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KEYWORDS Abstract This study is dedicated to the development of a direct optimal control-based algorithm
LTV error dynamics; for trajectory optimization problems that accounts for the closed-loop stability of the trajectory
LTV stability; tracking error dynamics-already during the optimization. Consequently, the trajectory is designed
Optimal control-based LTV such that the Linear Time-Varying (LTV) dynamic system, describing the controller’s error dynam-
stabilization; ics, is stable, while additionally the desired optimality criterion is optimized and all enforced con-
Path-following error con- straints on the trajectory are fulfilled. This is achieved by means of a Lyapunov stability analysis of
trol!er 5 ) the LTV dynamics within the optimization problem using a time-dependent, quadratic Lyapunov
Trajectory generation; function candidate. Special care is taken with regard to ensuring the correct definiteness of the ensu-

i O ing matrices within the Lyapunov stability analysis, specifically considering a numerically stable for-

mulation of these in the numerical optimization. The developed algorithm is applied to a trajectory
design problem for which the LTV system is part of the path-following error dynamics, which is
required to be stable. The main benefit of the proposed scheme in this context is that the designed
trajectory trades-off the required stability and robustness properties of the LTV dynamics with the
optimality of the trajectory already at the design phase and thus, does not produce unstable optimal

trajectories the system must follow in the real application.
© 2021 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and
Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org
licenses/by-nc-nd/4.0/).

1. Introduction designed separately. This is generally not ideal, as it may
require the optimal trajectory to be conservative, i.e., in this
context a “‘sub-optimal” trajectory resulting e.g., by reducing
the allowed value-range of the constraints, for the controller
to follow it. On the other hand, if the trajectory is very aggres-
sive, i.e., at its theoretical optimum obtained from an opti-
mization with the least amount of constraints and
limitations, the controller may be required to be conservatively
designed to control the system in a stable manner. Thus, com-
pared to designing trajectory and controller independent of
each other, designing them in a single setup facilitates the per-
formance of the designed optimal trajectory and increases the

The optimal control-based design of trajectories is widely used
in engineering applications.' * This paper investigates an effi-
cient trajectory design by optimization that additionally
accounts for the closed-loop stability and robustness of a tra-
jectory tracking error controller, described by Linear Time-
Varying (LTV) dynamics, required in real application scenar-
ios.*> Often, the trajectory and the feedback controller are
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availability of trajectories in the real application. This is based
on the fact that the optimizer only returns a solution if the
setup can be solved with all its constraints, which contain both
the physical model (like acceleration limits) as well the con-
troller constraints (like stability and gain magnitude) in the
single setup. In contrast, if the controller is designed indepen-
dent of the trajectory, further (on-board) testing by e.g., simu-
lations, may be required to ensure that only trajectories that do
not de-stabilize the controller are commanded. Thus, to for-
mulate the single setup and ensure feasible trajectories, the
error dynamics used in designing the feedback controller,
which are often of a LTV system type *°, must be stabilized
using suitable constraints already inside the trajectory opti-
mization problem.

Thus, this study is dedicated to the development of a direct
optimal control-based algorithm (i.e., gradient-based) for tra-
jectory optimization problems that directly accounts for the
stability of a dependent LTV dynamic system by means of
Lyapunov stability. Consequently, the trajectory is designed
such that the incorporated LTV dynamics are ensured to be
stable and fulfill specified robustness features, based on the
convergence rate of the Lyapunov function, by designing feed-
back gains in the optimization, while additionally the desired
optimality criterion is optimized and all enforced constraints
on the trajectory are fulfilled. This automatically provides a
trade-off between the optimality of the trajectory and the
required stability of the LTV system by designing both parts
dependent on each other.

In general, assessing the stability of LTV systems was
always of paramount importance in Refs. [6-8]. Compared
to well-known Linear Time-Invariant (LTI) controller design,
it is no longer given by simply checking the eigenvalues of the
state matrix.® Therefore, methods often avoid the design of
controllers for LTV systems, but rather design the controller
by gain scheduling methods, i.e., designing the gains for LTI
systems at a sufficiently dense grid of parameter sets.’
Although this approach generally yields good results, a draw-
back is that it only produces stable controllers if the time-
dependent changes are sufficiently slow, i.e., the problem is
in a quasi-steady state.” As trajectory optimization often
results in aggressive maneuvers-and thus, fast time-dependent
changes, this assumption may no longer be valid.

To cope with this issue, researcher investigated optimal
control and especially convex trajectory optimization for
LTV systems. A review of common methods is given in Ref.
[10]. Here, specifically model predictive control algorithms
play an important role: For instance, Ref. [11] introduces an
algorithm to represent a nonlinear dynamic model using
sequential linear parameter-varying representations that are
then used within the convex optimization. By this, feasibility
and stability of the controller can be ensured. In this context,
Ref. [12] introduces further methodologies to cope with con-
strained optimization of linear parameter-varying systems.
Finally, Ref. [13] introduces a method for output feedback
controller design based on parameter-dependent Lyapunov
functions.

Considering the literature review, it is clear that stabilizing
LTV systems, especially for error controllers as well as design-
ing feedback controller gains for these, is of high importance.
Still, studying the impact of LTV systems already in the trajec-
tory design phase has not yet been thoroughly researched.
Therefore, this study aims at bridging this gap by considering

