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A B S T R A C T   

The emergy accounting method has been widely applied to terrestrial and marine ecosystems although there is a 
lack of emergy studies focusing on phytoplankton primary production. Phytoplankton production is a pivotal 
process since it is intimately coupled with oceanic food webs, energy fluxes, carbon cycle, and Earth’s climate. In 
this study, we proposed a new methodology to perform a biophysical assessment of the global phytoplankton 
primary production combining Machine Learning (ML) techniques and an emergy-based accounting model. 
Firstly, we produced global phytoplankton production estimates using an Artificial Neural Network (ANN) 
model. Secondly, we assessed the main energy inputs supporting the global phytoplankton production. Finally, 
we converted these inputs into emergy units and analysed the results from an ecological perspective. Among the 
energy flows, tides showed the highest maximum emergy contribution to global phytoplankton production 
highlighting the importance of thise flow in the complex dynamics of marine ecosystems. In addition, an emergy/ 
production ratio was calculated showing different global patterns in terms of emergy convergence into the 
primary production process. We believe that the proposed emergy-based assessment of phytoplankton produc
tion could be extremely valuable to improve our understanding of this key biological process at global scale 
adopting a systems perspective. This model can also provide a useful benchmark for future assessments of marine 
ecosystem services at global scale.   

1. Introduction 

Ecosystems are open, far from thermodynamic equilibrium, and hi
erarchically self-organized systems characterized by complex networks 
and emergent properties (Buonocore et al., 2019; Jørgensen et al., 2011; 
Jørgensen and Fath, 2004). 

Several functions have been identified as principles able to explore 
ecosystems complexity and development. These functions are known as 
Goal Functions (GFs) and can be divided into three macro-categories: 
the biotic, the network, and the thermodynamic GFs (Jørgensen and 
Mejer, 1979; Vihervaara et al., 2019). Among the thermodynamic GFs, 
emergy was introduced by H.T. Odum to unfold the role of matter and 
energy flows in supporting both natural and human-dominated ecosys
tems (Odum, 1996, 1988). 

The Emergy accounting method has been widely applied to explore 

terrestrial and marine ecosystems (Franzese et al., 2020, 2019, 2014; 
Pulselli et al., 2011). Recent studies provided an assessment of the 
biophysical value of natural capital and ecosystem services in marine 
ecosystems by using the emergy accounting method. Vassallo et al. 
(2017) developed a biophysical and trophodynamic model based on 
emergy accounting to assess the value of natural capital in marine 
protected areas (MPAs). Franzese et al. (2017), Picone et al. (2017), and 
Paoli et al. (2018) applied the model described in Vassallo et al. (2017) 
for assessing the biophysical and economic value of natural capital in 
selected Mediterranean MPAs. Berrios et al. (2017) used emergy ac
counting to assess natural capital and ecosystem services of benthic 
marine ecosystems in Chile, also exploring their contributions to the 
well-being of regional economy. Berrios et al. (2018) evaluated the 
ecosystem health of three benthic marine networks in northern Chile by 
using energy systems theory and emergy accounting. Buonocore et al. 
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(2020a, 2020b) used the emergy method to assess the value of marine 
natural capital stocks in southern Italy. Yang et al. (2019) implemented 
an emergy-based assessment for coastal and marine ecosystem services 
in China. 

While many emergy studies have been applied to explore benthic 
marine ecosystems, there is a lack of emergy studies focusing on marine 
primary production in the water column at both local and global scales. 
In the context of marine ecosystems, phytoplankton primary production 
is a crucial biological process since it accounts for about 94% and 50% of 
marine and global autotrophic production (Duarte and Cebrián, 1996). 
Accordingly, phytoplankton production represents the bulk of energy 
for structuring marine food webs, allowing the generation of natural 
capital stocks and the delivery of provisioning, regulating, and cultural 
ecosystem services (Blythe et al., 2020; Buonocore et al., 2020a; Chak
raborty et al., 2020). Furthermore, phytoplankton production exerts a 
regulating effect on Earth’s climate through a net uptake of CO2 from the 
atmosphere with a share of the fixed carbon removed from the fast 
carbon cycle through sinking of organic matter (Longhurst and Glen 
Harrison, 1989). 

For these reasons, phytoplankton production is a pivotal component 
of marine ecosystems functioning and enhancing its understanding is a 
central issue in modern oceanography. 

The study of marine phytoplankton production on a global scale 
requires to be supported by ecological models. This support maximizes 
theinformation derived from in situ measurements which are expensive 
and time-consuming. Several models were developed to estimate pri
mary production from ocean color and some of them were compared in 
published studies (Carr et al., 2006; Friedrichs et al., 2009; Lee et al., 
2015; Saba et al., 2011). Among the available phytoplankton production 
estimators, the one developed by Scardi (2001) is based on a Machine 
Learning (ML) technique, i.e. Artificial Neural Network (ANN). 

The strengths of the ML approaches rely on the ability to handle 
complex and non-linear relationships, which are ubiquitous in natural 
systems (Catucci and Scardi, 2020; Franceschini et al., 2019; Lek et al., 
1996; Mattei and Scardi, 2020; Olden et al., 2008). Moreover, they can 
exploit a wide range of predictive variables, since no a priori explicit 
mathematical formulation of the link between predictive variables and 
the output is needed. The latter feature is extremely valuable when 
remotely-sensed information is taken into account. 

Since phytoplankton primary production is a central process in the 
marine ecosystem functioning, several research areas could benefit from 
a deepening in the understanding of its dynamics. From a climate 
perspective, a global assessment of phytoplankton production could 
improve the comprehension of climate change effects on this process 
and to the ones related to it, such as the global carbon cycle (Blanchard 
et al., 2012; Barange et al., 2014; Maureaud et al., 2017; Behrenfeld 
et al., 2006; Boyce et al., 2010). Moreover, several marine ecosystem 
services and functions are related to phytoplankton autotrophic pro
duction (Buonocore et al., 2019; Costanza et al., 1997; Melaku Canu 
et al., 2015; Richardson and Schoeman, 2004). Accordingly, the man
agement of the marine system and its resources is deeply linked with the 
characteristics of this biological process (Nixon, 1992; Conti and Scardi, 
2010; Russo et al., 2019). 

