ(k+1)HD

n ∆ΛT,(k+1)∆ΛT,(k+1)

(26)

The viscoplastic correction stops whenever the following condition is fulfilled:⏐⏐⏐b(k+1)
n+1

⏐⏐⏐ ≤ tol (27)

where tol is a threshold imposed by the user; usually tol ≤ 1.0 × 10−8. The local procedure is summarised in the
flow chart of Fig. 13. In order to guarantee the efficiency of the algorithm from a global point of view, the consistent
tangent operator needs to be defined and returned as an output from the user subroutine. In this paper, we adopt the
same procedure used by Fincato and Tsutsumi [57,64,140], thereby adopting a strategy that is exhaustively explained
in the study by de Souza Neto et al. [15]. Briefly, once the condition in Eq. (27) is fulfilled, the consistent tangent
operator can be simply obtained by the following expression:

CT O
=

(
1 − D(k+1)

) [
A(k+1)

]−1
: E0

=

[
A(k+1)

]−1
: E. (28)
n+1 n+1 12 n+1 12
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where
[
A(k+1)

n+1

]−1

12
is a matrix with the same dimensions as elastic constant matrix E and the first term is located in

the first row and second column of
[
A(k+1)

n+1

]−1
. Lastly, the expression of the consistent tangent modulus in Abaqus

must be given in terms of the Jaumann rate of the Kirchhoff stress, therefore, Eq. (28) has to be modified following
the procedure in [139].

In case the viscoplastic procedure is not needed (i.e. the trial elastic state is an admissible stress state for the
material), the consistent tangent operator is a function of the damage and the elasticity tensor CT O

= (1 − Dn)E0
=

E.
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