the stability of LTV systems already in the trajectory design
phase. In addition to basic stability, it is also possible to
enforce desired convergence and robustness requirements on
the Lyapunov function, and thus the controller, as constraints
in the optimization problem. Here, it is important to stress that
this study does not try to invent new methods to stabilize LTV
systems, but uses well-established stability concepts as a base-
line to develop a design procedure for trajectory optimization
accounting for the stabilization of a dependent LTV system.
Generally, this goal is achieved by introducing the LTV
dynamics within the trajectory optimization problem, which
is used to calculate the desired, feedforward trajectory that
the dynamic system should follow. By incorporating these
LTV dynamics and imposing constraints to address stability,
it is ensured that the trajectory design is already ensuring
stable operation by itself. Thus, the feedback controller, which
can be designed simultaneously, is not required in the real
application to stabilize an unstable designed trajectory but
can focus on disturbance rejection and coping with non-
modeled dynamics. Furthermore, by incorporating the con-
troller design within the trajectory generation by means of
Lyapunov stability analysis, it is also possible to generalize
the results of feedback controller gain design from the open
left complex plane, as e.g., done in gain scheduling applica-
tions,” to_the full complex plane. This is due to the fact that
LTV systems do not have such a limiting requirement. Still,
stability of the system within assured convergence bounds is
ensured. Even further, these can be used to improve the
robustness of the solution by introducing them as constraints
in the optimization problem. By this, it can be assured that
the Lyapunov function and its derivative follow e.g., a minimal
convergence rate and thus, the error reduces with at least this
rate. In this context, special care is taken in the proposed
method with regard to ensuring the correct definiteness of
the matrices within the Lyapunov stability analysis, specifically
considering a numerically stable formulation for the gradient-
based optimization.

The contributions of the presented work can therefore be
summarized as:

(1) An optimal control-based trajectory design method is
proposed, which accounts for the stability of a tracking
controller described by LTV dynamics already within the
optimization problem. This provides a trade-off between
the required stability of the controller and the optimality
of the trajectory.

(2) The closed-loop stability of the trajectory tracking error
controller, i.e., the LTV-type error dynamics, is already
guaranteed in the design phase by appropriately designing
a trajectory and the associated feedback gains automati-
cally in an optimal manner.

(3) The sufficient conditions of the desired stability are
derived based on the mathematical properties of the Lya-
punov method, which are implemented as simple inequality
constraints in the optimal control problem. This reduces the
overall design complexity, leading to a very pragmatic and
effective design process.

(4) The closed-loop robustness, in the sense of e.g., a mini-
mal convergence rate of the Lyapunov function and its
derivative, and by this consequently the tracking error, is
ensured using constraints in the optimization problem. By
this, a desired performance of the controller can be

(2021), https://doi.org/10.1016/j.cja.2021.10.031
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Optimal trajectory design accounting 3
achieved in connection with the designed optimal A(0(1))" - P(t) + P(1) + P(1) - A(0(1)) < 0 (4)
trajectory.

To introduce the mentioned concepts, this study is orga-
nized as follows: Section 2 introduces the general idea of stabil-
ity analysis for LTV systems. These principles are used in
Section 3 to formulate suitable constraints within a gradient-
based trajectory optimization problem. Following, Section 4
gives an application example: Here, Section 4.1 gives an over-
view on the LTV error dynamics used in this study to illustrate
the introduced stability concept within trajectory optimization.
Building on these error dynamics, Section 4.2 gives an over-
view of methods to stabilize them by means of feedback con-
trol. Furthermore, the dynamic model as well as the
trajectory optimization problem formulation with stabilization
of the feedback controller is specified in Section 4.3. The
results of the trajectory optimization problem as well as an
analysis of the controller performance is shown in Sections
4.4 and 4.5, respectively. Concluding, Section 5 gives some
remarks and an outlook on future work.

2. Stability analysis of linear time-varying systems

Generally, a LTV system, with state vector e() € R", is defined
in this study as follows:

é(1) = A0(1)) - (1) (1)

Here, the piecewise continuous system  matrix
A(0(r)) € R™" is depending on time-varying (symbolized by
(1)) parameters 0(¢) € ® C R’ where @is the set of all feasible
parameter values. Take into account that for stability analysis
only the homogeneous system, i.e., without control inputs
must be considered. This is reasonable as long as the inputs
are bounded, which can be assumed specifically in the context
of constrained optimization as applied in this study.

As the state matrix in Eq. (1) is time-varying due to the
parameter dependence, a solution based on a time-
independent Lyapunov equation,'* ensuring stability, is nor-
mally difficult to find and, if found, very conservative. There-
fore, it is common to extend the analysis to a formulation
based on a quadratic, time-dependent Lyapunov function can-
didate as follows:'*

V(1) = L e()" - P(1) - e(t) > 0,

; ve(d)\ {0},

Here, P(1) € P CR™ > 0 is a positive definite (symbolized

in this study by = 0), real design matrix specified by the user,

where Pdenotes its feasible set. For the sake of simplicity, it is

assumed in this study that the matrix is symmetric, i.e.,
P(t) = P(1)".

The stability is then analyzed by considering the derivative
of the Lyapunov function candidate, incorporating the homo-
geneous LTV system in Eq. (2), which must be strictly
negative:

V() =eée(n)" - Pt)+e(t) P(t)e(t) + P(r)é(r)
() (A0())" - P1) + P(1) + P(1) - A(0(1) ) e(1) < 0
(3)

Thus, the LTV system in Eq. (1) is quadratically stable if
the following time-dependent Lyapunov equation is satisfied:'*

P() -0 (2

=—00)

Here, the matrix Q(7) € @ C R™" > 0 must be positive def-
inite, where Qdefines its feasible set. Because of the require-
ment in Eq. (4), the well-known result for LTI systems, i.e.,
that the eigenvalues of the matrix 4(6(7)) must be located in
the open-left complex plane, is no longer a sufficient criterion
for stability. Indeed, it is not even necessary as there are LTV
systems with eigenvalues of the dynamic matrix in the right
complex plane that are stable, while there are also systems with
only eigenvalues of the dynamic matrix in the left complex
plane that are unstable.”’ Removing this eigenvalue con-
straint, which may e.g., limit the possible gain value combina-
tions, of classical gain scheduling approaches operating on LTI
systems is also one of the contributions of this paper within the
connected view on the trajectory optimization as well as LTV
error dynamics stabilization, as it allows an improved exploita-
tion of the system capabilities within numerical optimization.
It should be noted in this context that Eq. (2) is still a conser-
vative formulation for an LTV system as the Lyapunov matrix
P(z) is only time-dependent rather than parameter-dependent
and thus, the equation must be fulfilled for all parameters
and their time derivatives and not just the ones that are
encountered and physical.'> Still, it is common to use this
time-dependent approach to remain valid for generic LTV sys-
tem formulations. However, it is important to stress that the
proposed algorithm is not limited to the quadratic, time-
dependent Lyapunov function candidate in Eq. (2), but can
also be evaluated using any other suitable candidate function.