In this work, we developed and applied a novel methodology to 
perform a biophysical assessment of the global phytoplankton primary 
production combining ML techniques and an emergy-based environ
mental accounting model. 

2. Materials and methods 

The integrated modeling approach implemented in this study could 
be divided in three main steps. Firstly, we estimated the global phyto
plankton production using an ANN model, which requires only predic
tive variables that can be either retrieved from remote sensing platforms 
or derived from them. The latter feature allows the model user to freely 
retrieve the needed information from online repositories. Secondly, we 

gathered all the information about the main energy inputs converging to 
the marine ecosystem and influencing the phytoplankton production. 
Matter inputs to the primary production can be mainly considered as 
quantities continuously recycling into the system on a global scale. For 
this reason, we assumed that matter inputs do not carry any emergy 
value and were not considered for the emergy analysis in this work. 
Finally, we converted the energy inputs into emergy units and explored 
our results using data analysis and visualization tools. 

The methodology was applied on data referred to the year 2018 since 
it was the most recent year for which all the needed data were available. 
The main steps of our approach are described in the following 
paragraphs. 

2.1. Phytoplankton primary production model 

We used an ANN model (Scardi, 2001) to estimate integrated 
phytoplankton primary production on a global scale. The ANN was 
trained with a classic version of the error back-propagation algorithm 
(Rumelhart et al., 1986). The software used to train the ANN was 
developed in Fortran 90. The Fortran program and a python script to 
estimate the phytoplankton production are available upon request. 

The predictive variables included the day of the year and the 
geographic coordinates of the selected area. The coordinates were 
extracted from a 4320 × 8640 matrix (latitude x longitude) with a res
olution of 0.041 × 0.041◦. This resolution was selected for consistency 
with the MODIS-aqua data. The day of the year was set as the 15th day of 
each month to provide a mean monthly estimate. The day of the year 
and the longitude were passed as input after a trigonometric trans
formation which produced two derived variables, while the latitude was 
not transformed (Mattei et al., 2018; Scardi, 2001). The model also 
needed the surface irradiance (Frouin et al., 2012; Frouin and Pinker, 
1995), sea surface temperature (Werdell et al., 2013), and surface 
chlorophyll a concentration (Hu et al., 2012; Morel and Maritorena, 
2001; O’Reilly et al., 1998; Werdell and Bailey, 2005). These predictors 
can be downloaded from the MODIS-Aqua repository at the following 
link https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Month 
ly/4km/. These environmental variables are available with a resolu
tion of 0.041 × 0.041◦ (4320 × 8640 latitude x longitude grids). The last 
three predictive variables were computed using models or mathematical 
equations. The first was the mixed layer depth, which could be estimated 
using several models, e.g. Monterey and Levitus (Levitus et al., 1994; 
Levitus and Boyer, 1994). The second one was the daylength, which we 
computed as function of the day of the year and latitude. 

The last one was the PB
opt which is a physiological variable computed 

as function of the sea surface temperature (Behrenfeld and Falkowski, 
1997). 

A list of the ANN model inputs and output is shown in Table 1. 
After retrieving the predictive variables, we used the ANN model to 

estimate the mean phytoplankton production on a global scale for each 
month of the year 2018. We kept the 4 km resolution of the MODIS-Aqua 
data, thus producing a 4320 × 8640 grid (0.041 latitude x 0.041 
longitude degrees) ASCII file for each month containing the production 
appraisals. Subsequently, we used these files to generate global pro
duction maps. Figure 1 shows the global production map generated for 
January 2018. The maps generated for all the months of the year are 
available in the online supplementary materials. 

The missing values shown as black pixels in Fig. 1 represent the areas 
for which the predictive variables were not available. The lack of in
formation was mainly due to the cloud coverage of the ocean which 
impeded the measurement of surface chlorophyll a from remote sensing 
platforms. This phenomenon was not homogeneous neither spatially nor 
temporally. In fact, the main affected areas were those at higher latitude 
with different patterns throughout the year (see supplementary mate
rials and Figs. 5-8). 
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2.2. Energy inputs 

We relied on both the ecological knowledge of the phytoplankton 
production process (Reynolds, 2006) and the current literature on 
emergy accounting (Brown and Ulgiati, 2016a; Campbell and Tilley, 
2016; Lee et al., 2019) to identify and assess the main energy inputs 
supporting phytoplankton primary production at global scale (Fig. 2). 
The energy inputs can be divided in primary and secondary sources. The 
primary renewable energy inputs, also known as the global tripartite, 
comprise the solar, tidal, and geothermal exergy (Brown et al., 2016). 
The secondary renewable energy sources are generated by the in
teractions of the primary ones. 

The first primary renewable input taken into account was the solar 
energy. We converted the same Photosynthetically Active Radiation 
(PAR) data used as input for the ANN model into total solar radiation 
(total radiation = 2.32 PAR). This variable showed the higher resolution 

among the gathered data and was stored in a 4320 × 8640 grid (0.041 
latitude x 0.041 longitude degrees). 

The unit of measure was converted from E m− 2 day− 1 to J m− 2 day− 1 

to evaluate the energy contribution to the system. This was not a 
straightforward operation since the former measures energy quanta 
while the latter refers to an energy flux. We used the relationship found 
by Britton and Dodd (1976) (1 µE m− 2 s− 1 corresponds to 0.219 W m− 2) 
to convert µE m− 2  s− 1 to W m− 2. Then, we obtained J s− 1 since by 
definition 1 W = 1 J s− 1 and the J m− 2 day− 1 multiplying by the second 
in a day. The solar energy input was calculated according to the 
following equation: 

Esunlight = 0.219 E T (1)  

Where Esunlight is the solar energy expressed as J m− 2 day− 1, while E is the 
solar energy expressed as µE m− 2 s− 1 and T are the seconds in a day. 

