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As for a biometric key, key management and biometric data security are both important. Existing bio- 

key generation methods are usually based on the biometric templates or features directly, it may expose 

user’s biometric data and will further make the biometric data permanently unusable for his secure iden- 

tification recognitions. In this paper, a fingerprint bio-key generation approach using the feature distance 

is proposed. We utilize the relative distances among user’s fingerprint minutiae to generate a unique bio- 

key. Such bio-key is determinable and recoverable via the generation interval scheme. In addition, we use 

a two-layer error correcting technique to guarantee a better reliability during the data transmission. The 

experimental results positively show that our approach can ensure higher security of the bio-key and 

guarantee a good key regeneration rate. Besides, the storage of the original bio-key or any fingerprint 

template is unnecessary. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the continuous promotion and progress of science and 

echnology, big data, cloud computing, IoT and blockchain have 

een changing the human society and demonstrate a good devel- 

ping prospect and future. At the same time, information security 

nd digital identity become particularly important with unprece- 

ented opportunities and challenges in such an era. The most im- 

ortant identity information is our inherent biometric information 

hich is unchangeable and very suitable for convenient identity 

uthentication, but it may expose its intrinsic defects that makes 

he biometric features be easily leaked intentionally or uninten- 

ionally and used by criminals for illegal activities. An effective 

ombination of biometric technology with cryptographical technol- 

gy, called biometric encryption technology, can not only ensure 

he original advantages of both methods but can also make up for 

ach other’s shortcomings. The core issue of the biometric encryp- 

ion technology is to keep the balance between the fuzziness of 

iometric features and the accuracy of cryptography. 

Secret key is the most important element to a cryptographic 

lgorithm, and it is usually more than one hundred bits long 
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or security and should be securely stored in a hardware storage 

edium, which is not only inconvenient for use but is also easy to 

e leaked once the storage medium is stolen or lost. To deal with 

his issue, a lot of work has been done on generation of secret keys 

rom biometrics. The measure that using biometrics to generate se- 

ret keys mainly concerns two key points. Firstly, we should ensure 

he accuracy of the biometric secret key (abbreviated as “bio-key”) 

nd protect user’s biometric data from being destroyed, stolen or 

ost at the same time, or the leakage of the related data will not 

esult in the invalidation of the biometrics. Secondly, in order to 

educe the influence of the extracted biometric features at other 

imes on the generated secret keys, the generation method should 

lso be fault-tolerant so that it can reduce the intra-variations of 

he extracted biometric features which may be caused by some en- 

ironmental or man-made factors. 

The main contribution of this paper is the proposal of a new 

pproach for the generation of bio-keys from human fingerprints. 

e use the feature distances between fingerprint minutiae to cal- 

ulate the key bit-string and achieve template-free by combining it 

ith the generated interval scheme. 

The remainder of this paper is as follows: In Section 2 , we 

ntroduce a lot of recent work related to biometrics-based cryp- 

ographic key generation. Section 3 addresses our proposed ap- 

roach, and the whole implementation procedures will also be de- 

cribed in detail in this section. Practical detail experiments on our 

pproach are carried on Section 4 . Section 5 gives the evaluation 
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nd security analysis on our approach. In addition, we will give 

 comparison of our approach with other recent valuable work in 

ome key aspects including false acceptance rate (FAR), false rejec- 

ion rate (FRR) and (bio-)key regeneration rate (KRGR), the renewa- 

ility (R-New), computational cost and size. Four application sce- 

arios are described in Section 6 . Finally, the conclusion remarks 

ome in Section 7 . 