In the context of analyzing the convergence and stability
properties of the LTV system based on the Lyapunov method,
it is important to note that the time-varying Lyapunov func-
tion candidate in Eq. (2) can be bounded as follows:'®

0<5 e lle)l < V) = 5 -e()" - P() - e(0)
<lole@lE v ®)

Furthermore, the derivative of the Lyapunov function can-
didate in Eq. (3) can be bounded similarly defining:'®

—ca-le(n)l; =€) Q1) - e(t) < —¢s-[le(n)ll; <0, Vi

The coefficients in Egs. (5) and (6) are given as the extreme
eigenvalues of the respective matrices along the time interval:'®

¢ = m/m (ir}fik(P(t))), €2 = max (sup)vk(P(t)))
’ (7)
¢ =min (ir}fik(Q(z))), ¢4 = max (SLIlp/lk(Q(t)))

Here, A(-) is the k-th eigenvalue of the respective matrix
evaluated at each time instance independently by solving a
classic eigenvalue problem.'® Thus, the time-varying Lya-
punov function candidate and its derivative may be bounded
by a static, time-independent analysis of the properties, and
especially the eigenvalues, of the corresponding matrix. This
property is used in Section 4.5 to validate the performance
of the controller in the application example. Furthermore,
these bounds are used to provide constraints in the optimiza-
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tion problem to e.g., enforce a lower bound on the minimal
error convergence rate and thus, to ensure robustness and a
desired performance of the designed feedback controller.

3. Linear time-varying stability analysis within trajectory
optimization

Section 2 introduced the basic principles of analyzing the sta-
bility of an LTV system using quadratic, time-dependent Lya-
punov functions. The introduced methods must now be
connected within a trajectory optimization problem as the sta-
bility of the LTV system should already be ensured when cal-
culating the optimal trajectory. By this, an optimal trajectory
that automatically accounts for the stability requirements of
the dependent LTV systems, which may be the error dynamics
of a path-following controller, is calculated. To stabilize the
LTV system inside numerical gradient-based trajectory opti-
mization, the required formulation of the Lyapunov stability
analysis for trajectory optimization is introduced in the follow-
ing, such that it can be solved numerically stable and efficient.

At first, Eq. (4) is a central equation required to verify the
stability of the LTV dynamics in Eq. (1) within trajectory opti-
mization. Consequently, the following matrix Equation of
Motion (EoM) is added to the trajectory optimization
problem:

P(1) = —Q(1) — A(0(1))" - P(1) — P(1) - A(0(1)) (8)

Thus, the entries of the matrix P(z) become states within the
optimization problem, while the matrix entries of Q(¢) are con-
sidered as free variables within the optimization.

Furthermore, it is important to note that the matrices P(¢)
and Q(¢) in Eq. (8) must be ensured to be positive definite
within the trajectory optimization problem. One option to
do this, comprises the methods of ““determinant-based” analy-
sis of the matrices based on e.g., the Routh-Hurwitz criterion'’
or Sylvester’s criterion.!” A drawback of these is that they
require the calculation of considerably large determinants
including their derivatives in each iteration of the optimiza-
tion. Additionally, the magnitude of the determinant values
(especially when using the Sylvester’s criterion) varies signifi-
cantly (i.e., the magnitude of the determinant of the full matrix
is normally much larger than the magnitude of only one entry),
which generally leads to a numerically ill-conditioned opti-
mization problem. Therefore, this study employs a constraint
based on the idea of the Cholesky factorization as an alterna-
tive to create positive definite matrices. First of all, the Cho-
lesky factorization for the matrix Q(¢) is defined as follows:'®

0(1) = Lo(1) - Lo(n)' ©)

Here, Ly(1) € Lo C R"™"(¢) (with Lo being the set of all fea-
sible values for the matrix) is a lower triangular matrix speci-
fied as follows:

hio(1) 0 . 0
big(t) Ioo(t) -+ 0

Lo(t)=| . o | (10)
l”va(l) lle(f) lml.Q(t)

Now, Q(t) is positive definite if, and only if, the diagonal
entries of Ly(¢) are real and have the same sign. Thus, the pos-
itive definiteness of Q(7) may be ensured by enforcing all signs

of the diagonal entries of Ly(¢) to be strictly positive with a
user-defined threshold ¢,,, which requires the following con-
straint within the optimization problem:

lillQ(t)ZsLQ>07 i:1,274..,7l (11)

Thus, the positive definiteness of Q(¢) in Eq. (8) can be
ensured in constrained optimization by specifying the matrix
entries of Ly(t) as real optimization variables, including the
constraint on the diagonal elements in Eq. (11), rather than
by using the matrix Q(¢) directly. This matrix can, however,
be directly calculated based on Cholesky factorization defini-
tion in Eq. (9). This procedure is generally numerically effi-
cient, stable, and well-conditioned in ‘the context = of
optimization. Here, the threshold ¢, plays a vital role as it
ensures that the constraint values are sufficiently large to result
in a numerically stable problem and that the problem is posed
in a standard form with inequality constraints for a nonlinear
optimizer.'” From experience gathered through this study, this
threshold should be at least one order of magnitude larger than
the optimizer tolerances.