Moreover, the tidal energy, which plays an important role in the 
water column mixing and ocean circulation (Blauw et al., 2012; Cadier 
et al., 2017; Jorge and Beusekom, 1995), was assessed on the base of 
information retrieved from the Swedish National Data Service (https:// 
snd.gu.se/en/catalog/study/ecds0243/001). The dimensionality of the 
data grid was 2880 × 5760 (0.062 latitude x 0.062 longitude degrees). 
We computed the energy contribution of tides using the following 
formula: 

Etides =
1
2

Nt

365
h2 ρw g (2)  

Where Nt is the annual number of tidal cycles, h2 is the annual average 
cycle amplitude (m), ρw is the sea water density (1030 kg m− 3) and g is 
the acceleration of gravity (9.8 m s− 2). 

Finally, we accounted for the surface heat flow that is a crucial 
process in the Earth’s energy dynamics (Beardsmore et al., 2001) since it 
represents one of the interfaces between Earth’s solid interior, hydro
sphere, cryosphere, and atmosphere (Fahnestock et al., 2001; Mashayek 
et al., 2013; Scott et al., 2001). The global surface heat flow map pro
duced by Davies (2013) was used to assess the heat flow energy 
contribution. The map was available as a 90 × 180 (1 latitude x 1 

Table 1 
Artificial neural network inputs and output.  

ANN inputs Units Resolution Source Algorithm 

Surface 
chlorophyll a 

mg m− 3 0.041 ×
0.041 
degrees 
(lat x lon) 

MODIS-aqua Hu et al. (2012) 

Surface 
irradiance 

E m− 2 

day− 1 
0.041 ×
0.041 
degrees 
(lat x lon) 

MODIS-aqua Frouin and 
Pinker, 1995 

S ea surface 
temperature 

◦C 0.041 ×
0.041 
degrees 
(lat x lon) 

MODIS-aqua Werdell et al., 
2013 

Mixed layer 
depth 

M 0.25 ×
0.25 
degrees 
(lat x lon) 

Levitus MLD Levitus et al. 
(1994) 

PB
opt mg C 

(mg 
chl)− 1 

h− 1 

0.041 ×
0.041 
degrees 
(lat x lon) 

Behrenfeld 
and Falkowski 
(1997) 

Function of sea 
surface 
temperature 

Day length h / / Function of 
latitude and day 
of the year 

Latitude degrees / / / 
sin(longitude) – / Scardi, 2001 Trigonometric 

transformation 
cos(longitude) – / Scardi, 2001 Trigonometric 

transformation 
sin(date) – / Scardi, 2001 Trigonometric 

transformation 
cos(date) – / Scardi, 2001 Trigonometric 

transformation 
ANN output Units    
Integrated 

Phytoplankton 
Production 

mg C m 
− 2 

day− 1 

0.041 ×
0.041 
degrees 
(lat x lon) 

Scardi, 2001 ANN model  

Fig. 1. Integrated phytoplankton primary production map of January 2018 (log(mg C m− 2 day− 1)).  

Fig. 2. Systems diagram showing energy inputs supporting phytoplankton 
primary production. 
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longitude degree) grid and the heat flow data were stored as mW m− 2. 
We converted the values into J m2 day− 1 to assess the heat flow daily 
energy. Finally, to assess the exergy contribution we used an average 
Carnot efficiency of 69% (Lee et al., 2019). 

Regarding the secondary energy inputs, the wind stress on the ocean 
surface was firstly considered. This stress influences the water column 
physical dynamics, which in turn deeply affect phytoplanktonic organ
isms (Jorge and Beusekom, 1995; Manwell et al., 2010). We retrieved 
the wind speed from the ERA5 monthly averaged data (Hersbach et al., 
2019), which are stored in the Copernicus Climate Data Store (CDS). The 
wind energy contribution to the marine systems has been calculated 
following the procedure developed by Brown and Ulgiati (2016a). We 
computed the geostrophic wind velocity using the 10 m wind speed 
according to the following formula (3): 

V = Vref

(
H

Href

)α

(3)  

Where V is the geostrophic wind velocity, Vref is the reference velocity 
(wind speed at 10 m), H is the height for the geostrophic wind (1000 m), 
Href is the reference height (10 m) and α is the surface roughness 
exponent (0.1) (Manwell et al., 2010). Subsequently, the wind energy 
contribution was assessed according to the following formula (4): 

Ewind =
1
2

ρa KGN V3 A T (4)  

Where ρa (1.229 kg m − 3) is the air density at sea level, KNG is a 
geostrophic drag coefficient (1.26 10− 3) (Garratt, 1994), A is an area of 
1 m2, and T are the seconds in a day. 

The chemical potential of rainfall over the ocean (Brown and Ulgiati, 
2016b; Lee et al., 2019) was assessed on the base of precipitation data 
retrieved from the ERA5 monthly averaged data, stored as m day− 1 and 
in a 720 × 1440 grid (0.25 latitude x 0.25 longitude degrees). We 
computed the rain energy contribution according to the following 
equation: 

Erain = r ρw G (5)  

Where r is the rainfall (m day− 1), ρw is the sea water density (1030 kg m 
− 3 = 1030 103 g) and G is the Gibbs constant (4.72 J g − 1) (Lee et al., 
2019). 

Based on the ERA5 monthly averaged data, we also assessed the 
terrestrial runoff that is an important nutrient input in coastal areas 
where it is accountable due to their higher production magnitude 
compared to open ocean. Data were stored in a 720 × 1440 (0.25 lati
tude x 0.25 longitude degrees) grid and expressed in m day− 1. 