. Related work 

A lot of methods have been put forward for biometric encryp- 

ion or bio-key generation. In 1996, Tomko et al. proposed the 

oncept of bio-encryption for the first time and gave a key gen- 

ration system [1] combined with fingerprint features directly. In 

009, a statistical quantification mechanism was adopted by Ong 

t al. [2] to reduce the intra-variation of human dynamic signature 

n order to generate a more reliable signature template. Using the 

nterval quantization based on a so-called method “context-based 

exture analysis” [3] , Rathgeb et al. put forward a key generation 

cheme based on iris [4] , and they eventually achieved the revoca- 

ility of the bio-key by encoding the iris features. However, their 

ethod was based on the position information of the selected sta- 

le iris features while it may expose the iris data indirectly. In 

004, Dodis et al. defined two vital models [5] : the fuzzy extractor 

nd the security sketch, which could ensure some fault tolerance 

nd reliability respectively. The fuzzy extractor is basically equiva- 

ent to a probability function model: for an input biometric value 

, a uniform random number series R is extracted which doesn’t 

eed to be stored, and later this R can be regenerated by an input 

alue w 

′ if it is close enough to w . The authors pointed out that the

xtracted R could be used as a key in the sense of cryptography, 

ut they did not describe in detail how such R was constructed 

rom the input biometric features. In 2008, Zhang et al. proposed 

n iris authentication scheme based on fuzzy extractor [6] . Using 

ris templates, Mari ̃  n o et al. put forward a fuzzy extractor-based 

rypto-biometric scheme [7] . Mari ̃  n o’s scheme can be used by a 

ser to retrieve a secret or a previously saved key by using his 

wn iris template. In fact, Mari ̃  n o’s scheme is just like a fuzzy vault

ased on iris template. 

For sake of biometric template security, much work has been 

ade on the template-free schemes and some proposed ap- 

roaches make the storage of templates or original generated bio- 

eys become unnecessary steps. Sheng et al. [8] proposed a reliable 

ey generation method using fingerprint orientation fields and it 

id not require to store biometric templates, while it may not only 

ead some high FAR but also may not produce long cryptographic 

eys since the orientation fields only represent some small part 

f fingerprint information. In 2014, Wang et al. [9] constructed a 

ancelable fingerprint template based on a curtailed circular con- 

olution and the alignment-free of the fingerprint was achieved. 

n 2015, Leng et al. [10] combined the 2DPalmHash code, fuzzy 

ault and the cancelable mechanism to construct the palmprint 

emplate and then proposed a hybrid cancelable palmprint-coded 

uzzy vault. Sheng et al. [11] presented an encryption key gener- 

tion method based on the statistical features of biometric data 

y developing a semisupervised data clustering scheme to model 

he user variations on both single biometric features and feature 

ubsets, and they experimentally showed that their method could 

chieve good performance with some signature databases. They 

laimed that it could deliver a key with good consistency, discrim- 

natory and entropy. However, they didn’t give a detail description 

r a practical example about how their key was generated. 

In [12] , Partheeba et al. utilized the SIFT algorithm to extract 

ngerprint minutiae and applied the VLSB steganography to hide 

he minutiae template for the generation of a shared fingerprint 

io-key by two users. But their method required that the extracted 
2 
ngerprint image have high quality and they did not give a practi- 

al bio-key generation description or realizable algorithm. In 2017, 

avinia et al. [13] proposed a fuzzy extractor-based bioPKI skeleton 

n which its private key was a biometric key generated from the 

ngerprint template, iris template or the fused template of both 

ngerprint and iris, and they also provided the detailed experi- 

ents and analysis of the possible spoofing scenarios for the secu- 

ity of their bioPKI. But the authors did not give a description for 

heir biometric key generation in a detailed algorithmic or math- 

matical form. Using an interval optimized mapping bit allocation 

ethod, Karimian et al. proposed a novel key generation approach 

alled IOMBA which can produce a key from user’s electrocardio- 

ram (ECG) [14] . As they described, we know that ECG still has 

he challenges with respect to immunity to noise, abnormalities 

nd etc. One year later, Moosavi et al [15] also proposed a cryp- 

ographic key generation approach based on several ECG features 

nd experimentally showed that their approach had better P -value 

IST pass rates and was approximately 1.8 times faster than the 

xisting singleton ECG-based key generation approaches, but they 

id not test their KRGR. In addition, the acquisition of ECG is more 

omplicated, inconvenient and time-consuming than the other bio- 

etrics such as fingerprint, finger vein and iris. In [16,17] , Verma 

t al. constructed a biometric key generation scheme from finger- 

rint hologram and it can be used for optical image encryption. 

hey theoretically showed that the fingerprint biometric keys were 

nique with high discrimination ability for each person and the 

eys’ matching probability between two different persons are min- 

mal. They simulated their approaches’ effectiveness about their 

ngerprint key generation method, but they did not experimentally 

est the fingerprint KRGRs. 