A similar procedure must be applied to ensure that P(z) is
positive definite. However, as this matrix is specified using
the matrix equation of motion in Eq. (8), the procedure is
not as straightforward as the entries cannot be considered as
free variables. Indeed, it is necessary to calculate the diagonal
entries of the lower triangular Cholesky factorization matrix
based on P(1) = Lp(t) - Lp(1)" as a constraint as opposed to
specifying the entries directly as optimization variables. There-
fore, the diagonal elements may be calculated recursively and
included as constraints in the trajectory optimization problem
as follows:'®

Lip(t) ocpyi(t) = ep

2
Do, p(1) o py (1) — </,,’.1,,((lr))) = ep>0

Y
=)

(12)

l"".P([) O(pnn(t) - Zlikl’(t) = &p > 0

k=1

Take into account that the square root, which is normally
required to exactly calculate the diagonal entries for the Cho-
lesky factorization using Eq. (12), is left out in this formulation
on purpose and only the proportionality (symbolized by )
with the radicand is specified and used in the optimization.
This is first of all due to the fact that a real, positive radicand
ensures the existence of a Cholesky factorization (i.e., that the
analyzed matrix is positive definite) and second of all that the
square root generally creates numerically ill-conditioned
derivatives close to zero. Furthermore, the initial guess for
the optimization variables might not ensure that the radicand
is greater than zero and thus, the optimization may abort due
to taking the square root of a negative value. Thus, only the
radicand is used in the constraint and must be greater than a
user-specified, strictly positive threshold ep (once more, this
threshold ensures numerical stability and a proper formulation
for the nonlinear optimizer), which is a sufficient condition for
the purpose of ensuring that the matrix P(¢) itself is positive
definite.

Overall, Eqgs. (11) and (12) provide the basic means to
ensure stability of the LTV system inside optimization and
are therefore already sufficient to ensure the system’s stability.
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In addition, robustness related to desired convergence proper-
ties of the error based on the Lyapunov function may be
ensured by using the convergence bounds specified in Eq.
(7). Here, specifically the coefficient ¢; is of interest as it
enforces a lower bound on the convergence rate of the error
to zero. Thus, the minimal eigenvalue of the Q(¢) should be
larger than a user-defined threshold ¢;, (again, the threshold
ensures numerical stability and a proper formulation of the
nonlinear optimization problem):

;“min(Q(t)) = 8/1Q >0 (13)

Compared to the previous values ¢;, and ¢p, the threshold
value ¢;, can be interpreted in a more physical manner. It
describes a lower bound on the minimum error convergence
rate. Thus, it is similar to well-known certification and han-
dling qualities requirements in LTI theory.”” Consequently,
the threshold may be defined based on such requirements.

Because the direct calculation of eigenvalues inside opti-
mization is generally problematic regarding smooth gradient
formulations, the eigenvalue is instead calculated based on
the fact that the squared, minimal singular value of the matrix
Ly(?) is the minimal eigenvalue of the matrix Q(¢).”' Thus, Eq.
(13) results in:

)Vmin(Q(t)) = O-rznin (LQ(I)) = € >0 (14)

Here, omin(-) is symbolizing the minimal singular value.

To avoid the calculation of the singular value in gradient-
based optimization (due to the same reasons as for the eigen-
value), a method proposed in Ref. [22] is used to bound the
minimal singular value based on the determinant, det (-), and
Frobenius norm, || - ||g, of the matrix Ly(7):

Jmin(Q(1)) = ops, (LQ(I))

Lo (D)l

>0 (15)

> det(LQ(z))v< ‘n_l) > &,

Consequently, Eq. (15) provides a safe bound that can be
easily and numerically efficiently incorporated within the tra-
jectory optimization problem formulation.

Overall, the designed trajectory does therefore not only fea-
ture a stable LTV system, which is ensured by applying Eqs.
(11) and (12) as constraints in the optimization problem, but
also desired convergence, i.e., robustness, properties of the
Lyapunov function, and thus the error, by using the method-
ology in Eq. (15).

4. Application example

This section gives an application examples for the developed
optimal control-based design of trajectories accounting for
the stability of error dynamics LTV systems. Therefore, the
LTV system for a path-following controller, used as the exam-
ple in this study, are introduced in Section 4.1, while their sta-
bilization by a feedback error controller is described in
Section 4.2. Then, the dynamic model used in the trajectory
optimization is given in Section 4.3. Following, Section 4.4
shows the statement of the trajectory optimization problem
including the stabilization of the LTV error dynamics. Finally,

Section 4.5 shows an assessment of the controller’s perfor-
mance in simulation.

4.1. Linear time-varying trajectory-/path-following error
dynamics

In this study, a LTV system for the error dynamics of a non-
linear trajectory deviation controller is used to analyze the pro-
posed trajectory optimization problem formulation accounting
for the LTV dynamics stabilization. It is formulated based on
Ref. [4]. The considered path-following problem is visualized
in Fig. 1 with the path deviation state vector defined as follows:

e(t) = [Axr(t) Ayp(1) Azp(1) Aur(t) Avi(r) Awy(1)]" € R
(16)
Here, Axz(1),Ay;(f), and Azr(r) are the position errors
between the trajectory foot-point F and the real aircraft posi-
tion R defined as follows:
[Axr()) Avr(t) Azg@)]" = (#F) ()= () (1) — () (1) € B
(17)

The equivalent definition applies for the velocity errors
Auz, Avy, and Awy.

Using this definition, the error dynamics are formulated as
follows:*

0
0 I -1 ET
et)=|. e(t)+ (a5 Kveq)y (b)
QAF (1) QTF (1) 0 —
eRrR
=: A(0(t))€R6*6 0
CR6
0 R R TN R\N
+ . () O+ (AF) () + (WiY) g x (vR)
~ 2 €R3
ERSxE =:Gac(-)ER?