The chemical potential of runoff was computed through the 
following equation: 

Erunoff = R ρw G (6)  

Where R is the runoff expressed as m day− 1, ρw is the water density (106 

g m− 3) and G is the Gibbs constant (4.72 J g− 1). 

2.3. Emergy accounting 

Emergy measures the cumulative environmental support to a process 
(Odum, 1996, 1988). Emergy accounting aims at evaluating the envi
ronmental performance of a system on the global scale of the biosphere, 
taking into account free environmental inputs driving the functioning of 
natural systems (e.g., solar radiation, wind, rain, and geothermal flow) 
and human-driven flows driving socioeconomic systems (Brown and 
Ulgiati, 2016c, 2016a; Franzese et al., 2014, 2009). According to this 
method, inputs are accounted for in terms of their solar emergy, defined 
as the total amount of solar available energy (exergy) directly or indi
rectly required to make a given product or support a given flow, and 
measured in sej (solar emergy joules). The solar emergy required to 

generate one unit of product or service is referred to as Unit Emergy 
Value (UEV, sej J − 1, sej g − 1). Mass and energy inputs to the investi
gated system are converted into emergy units by using appropriate 
UEVs, and then summed to calculate the total emergy support. 

After the evaluation of the main energy inputs converging to the 
marine ecosystem and driving the phytoplankton production, we con
verted them into emergy inputs (sej m− 2 day− 1) by using specific Unit 
Emergy Values (UEVs, sej J− 1, sej g− 1) (table 2). The UEVs were updated 
to the last emergy baseline (1.20 1025 sej year− 1) computed by Brown 
et al. (2016). 

Once the emergy inputs were assessed, we summed them to evaluate 
the total emergy supporting phytoplankton production for each month 
of the 2018. The total emergy was calculated following the emergy 
algebra rules according to the following formula proposed by Brown and 
Ulgiati (2016): 

Emtot = max
( (

Emsun + Emtides + Emheat flow
)
, Emwind, Emrain, Emrunoff

)

(7) 

This method compares the sum of the global tripartite with the 
largest of secondary and tertiary sources taking the larger of these two 
values as the emergy input. Following this procedure, we produced 12 
grids, with a spatial resolution of 4320 × 8640 (0.041 latitude x 0.041 
longitude degrees) one for each month of 2018, in which we computed 
the emergy value of phytoplankton production for each pixel. Subse
quently, we mapped these grids and we computed an emergy/produc
tion ratio in order to highlight different global patterns in the emergy 
conversion into primary production (Fig. 5-8 and supplementary ma
terials). As pointed out in Section 2.1, missing values in the grids and on 
the maps refer to missing value of the predictive variables used to esti
mate the primary production. 

Finally, to analyze the temporal variability of the emergy/produc
tion ratio, we computed its variance for the 2018. The variance was 
computed using the values of each month for the same pixel. In order to 
avoid biases, we calculated the variance only for the pixels that showed 
at least 6 values out of 12 and less than 3 missing values in a row (Fig. 9). 

3. Results and discussion 

3.1. Energy inputs magnitude, variability and hierarchy 

Once assessed the contribution of the energy inputs to the marine 
system, we analysed their magnitude and hierarchy (Fig. 3). Among the 
renewable energy input supporting phytoplankton primary production 
solar exergy had the larger maximum, minimum and average values for 
the year 2018 (Table 3). 

This is not surprising since this component of the global tripartite is 
the main available source of energy for the biosphere and it allows the 
generation and the maintenance of natural systems far from thermo
dynamic equilibrium, e.g. ecosystems. In fact, the solar energy exploi
tation by photosynthetic organisms, which convert this free energy flux 
into chemical bonds, fuels the bulk of natural systems. The global inter- 
annual variability of solar energy was not as pronounced as the one 
associated with other inputs. In fact, it was the only exergy source which 
showed a maximum and an average value of the same order of magni
tude, i.e. 107 J m− 2 day− 1 (Fig. 3). 

Table 2 
UEVs used in this study and respective references.  

Input UEV (sej J− 1; sej g− 1) Reference 

Sunlight 1.00 By definition 
Tides 3.09 104 (Brown and Ulgiati, 2016a) 
Heat flow 4.9 103 (Brown and Ulgiati, 2016a) 
Wind 5.2 102 Lee et al. 2019 
Rainfall 4.9 103 (Brown and Ulgiati, 2016a) 
Runoff 2.09 104 Lee et al. 2019  
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Tidal energy was the second member of the global tripartite that 
showed a large free energy contribution. Its maximum value was the 
closest to the solar one but its global variability showed different fea
tures. In fact, maximum and minimum tidal contribution where the most 
distant from each other showing a magnitude of 104 and 10− 4 respec
tively (Table 3). This feature reflects the differences of tidal amplitude in 
distinct areas, especially between open ocean and costal zones. From an 
ecological perspective, tides deeply influence the ocean physical dy
namics which in turn affect the living organism especially the planktonic 
ones. In fact, tides generate tidal currents which in turn influence the 
dynamic of the water column. Moreover, tidal mixing phenomena 
generates upwelling of nutrients from deeper waters to the euphotic 
zone thus affecting phytoplankton composition and production ((Jorge 
and Beusekom, 1995)Blauw et al., 2012; Cadier et al., 2017). 

The contribution of geothermal flow was lower than the other two 
primary renewable resources with an average global contribution of 
5.81 103 J m− 2 day− 1 (Table 3). On the other hand, it showed the smaller 
distance between maximum and minimum among all the energy sources 
taken into account, i.e. only two orders of magnitude. The role of the 
heat flow on large scale circulation and tracer distribution was high
lighted by several studies with particular emphasis for the deep ocean 
circulation (Beardsmore et al., 2001; Mashayek et al., 2013; Scott et al., 
2001). Accordingly, global circulation patterns and nutrients upwelling 
phenomena, which deeply influence global phytoplankton production, 
are related to this energy source. 