In order to make up for the fuzzy extractor’s defect that the 

nique helper data of users is essential to it, Seo et al. [18] pre-

ented a biometric-based key derivation function (BB-KDF) which 

ade the users be able to derive their cryptographic keys solely 

rom personal biometric data without any helper information. The 

ey part of the BB-KDF is the round function with a preset thresh- 

ld vector for any input biometric vector. But this round function 

ay induce an imposter to succeed in deriving a correct key while 

 genuine user may not derive his correct key. In addition, to suc- 

essfully regenerate a correct key, it must be assumed that as many 

inutiae as before could be exacted at the stage of re-deriving the 

ey. In 2018, Wu et al. [19] gave a new bio-key generation scheme 

amed FVHS based on finger vein features. The authors combined 

achine learning, biometrics and cryptography technologies to- 

ether to extract a special feature vector from user’s finger vein 

nd then processed it to generate a bio-key with a fixed length, but 

he stability of human’s finger vein which guarantee the appear- 

nce of the extracted features in their work remains questionable. 

n this year, Anees et al. [20] developed a unified framework for 

enerating cryptographic keys from facial features, and they simu- 

ated their approach’s recognition rate and showed the generated 

ey had good random and robustness. In addition, they experi- 

ented their ELBP’s recognition rate which may basically represent 

he key generation rate. One year later, based on the straight line 

ttributes (line lengths and their angles) between minutia points, 

anchal et al. [21] proposed a novel approach for generating a 

hreshold-free cryptographic biometric key (called bio-crypto key) 

y merging all bits in the three feature sets of the straight line at- 

ributes from three minutia types, respectively, and they also used 

eed-Solomon encoding to generate a codeword for encryption and 

specially for the retrieval of user’s bio-crypto key. The authors 

laimed that their approach did not require to store user’s biomet- 

ic template or the generated key. But, we have noticed that the 

hree feature sets may be the same set and their approach may 

ave the risk of disclosing the fingerprint features’s straight line at- 

ribute information. An attacker can first apply user’s ciphertext to 
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Fig. 1. The process of our bio-key generation approach. 
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eparate the codeword from user’s final ciphertext, then obtain the 

ine attributes from the codeword using Reed-Solomon decoding, 

nd finally he may successfully reconstruct user’s bio-crypto key 

rom the line attributes if he can obtain the parameters for substi- 

ution or expansion. In addition, the approach had a considerable 

urden of keeping a S-box, two random arrays and the parameters 

f the encoding scheme secretely. 

In 2019, by utilizing the convolution coding principle, Pan- 

hal et al. [22] further proposed a biometric codeword genera- 

ion method which can generate a unique codeword, and the hash 

alue of this codeword together with some private parameters can 

e used as a cryptographic key. They experimented out that the 

enuine rate was up to 95 . 12% while the false rate was 0% . This

ethod eliminated the storage of any biometric template or secure 

ey and it was effective enough to be applied in any security sys- 

em. But there existed some issues such as some biometric images 

ay have no center points, and one may not extract out the same 

iometric minutiae set as the previous gotten minutia set when he 

s to regenerate the bio-key. 

As we have described above, we know that a lot of valuable 

ork has been done on biometric-based key generations, however, 

ome of them were found to be lack of more practical simulations 

or the bio-key generation. In Sections 3 and 4 , we will propose a

ovel biometric-based key generation method and some practical 

imulations will be made on our approach with fingerprints. 

. Proposed approach 

At the bio-key generation stage, the user’s fingerprint minutiae 

re firstly extracted, then, we calculate the feature distances be- 

ween some two minutiae. In the generated interval scheme, each 

roup of the feature distances constructs a unique generated inter- 

al with its cancelable interval codewords. For a better accuracy, 

e choose a two-layer error correcting technique to correct the 

istakes appeared in data transmission. Finally, user’s related in- 

ormation is stored in the smart card for the bio-key regeneration. 

n the last part of this section, we will describe the whole pro- 

edure of the bio-key regeneration. Fig. 1 shows the flow of our 

io-key generation approach. 

.1. Fingerprint minutiae 

A human fingerprint is normally comprised of ridges and val- 

eys [23] . The ridges are the dark lines running through the fin- 

erprint image while the valleys are the light lines adjoined be- 

ween ridges. As is well-known, human fingerprints vary from each 

ther and keep unchanged during human whole life. The integral 

opology of fingerprint ridges and valleys together with general di- 

ection of lines are called the global features. Correspondingly, the 

ocal features include minutiae like core, delta, ending and bifurca- 

ion, and the features also include distributions like gradient, ori- 

ntation, frequency and etc. 
3 
.1.1. Preprocessing 

The fingerprint image extracted from the user should be pre- 

rocessed through the eight steps as shown in the following Fig. 2 . 