(18)

Here, Q7F(1) € R™® is the three-dimensional skew-
symmetric matrix for the rotation of the Earth-Centered,
Earth-Fixed (ECEF) frame E with respect to the trajectory
frame T (see Fig. 1), i.e., the frame that follows the desired tra-
jectory. Consequently, QT(r) € R¥® is the corresponding
rotational acceleration skew-symmetric matrix. Additionally,

ET
(af_ K*“")T (1) is the required (index: req) kinematic accelera-

tion of the foot point F, i.e., a design parameter, in the x direc-
tion of the trajectory (i.e., the T frame), which is derived with
respect to the E and subsequently the 7 frame. This quantity is
calculated by the optimization algorithm. Furthermore, I and
0 are an identity and a zero matrix of appropriate size, respec-
tively. Finally, there are nonlinear influences due to the
aircraft-related terms summarized in g,.(-), which comprise
the point mass aircraft equations of motion (symbolized by
the specific forces (f*)(¢) and (Af®),(¢) used for control pur-
poses) and rotational transport terms when following the
trajectory.”

The skew-symmetric matrices used in Eq. (18) are defined
as follows:
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Xr
Az T AWT by
X7
‘&\
x-y plane
Desired
trajectory y Desired
/. yr Zr trajectory

Fig. 1  Visualization of basic idea for nonlinear trajectory/path-following controller based on trajectory reference point F, i.e., the foot

point along the desired trajectory, as well as the definition of the path deviations and their derivatives (adapted from Ref. [4]).

Wy 0 —Q; CU}-
Q=w,=|w,| =|o. 0 —o, | € RY (19)
o: |, -0, 0

Here, o is the three-dimensional vector of the entries used
in the skew-symmetric matrix. Due to their definition, the error
dynamics in Eq. (18) are generally unstable in an LTI sense,
because eigenvalues symmetric to the imaginary axis result
from it. Finally, the error dynamics in Eq. (18) depend on
the time-varying trajectory parameters
0(r) = [&TF(1)" wiE(t)T]T € R, which are related to the
desired trajectory. Thus, the error dynamics are of a LTV type

and the homogeneous system may be analyzed for stability
using the methods introduced in Section 2.

4.2. Stabilizing linear time-varying error dynamics by feedback
controller design

As already noted, the matrix A(6(¢)) in the path-following
error dynamics of Eq.(18) is generally indefinite by construc-
tion due to the skew-symmetric matrices in Eq. (19) and thus
Eq. (4) may not have a stabilizing solution for this kind of
problem. Consequently, we can apply a feedback control law
for stabilization purposes.

Using this setup, a stabilizing controller for the specific
forces is introduced that depends on trajectory deviations
and controller gain matrices as follows:*

Aur(t) Axr(1)
(AF"), = =Ka(0(1)) - | Avr(1) | = Kp(0(2)) - | A (1)
T | Awao) o | Azr(r)

(20)

Thus, the feedback path deviation error controller is of a
standard proportional-derivative type. Here, the parameter-
dependent matrices K,(0(¢)) and K4(0(¢)) are controller gains
that are designed to stabilize the dynamic system.

It should be noted that the controller gain matrices in Eq.
(20) can generally be chosen freely by the user to stabilize
the system. Thus, they can also be designed during trajectory
optimization to stabilize the error dynamics matrix, which is
an important aspect of the proposed method. Hence, the

LTV matrix, which is required to be stable, is defined as
follows:

A(D).,00). Ka00) = [ ! 1)

Q7 (1)~ Ky (0(r) Q7 (1) —Ka(8(1)

When using nonlinear dynamic inversion for the controller,
the gain matrices are often chosen to be diagonal to keep the
system decoupled, although this is not mandatory. Further

ET
take into account that (af,K,req>T (1) in Eq. (18) may in addi-
tion be used for controlling the system. This is explicitly not
considered here, as it only has authority in x,-direction and

is calculated directly by the optimization algorithm as a feed-
forward term.

4.3. Model and trajectory optimization formulation

As an application example, the following planar optimization
problem (no consideration of earth rotation and earth ellipsoid
shape), which represents a vehicle (e.g., car, airplane, or mis-
sile) moving only in the horizontal plane with initial and termi-
nal directional constraints, is considered. Defining the state

Vilt) 200 0f30)] e RS

. T
and command vector as u(z) = [Vumd(t) a)f?cmd(t)] eRr’

vector as x(1) = [xg(1)  yg(1)

the model is given as follows:

Xg(t) = V(1) - cos (17(1))
Ve(t) = Vr(e) - sin (xp(2))
VT(I) = VT,clhd(l)

= w;7(1)

(22)

This formulation is often used to model simple trajectories,
where the dynamic system should only move in one plane. In
aviation, this is often required when following different way-
points on a constant flight level.”>* The states and controls
in the EoMs are defined and limited as well as scaled for the
optimization problem as shown in Table 1.
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Table 1 States and controls in optimization problem.
Definition Symbol  Lower Bound  Upper Bound Scaling Unit
Position in North direction XE 0 +100 0.01 m
Position in East direction VE 0 +100 0.01 m
Kinematic velocity Vr 0 +5 1 m/s
Kinematic course angle 1r —00 +o00 1 rad
Kinematic turn rate (7 w.r.t. E) ofL —7/8 +7/8 1 rad/s
ET ; _ 2
Kinematic acceleration command (equivalent to (ai K.req) , (7) in Eq. (18)) Vremd 0.1 +0.1 1 m/s
Kinematic turn acceleration (7 w.r.t. E) wf;cmd —n/16 +n/16 1 rad/52

As this model can only move in the horizontal plane and
has the yaw motion as a single degree of rotational freedom,
the error dynamics of Eq. (18) simplify to:

0 0 1 0 Axy(t)
() = 0 0 0 1 Ay (1)
O=lo om0 0| | aw)
—a7(t) 0 —fi(r) 0 Avy(1)
0
0 e ET
+ 1 (a. ,K@lrl)T ([)+gac(')
0

(23)

Here, it was used that the rotational states are anti-
symmetric,” ie., &FL(1) = —a%(r) and (1) = —wTL({).
Thus, the matrix entries have inverted signs compared to the
skew-symmetric matrix definition in Eq. (19).