The wind energy input showed characteristics similar to tidal energy. 
Its maximum value was several orders of magnitude larger than its 
minimum (Fig. 3). Conversely, the maximum value of wind energy 
contribution to the marine system was lower than the tidal one while its 
global average was larger. From a global perspective, surface circulation 

is deeply influenced by winds net input of kinetic energy into the oceans. 
Furthermore, the winds-ocean interaction supports the formation of 
waves and deep stable stratification both of which affect living organ
isms within the water column (Jorge and Beusekom, 1995; Manwell 
et al., 2010; Zhai, 2013). 

The rainfall and runoff contribution to the marine system has been 
taken into account as chemical potential, which can be defined as the 
tendency of a substance to change (Job and Herrmann, 2006). The 
contribution of the precipitation resulted larger from a maximum, 
minimum and average perspective compared to runoff (Fig. 3). This 
difference was particularly evident when the average was taken into 
account. In fact, while the difference does not seem high for the 
maximum and minimum values, the rainfall average contribution was 
an order of magnitude larger than the runoff one (Table 3). Rainfall 
influences several aspects of the ocean surface such as temperature and 
salinity. These physical characteristics in turn affect both sea water 
density and interactions with the atmosphere determining stratification 
phenomena and gas solubility (Doney, 1995; Schlössel et al., 1997). 

Although the runoff maximum contribution was lower than the other 
secondary energy inputs, it was of the same magnitude order (105). On 
the other hand, runoff showed the lowest global average value (Fig. 3) 
since its effect is limited to coastal areas where its contribution to the 
marine system and primary production is not negligible. In fact, it pro
vides new nutrients from land ecosystems thus boosting phytoplankton 
production, which is frequently nutrient limited (Chase et al., 2007; 
Spatharis et al., 2008). 

3.2. Emergy inputs magnitude, variability and hierarchy 

Table 4 shows the emergy value of the energy inputs supporting 
global phytoplankton production. The emergy values are compared in 
Fig. 4. 

Fig. 3. Daily energy inputs in 2018. The bar chart shows the range and the average daily energy contribution for each input in the considered year.  

Table 3 
Global daily energy inputs. The table shows the maximum, minimum and 
average values for the energy inputs supporting global phytoplankton 
production.  

Input Max (J m− 2 day− 1) Min (J m− 2 day− 1) Avg (J m− 2 day− 1) 

Sunlight 3.49 107 1.02 103 1.67 107 

Tides 9.99 104 5.40 10− 4 9.56 102 

Wind 4.21 105 3 10− 3 5.12 104 

Rainfall 2.82 105 7.51 1.49 104 

Runoff 1.41 105 6.83 2.98 103 

Heat flow 7.37 104 1.94 102 5.81 103  

Table 4 
Global daily emergy 2018. The table shows the maximum, minimum and 
average daily emergy values supporting global phytoplankton production.  

Input Max (sej m− 2 day− 1) Min (sej m− 2 day− 1) Avg (sej m− 2 day− 1) 

Tides 3.09 109 16.7 2.95 107 

Runoff 2.94 109 1.43 105 6.23 107 

Rainfall 1.38 109 3.68 104 7.29 107 

Heat flow 3.61 108 9.49 105 2.85 107 

Wind 2.19 108 1.56 2.66 107 

Sunlight 3.49 107 1.02 103 1.67 107  
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Since the conversion only involved the multiplication by constant 
values (UEVs), the variability of each energy source was not affected and 
the features showed in the previous paragraph are still valid. On the 
other hand, the magnitude of the contribution from the emergy 
perspective was different with respect to the energy one (Fig. 3). 

Tides was the global tripartite component that showed the highest 
maximum and average emergy contribution to the marine system, but 
they still presented the second lowest minimum. These features show 
how the contribution of tides is not homogeneous between different 
marine areas. 

The contribution of runoff and rainfall chemical potential was also 
high. In fact, their high UEV values reflect that they cannot be dis
regarded when assessing ecological systems (Job and Herrmann, 2006; 
Lee et al., 2019). 

Heat flow and wind emergy resulted to be very close from a 
maximum and a global average perspective. As stated in Section 3.1, the 
former heats the deep ocean, thus influencing the large-scale ocean 
circulation while the latter interacts with the shallower layers driving 
the surface water movements. Conversely, the wind emergy minimum is 
still the lowest one among the considered inputs, thus remarking its high 
global variability. 

From a global perspective, we found that all the inputs shared the 
same order of magnitude (107) of the daily average for the 2018 (Fig. 4). 

The 2018 total emergy input to the phytoplankton primary produc
tion computed from our analysis was 8.26 1024 sej y− 1 

3.3. Global emergy of phytoplankton primary production 

Once the global inputs of energy flows were assessed and converted 
into emergy units, we computed the total emergy supporting phyto
plankton primary production (8.26 1024 sej y− 1) and the emergy to 
production ratio. The latter allowed to highlight marine system areas 
that interact differently with the energy inputs. In fact, a large emergy to 
production ratio was associated to areas which showed either a high 
level of emergy flows but low phytoplankton production or elevated 
primary production and huge emergy flows. We analysed the global 
maps of integrated production, emergy, and emergy to production ratio 
for 4 different months, which in turn refer to seasonal phases of 
phytoplankton global cycle (Figs. 5 to 8). From an ecological perspec
tive, we used this analysis to highlight both temporal and spatial pat
terns associated with phytoplankton production. 

January 2018 presented low level of phytoplankton production in 
most areas of the northern hemisphere (Fig. 5a). This production 

contraction during the winter months is a common feature at northern 
temperate latitudes (23.5◦ to 66.5◦ N) especially in the north Atlantic, 
the majority of the north Pacific, and the Mediterranean basins. This 
phenomenon is mainly due to the lack of solar radiation which plays a 
key role in the photosynthetic process. This characteristic can be noted 
also in the emergy map (Fig. 5b), which shows low values for the 
abovementioned areas. Moreover, the high values of the emergy to 
production ratio in the rare areas that show high emergy levels highlight 
the impossibility to convert the available energy into primary produc
tion (Fig. 5c). A notable exception to this trend is the high level of 
production in the Arabian sea since its phytoplankton dynamics are 
mainly driven by the nutrients upwelling caused by the monsoon cycles 
that characterize the area (Dickson et al., 2001). 

On the other hand, the southern hemisphere shows an opposite trend 
since solar energy is not a limiting factor during this period of the year. 
High levels of primary production can be found in the coastal areas of 
Argentina, Uruguay, and south Brazil. In this continental shelf area, the 
interactions between Brazil and Malvinas currents generate an upwell
ing of nutrients, which coupled with favourable irradiation conditions, 
generates a remarkable magnitude of phytoplankton production. A large 
share of production characterizes also the southern portion of the 
oceans, especially along the subtropical front. Favourable conditions for 
the phytoplankton production are reflected by the emergy to production 
ratio. In fact, this ratio shows low values in spite of the large level of 
emergy that characterizes these highly productive areas. This feature 
suggests that during this period of the year the energy conveyed to the 
system can be effectively converted into phytoplankton production. 

During spring (Fig. 6a) we can notice an enhancement of the primary 
production in the northern temperate zone. In fact, a spring phyto
plankton production peak is a common feature in this area. This peak is 
fueled by the coupling of a high nutrient concentration in the euphotic 
zone, which is the result of the low consumption rate during the winter 
months, and a raise of the irradiance level. Even if we do not have the 
same spatial coverage of northern hemisphere during January and April, 
a production enhancement can be shown in the northern part of the 
Atlantic, Pacific, and Mediterranean basins. We can see this trend in 
these areas also looking at the emergy to production ratio, which is 
lower in Fig. 6c with respect to Fig. 5c. Particularly high values of 
production are found near the coast, where the nutrient inputs from land 
can deeply influence the phytoplankton growth. This is a general feature 
of the oceanic production and will be later discussed along with other 
characteristics that are more dependent on the spatial variability than 
the temporal one. 

Fig. 4. Daily emergy contribution in 2018. The bar chart shows the emergy daily range and the average emergy value for each input for the year 2018.  
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In the southern hemisphere we can observe an overall reduction of 
primary production with respect to Fig. 5. The decrease is coupled with 
an increase of the emergy to production ratio, which suggests that 
external factors such as nutrient depletion and lowering in irradiance 
could affect primary production. 

During the summer months in the northern hemisphere the pro
duction peak shifted towards higher latitude. This feature is highlighted 
by both Fig. 7a and c which showed higher production and lower 
emergy to production ratio values, respectively. On the other hand, 
areas in which the nutrients consumed during the spring maximum were 
not replenished by land inputs showed a decrease in production and a 
raise in the production to emergy ratio. This is partially due to a strong 
surface stratification caused by the high level of irradiance that char
acterizes the summer months. The Mediterranean basin and the strip of 
the Atlantic Ocean that showed a spring peak fall in the latter described 
category. 

The areas which show a large emergy to production ratio in the 
higher latitudes are those which also receive a high share of energy. 
Since phytoplankton production is a biological process it has biological 
constraints and when the maximum value is reached additional energy 
will not result in a production enhancement (Fig. 7). 

In the southern hemisphere the information was limited since 
remotely sensed estimates of chlorophyll a concentration are not always 
available. Nonetheless, we can notice a boost in the phytoplankton 
production coupled with a decrease in the emergy to production ratio 
along the coast of Africa, Oceania, south America, and south Asia with 
respect to April (Fig. 6). 

The last considered month was October. The overall production 
magnitude keeps contracting in the north Atlantic and the northeast 
Pacific Ocean. Conversely, few areas such as the Mediterranean basin 
and the northwest Pacific experienced a second production peak 
(Fig. 8a). The former phenomenon was mainly due to the reduction in 
solar energy during autumn while the latter could be caused by a sea
sonal mixing that occurs with the lowering of seas surface temperature 
and the following surface stratification break. This mixing brings nu
trients in the euphotic zone thus resulting in a second seasonal peak. 

In the southern hemisphere the production raised with respect to 
April. In fact, in October the irradiance available in this part of the world 
increases positively influencing the phytoplankton production. 
Accordingly, the emergy to production ratio was considerably low in the 
south area of the main basins. 

We observed that several patterns highlighted by the emergy 

Fig. 5. Global phytoplankton assessment maps. January 2018. a) Integrated primary production, b) Emergy, and c) Emergy to production ratio.  

Fig. 6. Global phytoplankton assessment maps. April 2018. a) Integrated primary production, b) Emergy, and c) Emergy to production ratio.  
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assessment were more dependent on the geographical characteristics of 
the area than on the seasonal cycle of the phytoplankton production. For 
instance, the upwelling areas showed common features independently of 
the season. These areas presented a higher level of production compared 
to other regions. Moreover, even if the emergy values in these zones 
were high the emergy to production ratio was consistently low. This 
feature pointed out how these areas can exploit the energy potential 
thanks to new nutrients coming from deep layers of the water column. 
The equatorial Pacific, the coast of Chile, the coast of Peru, the Brazil 
Malvinas Current interaction zone, the coast of Angola, and the sub
tropical front perfectly fit this description. 

Another general pattern was the tendency to have higher levels of 
phytoplankton production in coastal areas. In fact, these areas are 
influenced by nutrient inputs from land or from coastal upwelling 
phenomena both enhancing primary production. 

Conversely, open Ocean regions are often associated with low 

production values. Sinking of organic matter and water column strati
fication often lead these areas to nutrient depletion which in turn limits 
the phytoplankton no matter what energy inputs can fuel the system. For 
these reasons, open ocean is generally characterized by high level of 
emergy production ratio. 