To stabilize Eq. (23), the approach introduced in Eq. (21)
with diagonal feedback matrices is applied and thus the stabi-
lization problem is defined as follows:

A(0(1), Ky (0(1)), Ka(0(1)))

0 0 1 0
0 0 0 1 (24)
—k.(0(t)) (1) —ku(0(1)) @li(1)

~02r (1)

—ky(0(2)) " =wZ(0)_—k.(0(2))

Then, Eq. (24) is directly used in the equation of motion for
the Lyapunov matrix from Eq. (8):

P(1) = —Q(1) = A(0(1), Kp(0(1)), Ka(0(1))) " - P(1) — P(r)
-A(0(1), Ky (0(1)), Ka(0(1))) (25)
Here, the positive definiteness of the matrices
Q(1) = 0.€ R** and P(r) » 0 € R** is ensured as described
in Eq. (I1) and Eq. (12), respectively. For these inequalities,
threshold values of ¢z, = 1073 and ¢p = 107° are used respec-
tively to be certain of the positive definiteness of the matrices.
Generally, a well-conditioned optimization problem is also cre-
ated by this choice and optimality is only reduced marginally.
In addition, the threshold for the minimal eigenvalue of the
matrix Q(7) in Eq. (15), i.e., the indicator for the minimal con-
vergence rate of the Lyapunov function derivative in Eq. (6), is
defined to be ¢;, = 0.1. This has proven to be a good trade-off

T

between convergence properties and optimality, while also
considering the conservative nature of the approximation in
Eq. (15).

Consequently, the state and control vectors for the planar
EoMs in Eq. (22) are augmented by the matrix entries required
in the Lyapunov matrix equation of motion as well as the con-
troller gains as follows:

X(1) =[X"(0) pu(t) px(0) psi(1) Py (1) p(t) p3a(t) pi(t)
Px(t) paslt) pu(n)]" €RY
0() =[uT() Mo(t) bio(t) hio(t) bio(t) hag(t) ho(t) lng(l)
Io(t) loo(t) luo(r) ke(0(1) Ky (0(1) ku(0(r) k,(0(1)]" €R'
(26)

Finally, the time-optimal trajectory optimization problem
(i.e., minimizing the final time #), connecting the optimal tra-
jectory design for the model in Eq. (22) with the stabilization
of the LTV path deviation error dynamics (by calculating suit-
able feedback controller gains) in Eq. (23) and Eq. (24), is for-
mulated as follows:

(27)

The proposed design procedure is demonstrated through
this example. Here, the rate constraint specifies a limitation
of the maximal allowable turn acceleration, which is intro-
duced to improve the model’s fidelity. The state/controls
bounds and the boundary constraints are given in Tables 1
and 2, respectively (unspecified values are assumed to be
unbounded). Generally, the aforementioned constraints
together with the cost function and the dynamic model EoMs
formulate a classic time-optimal nonlinear trajectory optimiza-
tion problem with state and control constraints. In parallel, the
trajectory optimization problem in Eq. (27) designs the feed-
back gains in an optimal manner for the path controller to sta-
bilize the LTV system of the path deviation error dynamics
using the constraints and EoMs based on a time-dependent

(2021), https://doi.org/10.1016/j.cja.2021.10.031
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min Cost function :

%(1).(1)

s.t. Cholesky constraint for Q(7) :  Eq.(11)
Cholesky constraint for P(¢) : Eq.(12)
Convergence rate constraint :  Eq.(15)
Lyapunov matrix EoM : Eq.(25)
Dynamic model EoMs : Eq.(22)

Rate constraint : 1< V(1) - off
State/Controls bounds : Table 1
Initial/Final conditions : Table 2
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Table 2 Boundary conditions of states and controls in trajectory optimization problem.

Initial condition Final condition

“Unbounded” “Bounded” “Tightly bounded”

[Om Om 5m/sOrad Orad/s]" [100m 100m 5m/sOrad Orad/s]" ki, ky € [=50,50]1/s* Ky ky € [-1,1]1/s* ks, ky, € [-0.5,0.5]1/s>

Ky ky € [=50,50]1/s  ky ky € [1,1]1/s  ky,ky € [=0.5,0.5]1/s

Lyapunov stability analysis. Conventionally, these two parts
are done separately, while the proposed method integrates
them into a single trajectory optimization problem as illus-
trated in Eq. (27). Therefore, the proposed methodology
enables a better tuned optimal design of trajectory and con-
troller for the desired task.

The trajectory optimization problem in Eq. (27) is solved
using the free-of-charge MATLAB® toolbox FALCON.m,”
which applies a trapezoidal collocation discretization to solve
this continuous trajectory optimization problem in Eq. (27)
by means of nonlinear programming. For this purpose, the
interior-point optimizer 1popt'’ with linear solver ma97% is
used. The problem was discretized in time on a linearly-
spaced grid with 101 points with optimality and feasibility
thresholds of 107>, As the initial guess for the states, a linear
interpolation between the values at the initial and final bound-
aries was chosen. The controls were initialized by the mean
value of their bounds. Generally, the Cholesky matrix entries
were initialized with identity matrices. This setup yielded
smooth and reasonably fast convergence without numerical
difficulties.

4.4. Optimal control-based trajectory design

The optimal trajectories, obtained for the reference optimal
trajectory without a constraint on the error dynamics stability
(“Reference”; solid blue), the results with “‘unbounded” gains
(i.e., gains that can be chosen by the optimizer to be very large;
“Unbounded”; dashed red), the results with limits on the gains
(“Bounded”; dash-dotted green; values defined in Table 2),
and the results with more tightly bounded gains (‘“Tightly
bounded”; dotted black; values defined in Table 2) are shown
in Fig. 2: It is clear that the reference and the unbounded case

100
80| 1
__ 60f 1
E
8
401 1
= Reference
20 --- Unbounded
--- Bounded
----- Tightly bounded
0/ 20 40 60 80 100

ye (m)

Fig. 2 Comparison of optimal trajectories.