To further exploit the information provided by the emergy to pro
duction ratio, we analysed its variability during the year. Therefore, we 
computed the variance of this ratio for each pixel that showed less than 6 
missing values and less than 3 missing values in a row out of 12, i.e. one 
for each month. The rationale behind this procedure was to avoid biases 
in the variance computation due to over- and under- represented periods 
of the year. The grid obtained was used to produce a map which displays 
the variability of the emergy to production ratio on a global scale 
(Fig. 9b). 

The exclusion of the areas with not enough data or which presented 
more than 3 months of missing values in a row led to a loss of 

Fig. 7. Global phytoplankton assessment maps. July 2018. a) Integrated primary production, b) Emergy, and c) Emergy to production ratio.  

Fig. 8. Global phytoplankton assessment maps. October 2018. a) Integrated primary production, b) Emergy, and c) Emergy to production ratio.  
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information at higher latitudes. On the other hand, this procedure 
returned a more reliable variance assessment which in turn led to a more 
consistent analysis from an ecological perspective. It was not surprising 
to find a lower variance in the upwelling areas. Since nutrients are the 
most limiting factor in oceanic phytoplankton production, if an up
welling phenomenon provides continuous fuel for exploiting the po
tential available energy the production will receive a boost in both 
magnitude and stability. A stable level of primary production 
throughout the year is an important feature since it can support the 
structuring of complex food webs, conveying more energy towards 
higher trophic levels. In this context, the emergy to primary production 
ratio can be seen as an inverse measure of energy transfer efficiency in 
the trophic webs. The equatorial Pacific upwelling system is among the 
largest and most stable ones. In fact, the Pacific Ocean is one of the most 
productive fishing grounds in the world, not only due to his large 
extension but also because it encompasses several upwelling areas. Two 
of the major upwelling systems in the Atlantic Ocean, i.e. Brazil- 
Malvinas currents interaction and Angola coast, share the same low 
variance values. 

Not surprisingly, areas subjected to strong seasonality show a larger 
level of variability. This feature well suits several areas whose charac
teristics were previously described in this paragraph, such as the north 
Atlantic and the north and the south Pacific. 

The Mediterranean Sea showed a low variance of the emergy to 
production ratio. This basin is a closed and oligotrophic one, which has 
an overall low potential in terms of phytoplankton production. Indeed, 
its low variability of the emergy to production ratio can be interpreted as 
a consequence of these peculiar features. 

Finally, we analysed the latitudinal trend of the emergy to produc
tion ratio variance by computing the average of each row in the grid 
(Fig. 9a). The two hemispheres show different characteristics mainly 
due to the difference in land coverage, which in turn affects the sea
sonality and the trends of phytoplankton production. 

In the northern hemisphere we saw high levels of variability around 
50◦ N, since this latitude encompasses several areas characterized by 
strong seasonality. Subsequently, the average values decrease to a local 
minimum around 40◦ N. This low variability was due to the presence of 
the Mediterranean basin, whose low potential heavily affects the 
average computation in this latitudinal range. The variability remains 
constant till 32◦ N where it raised again reaching maximum values 
around 8◦ N. This area includes Atlantic and Pacific areas dominated by 
strong primary production seasonality. From 8◦ N to the equator the 
average variability steadily decreased till a minimum value. The low 
values of variance that characterizes this area could be attributed mainly 
to the stable environmental conditions of the equator. 

In the southern hemisphere the average variability raised to a local 
maximum value from 0◦ to roughly 25◦ S. This area includes coastal and 
open oceans area with a marked seasonality, e.g. the Indian Ocean. The 
latter was the first strong difference between the two hemispheres. From 
20◦ to roughly 30◦ S the average variance oscillates around local 
maximum values. This feature was due to the presence of both stable 
areas and areas affected by strong seasonality. In fact, the former lati
tudes encompass areas such as the Pacific upwelling area, which was one 
of the most stable and productive, and less stable areas such as the 
eastern Africa coast and the southern Indian Ocean. Then the average 
variability dropped till 38◦ S and showed a second peak around 42◦ N. 
Finally, the average emergy to production variance drop again and re
mains relatively constant till 47◦ S. This substantial drop was mainly 
linked to the production stability of the subtropical front which sustains 
a high level of production throughout the year and was previously 
highlighted as one of the most productive areas. This was the last 
evident characteristic that distinguished the two hemispheres. Then the 
average variability spikes again to maximum values around 52◦ S where 
our analysis had to stop due to missing information. 

The uncertainties in this work are related to both the primary pro
duction and emergy estimates. The former appraisals were produced 
using an ANN model (Scardi, 2001) which was analysed and compared 
with several other estimators (Campbell et al., 2002; Carr et al., 2006; 
Friedrichs et al., 2009; Lee et al., 2015; Saba et al., 2011). The com
parison works determined a range of 49–60 Gt C y-1 (Carr et al., 2006) 
for the global annual phytoplankton production. This uncertainty 
highlights need to further investigate this important biological process. 
The high level of variability of this process coupled with data paucity 
have been recognised as the main limiting factors influencing our ability 
to model the global marine phytoplankton production. Our analysis of 
global phytoplankton production is also limited to the ocean areas for 
which satellite data are available. 

From the emergy perspective, the main uncertainties derived from 
the spatio-temporal coverage of the considered variables and possibility 
to assess their variability. For example, the tides and the heat flow data 
used in this work have an annual temporal resolution thus not convoying 
any inter-annual variability in our analysis. Moreover, the heat flow 
dataset has a spatial resolution of 1◦ latitude x 1◦ longitude. Even on a 
global scale this coarse resolution limits the spatial details provided by 
this variable. One possible effect of a coarse input resolution could be the 
detail loss especially in the land-sea and in the coast-open sea interface. 
These limitations could be overcome by enhancing the spatio-temporal 
resolution of the environmental variables used as inputs. 