match very well and are equal from the viewpoint of the
numerical tolerances of an optimizer. On the other hand, the
results with bounded gains clearly show that the optimal tra-
jectory differs when the gains cannot be chosen large enough
by the optimizer to exploit the full physical capabilities of
the dynamic model. Contrary to often used approaches in opti-
mization by introducing a Lagrange function penalty (e.g., for
the control effort), achieving these trajectories is automatically
given in this setup by the stability constraint. This avoid the
cumbersome procedure of appropriately solving the resulting
Pareto problem using appropriate scaling factors, but gives a
clear and unqiue connection between the reduced optimality
and the enforced stability constraints. This consequently
means that a less aggressive, less optimal, and smoother trajec-
tory is chosen as the optimal one. This is also clear when look-
ing at the final times obtained from the optimization: For the
reference case, we have 31.8114s, while the cases with stabiliz-
ing the LTV system result in 31.8114s,33.0422s, and 34.5679s
for the unbounded, bounded, and tightly bounded -case,
respectively. Thus, as already discussed, the unbounded case
results-in the same optimal time, while the other cases result
in a relative optimality reduction of 3.8689% (bounded) and
8.6650% (tightly bounded), respectively, explaining their
smoother, less aggressive trajectory design.

This reduced aggressiveness and increased smoothness is
also depicted in Fig. 3 showing the trajectory states. First of
all, the turn velocity is reduced, which is one factor for an
increased optimal time. Furthermore, the turn angle changes
smoother, which is a consequence of the smoother rate com-

Vr (m/s)

4.6

4.4

80 [
60 -
40 -
20 -

xr (°)

fe=l
=

t(s)

= Reference = = = Unbounded -:-- Bounded «++-- Tightly bounded

Fig. 3 Comparison of optimal state histories.

(2021), https://doi.org/10.1016/j.cja.2021.10.031

Please cite this article in press as: PIPREK P et al. Optimal trajectory design accounting for the stabilization of linear time-varying error dynamics, Chin J Aeronaut

661

670


https://doi.org/10.1016/j.cja.2021.10.031

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

CJA 2236
30 November 2021
Optimal trajectory design accounting

No. of Pages 12

mand, especially in the beginning, the middle, and the end of
the trajectory. Still, the maximal magnitude of the turn rate
is similar in all cases, suggesting that, although the stability
of the error dynamics must be ensured, the physical capabili-
ties of the vehicle are still reasonably exploited.

Continuing, Figs. 4 and 5 show the optimal gain history
and the corresponding eigenvalues of the matrix Q(¢) used in
the Lyapunov function candidate derivative in Eq. (3). It can
be seen in Fig. 4 that the unbounded case has large feedback
gain values, but still does not reach its limits (Table 1), which
shows that it can be considered as “unbounded”. The gains are
significantly varying over the time interval, which shows that
the optimizer tries to find an optimal, fast adapting controller
gain for each state in the LTV system it encounters. For the
bounded cases the gains are actually significantly smoother
and to some extinct almost constant, which suggests a reduced
optimality but also smoother operation. This is also specifi-
cally seen when looking at the results in Fig. 5 showing the real
part (Re{-}) of the eigenvalues of the matrix Q(), which is an
indicator of how fast errors in the dynamics are reduced by the
error controller. Here, the unbounded case has stable (negative
real part), but very large eigenvalues. This suggests fast reduc-
tion of the error in theory, but may not be reasonable in prac-
tical applications due to modeling or sensor errors as well as
disturbances. On the other hand, the bounded cases also stabi-
lize the system, but with much smaller magnitude. This relates
to a more reasonable behavior of the error controller and also
its practical applicability. In addition, Fig. 5 shows that the
desired constraint on the minimal eigenvalue (displayed in
dashed-dotted magenta as labeled as Any,(7)) defined in Eq.
(15) is always fulfilled even with additional margins. The rea-
son for these safety margins is illustrated in Fig. 6: Here, the
approximation (dashed red line) for the minimal singular value
of the matrix Lo(¢) for the three gain cases, which is used in Eq.
(15), is compared to the real singular value of the matrix (solid
blue line), which is calculated in a post-processing step after
the optimization. It is clear that the approximation is indeed

100

50

Re{\(Q)}

P 1m s et e 2 2 s ]

20 25 30

(a) Unbounded

T T
= 15| 7
S
= 10 .
o i
© 5 i
2 e 7 T e PTR80S £ B30
1 | | | L L
0 5 10 15 20 25 30
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(b) Bounded
T T
=100
e
=
~ ]
\'.-.---'-.L-- s diulubuuh i bl 1 '-..L.---”‘-‘J
0 5 10 15 20 25 30

t(s)
(¢) Tightly bounded
S Ag e Are— Aa = Auin

Fig. 5 Comparison of real part of optimal eigenvalue histories
for unbounded and bounded cases for the matrix Q(7) in the
Lyapunov function candidate derivative.

a conservative lower bound and thus, the optimal solution
does not reach the lower bound as it would be expected for
the solution of an optimization problem. Still, an increased
conservatism and thus robustness may be desired in multiple
applications. Additionally, less conservative approximations
for the singular value in Eq. (15) may be used to improve
optimality.

Furthermore, Fig. 7 depicts the real parts of the eigenvalue
histories for the matrix P(¢) used in the definition of the Lya-
punov function candidate in Eq. (2). Here, it is first of all clear
that the required positive definiteness is ensured as all real
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Fig. 4 Comparison of optimal gain histories for unbounded and bounded cases.
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Lo(7) used in the convergence rate constraint for the minimal
eigenvalue of the matrix Q(¢).
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for unbounded and bounded cases for the matrix P(7) in the
Lyapunov function candidate.

parts of the eigenvalues are positive. Furthermore, a similar
behavior as in Fig. 5 can be seen, i.e., that by decreasing the
gains the eigenvalues become smaller, which results in a feed-
back controller that is better suited in practice.

Concluding, Fig. 8 displays the eigenvalues of the stabilized
system matrix A(6(1), K,(0(1)), Ka(6(1))): Here, it is clear that
the system matrix has poles in the complete complex plane,
i.e., also in the open right half plane. This displays the men-
tioned capacity of the proposed trajectory optimization algo-
rithm that accounts for the stability of the feedback

Fig. 8 Comparison of real part of optimal eigenvalue histories
for unbounded and bounded cases for the system matrix
A(0(r), Ky (0(7)), Ka(6(2))) including the optimal gains.

controller described by an LTV error dynamics, which not
only allows to design systems with poles in the open left com-
plex plane as generally done with gain scheduling and LTI sys-
tems. This behavior and capability is one of the main benefits
of the algorithm introduced in this study, as it allows for the
full exploitation of the system dynamics.

4.5. Evaluation of controller performance

In this section, a simulation assessment of the controller’s per-
formance is carried out, in which specifically the stability and
robustness properties are examined and verified. This is done
to validate the theoretical stability characteristics obtained
from the optimal control-based design in Section 4.4 within
a practical application scenario. Additionally, the resulting
feedback gains performance should be assessed. For this pur-
pose, the model’s initial position is offset by 10m to the left
(“west” direction). Therefore, the controller has an initial tra-

100
80| 1
60| 1
£
8
0] 1
20| 1
= Reference
. ---- Bounded
0"—150 10 20 30 40 50 60 70 80 90 100

yp (m)

Fig. 9 Comparison of planned optimal trajectory and simulated
trajectory including initial offset with bounded gains.
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jectory deviation that needs to compensate to follow the orig-
inally desired path properly. For the controller, the results with
the bounded gains is chosen.

At first, Fig. 9 visualizes the planned optimal trajectory
(“Planned Trajectory”; solid blue) and the simulated trajectory
using the bounded gains (“Bounded Controller”; dashed
green) to specify the pseudocontrol within the nonlinear
dynamic inversion control law that is derived from the LTV
error dynamics.® It is clear that the controller achieves the
desired task to follow the reference trajectory properly and
smoothly. This also shows that the bounded gain case is a
trade-off between tracking accuracy and speed. Consequently,
different performance criteria can be fulfilled by adapting the
bounds on the gains suitably. There is an overshoot when com-
ing close to the trajectory which suggests that the gains may yet
be still too aggressive for perfect, smooth convergence.

Continuing, Fig. 10 shows the Lyapunov function and its
derivative until a simulation time of 12s is reached and the
error between real and desired trajectory becomes negligible.
It is clear that the Lyapunov function is always positive, while
its derivative is always negative as required for stability and
enforced within the optimization. It is furthermore clear that
after around 8s the error becomes very small between real
and desired trajectory and we achieve a good convergence.
To visualize this behavior further, Fig. 10 contains the theoret-
ical bounds on the decay of the Lyapunov function as well as
its derivative as formulated in Ref. [16] and specified in Eq. (5)
(denoted by “‘c;-decay” and “‘c,-decay”, respectively) and Eq.
(6) (denoted by ‘“‘c3-decay” and ‘cy-decay”, respectively).
These show that the actual decay of the Lyapunov function
and its derivative is contained within the theoretically pre-
dicted extreme bounds, i.e., the coefficient bounding the matrix
norm multiplied by the norm of the error. In addition, the
decay of the Lyapunov function derivative is also always at
least given by the bound enforced using the constraint on the
minimal eigenvalue (Ani,-decay; dotted cyan line) in Eq. (15).
Thus, the constraint enforced in the optimization also has an
influence in the real scenario and accurately predicts a conser-
vative, robust convergence bound as desired. This is a further
strong argument on the applicability of the proposed trajec-
tory optimization framework accounting for the LTV stabi-
lization in application scenarios.
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Fig. 10 Development of Lyapunov function and its derivative
including theoretical decay bounds when trying to follow the
optimal trajectory with an initial offset and bounded gains.
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Fig. 11 Development of lateral path deviation and its derivative

when trying to follow the optimal trajectory with an initial offset
and bounded gains.

This behavior is further displayed in Fig. 11, which shows
the lateral path deviation and its derivative. As already noted
the lateral path deviation is often the most interesting aspect of
the trajectory controller as it is most often the most critical.
Thus, this figure is displayed here to show the achieved track-
ing accuracy by the controller even when only small and
bounded gains are allowed. As already clearly indicated by
the previous figures, there is one overshoot and one small
undershoot but after 8s the trajectory tracking is very good
especially considering that no additional error integrators are
used in the setup.

5. Conclusions

This study introduced the connection of optimal control-based
trajectory design with stabilization of Linear Time-Varying
(LTV) dynamics, including the design of adequate gains, which
showed significant application potential. The novelty of this
approach is the connected design of both the trajectory (as part
of the feedforward control) and the feedback controller part of
a trajectory tracking error dynamics that is described by stabi-
lizing an LTV system. To this end, a trajectory optimization
problem was formulated that contained both the standard
dynamic model and its constraints as well as the Lyapunov
analysis-based constraints accounting for the stability and
robustness of the LTV system. These include constraints on
the positive definiteness of the involved matrices in the Lya-
punov matrix equation of motion that have been numerically
efficient and stable incorporated using the idea of the Cholesky
factorization. Additionally, constraints on the minimal decay
rate of the Lyapunov function derivative, and thus, the error,
are enforced to account for robustness and performance
requirements. Consequently, this view allows for a coupled
optimal trajectory and stable feedback controller design, which
ensures stability and efficiency of the designed trajectory in real
application, thus facilitating performance and availability.
Concluding, this study has formed a reliable theoretical
foundation for the practical application case of designing opti-
mal trajectories considering the stability and robustness of
dependent LTV systems in a single framework to exploit the
full capacity of the dynamic system. This theoretical founda-
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tion enables the exploration of more sophisticated gain design
strategies for the LTV dynamics, including system response
shaping or robust design considering uncertainties, within
the optimization as additional cost or constraints. Further-
more, it also enables handling of objectives dealing with differ-
ent practical needs, such as a required level of smoothness.
Finally, it is extendable to specifically tailored (parameter-
dependent) Lyapunov functions to increase the optimality
and reduce conservatism.
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