Finally, the access to different estimates for each environmental 
variable could be useful to assess their uncertainty and how they affect 

Fig. 9. Variance of the emergy to production ratio during the year 2018. Map of the emergy to production ratio variance (right) and the latitudinal trend of its 
average (left). 
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the global emergy appraisals from a numerical perspective. Unfortu
nately, it is not an easy task to find global and ready to use datasets for 
most of the environmental variables used in this work. 

4. Conclusions 

In this work we combined ML and environmental accounting models 
to perform a global assessment of phytoplankton primary production. 
The ANN technique was used to estimate phytoplankton production 
while the emergy accounting method was used to assess the energy input 
flows supporting primary production at global scale. 

The proposed methodology allowed to analyze both temporal and 
geographical global patterns of oceanic primary production and to 
compute an emergy/production ratio showing different global patterns 
in terms of emergy convergence into the primary production process. 

We believe that the assessment of global phytoplankton production 
proposed in this work could be a valuable tool to enhance our under
standing of this pivotal biological process from a systems perspective. 
The global assessment can also provide a useful benchmark for future 
assessment of marine ecosystem services at global scale. In fact, phyto
plankton production plays a crucial role as energy source for structuring 
the marine food webs on which, in turn, depends the generation of 
ecosystem services vital for human well-being. Noteworthy is the po
tential usefulness of the proposed global assessment for climate change 
study and modeling considering the tight links that phytoplankton 
production has with the Earth’s climate. 
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Smyth, T.J., Antoine, D., Devred, E., d’Andon, O.H.F., Mangin, A., 2013. Generalized 
ocean color inversion model for retrieving marine inherent optical properties. Appl. 
Opt. 52, 2019–2037. https://doi.org/10.1364/AO.52.002019. 

Yang, Q., Liu, G., Casazza, M., Hao, Y., Giannetti, B.F., 2019. Emergy-based accounting 
method for aquatic ecosystem services valuation: a case of China. J. Clean. Prod. 
230, 55–68. https://doi.org/10.1016/j.jclepro.2019.05.080. 

Zhai, X., 2013. On the wind mechanical forcing of the ocean general circulation. 
J. Geophys. Res. Oceans 118, 6561–6577. https://doi.org/10.1002/2013JC009086. 

F. Mattei et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.ecolmodel.2013.10.007
https://doi.org/10.1016/j.ecolmodel.2013.10.007
https://doi.org/10.1016/j.ecolmodel.2017.07.015
https://doi.org/10.1016/j.ecolmodel.2017.07.015
https://doi.org/10.1016/j.ecolmodel.2019.01.015
https://doi.org/10.1016/j.ecolmodel.2019.01.015
https://doi.org/10.1016/j.ecolmodel.2020.108984
https://doi.org/10.1016/j.ecolmodel.2020.108984
https://doi.org/10.1016/j.ecolind.2008.11.004
https://doi.org/10.1016/j.jmarsys.2008.05.010
https://doi.org/10.1117/12.981264
https://doi.org/10.1016/0012-8252(94)90026-4
https://doi.org/10.1029/2011JC007395
https://doi.org/10.1088/0143-0807/27/2/018
https://doi.org/10.4319/lo.1995.40.4.0776
https://doi.org/10.1016/j.ecocom.2004.07.001
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0047
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0047
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0047
https://doi.org/10.1016/0304-3800(79)90068-1
https://doi.org/10.5890/JEAM.2019.03.003
https://doi.org/10.1002/2015JC011018
https://doi.org/10.1016/0304-3800(95)00142-5
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0052
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0052
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0052
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0053
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0053
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0053
https://doi.org/10.1016/0079-6611(89)90010-4
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0055
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0055
https://doi.org/10.1002/grl.50640
https://doi.org/10.1016/j.ecolmodel.2018.05.003
https://doi.org/10.1016/j.ecolmodel.2020.108985
https://doi.org/10.1371/journal.pone.0182826
https://doi.org/10.1016/j.gloenvcha.2015.02.008
https://doi.org/10.1029/2000JC000319
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0062
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0062
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0063
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0063
https://doi.org/10.1126/science.242.4882.1132
https://doi.org/10.1086/587826
https://doi.org/10.1029/98JC02160
https://doi.org/10.1016/j.ecolmodel.2017.10.014
https://doi.org/10.1016/j.ecolmodel.2017.07.029
https://doi.org/10.1016/j.ecolmodel.2017.07.029
https://doi.org/10.1016/j.ecolmodel.2011.04.022
http://refhub.elsevier.com/S0304-3800(21)00143-5/sbref0070
https://doi.org/10.1126/science.1100958
https://doi.org/10.1126/science.1100958
https://doi.org/10.1038/323533a0
https://doi.org/10.3389/fmars.2019.00153
https://doi.org/10.5194/bg-8-489-2011
https://doi.org/10.1016/S0304-3800(01)00294-0
https://doi.org/10.1016/S0304-3800(01)00294-0
https://doi.org/10.1029/2000JC000532
https://doi.org/10.1016/j.jembe.2008.06.003
https://doi.org/10.1016/j.jembe.2008.06.003
https://doi.org/10.1016/j.ecolmodel.2017.03.013
https://doi.org/10.1016/j.ecolmodel.2017.03.013
https://doi.org/10.1016/j.ecolmodel.2019.01.010
https://doi.org/10.1016/j.ecolmodel.2019.01.010
https://doi.org/10.1016/j.rse.2005.07.001
https://doi.org/10.1364/AO.52.002019
https://doi.org/10.1016/j.jclepro.2019.05.080
https://doi.org/10.1002/2013JC009086

	Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models
	1 Introduction
	2 Materials and methods
	2.1 Phytoplankton primary production model
	2.2 Energy inputs
	2.3 Emergy accounting

	3 Results and discussion
	3.1 Energy inputs magnitude, variability and hierarchy
	3.2 Emergy inputs magnitude, variability and hierarchy
	3.3 Global emergy of phytoplankton primary production

	4 Conclusions
	Declaration of Competing Interest
	Supplementary materials
	References