.1.2. Minutiae set 

After preprocessing, we extract all the ending, bifurcation, core 

nd delta points from the fingerprint binary image and record 

heir information, then we can get the fingerprint minutiae set 

 = { αi = (x i , y i , t i , θi ) | i = 1 , 2 , . . . , N } , where N is the total minutia

umber, x i is X-coordinate, y i is Y -coordinate, t i = 0 , 1 , 2 , 3 is the

inutia type representing ending, bifurcation, core or delta point, 

espectively, and θi ∈ [0 , 2 π ] denotes the orientation field value. 

ig. 3 shows an example of the original fingerprint image and its 

orresponding pre-processed images with different types of minu- 

iae are marked. 

.2. Minutiae to feature distance 

During the acquisition and alignment processes, fingerprint 

inutiae will be faced with non-negligible changes caused by im- 

ge rotation and transformation to some extent [24] , thus, we 

hoose the feature level rotation rather than the image level ro- 

ation and utilize the feature distance to make the further compar- 

son. In addition, we will store the differences of the minutia types 

nd the differences of the orientation fields as the auxiliary data 

o that we can regenerate the bio-key more accurately. 

.2.1. Minutiae statistics 

We first extract minutiae respectively from the user’s m train- 

ng image samples of the same fingerprint and get m minutiae 

ets M k = { αki | i = 1 , 2 , . . . , N k } , where αki = (x ki , y ki , t ki , θki ) ,k =
 , 2 , . . . , m . Then, make a statistics about the occurrence times of

he same minutia in different sets and arrange the minutiae from 

he highest frequency to the lowest frequency. 

We choose the first (n + 1) minutiae with the highest fre- 

uency for each minutiae set M k , then randomly select one minu- 

ia that appeared in each training sample as the top minu- 

ia αki 0 
and if there is no such minutia, the one with the 

ighest frequency will be selected. The m sets of the selected 

inutiae are denoted as SM k = { αki 0 
, αki 1 

, . . . , αki n |{ i 0 , i 1 , . . . , i n } ⊆
 1 , 2 , . . . , N k }} , k = 1 , 2 , . . . , m . Notice that if one minutia is not ap-

eared in the current minutiae set, we will set its corresponding 

elected minutia to be None . The value of n determines the bio- 

ey size and it is no more than 25 in our experiments. 

.2.2. Feature distance set 

Now we calculate the Euclidean distances between the top 

inutia αki 0 
= (x ki 0 

, y ki 0 
, t ki 0 

, θki 0 
) and all the other minutiae αk j =

x k j , y k j , t k j , θk j ) , j = 1 , 2 , . . . , n ( j � = i 0 ) in SM k as in Eq. (1) . For

he sake of a better key regeneration, the differences between the 

inutia types and the difference between the orientation fields are 
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Fig. 2. Fingerprint preprocessing. 

Fig. 3. Original image, preprocessed result and marked minutiae. 
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i
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lso calculated correspondingly as in Eq. (2) , serving as the aux- 

liary data. Note that in order to standardize all the feature dis- 

ances to adapt the following steps, we apply a modular operation 

o the Euclidean distances. The modulus is the feature space size 

 

p which is determined by the code length p. Note that p is a pos- 

tive integer which is usually no more than 16, and it is also used 

n Section 3.3.2 . In our experiments, p is set to be 8 bit and so that

he modulus is 256. 

 k j = 

√ 

(x k j − x ki 0 ) 
2 + (y k j − y ki 0 ) 

2 mod 2 

p (1) 

 t k j = t k j − t ki 0 , � θk j = θk j − θki 0 (2) 

Now, we define that a feature distance with three parame- 

ers: Euclidean distance, the difference between the minutia types 

nd the difference between the orientation fields. Finally, we 

an obtain the user’s m feature distance sets written as F D k = 

 (d k j , � t k j , � θk j ) | j = 1 , 2 , . . . , n } , k = 1 , 2 , . . . , m . Notice that if one

inutia is not extracted in the current minutiae set, we will set its 

orresponding feature distance with the top minutia to be None . 

.3. Generated interval scheme 

In this section, we give an example to explain the generated 

nterval scheme. 

We assume that there is one feature object X with its 

times’ extraction values being { x 1 , x 2 , . . . , x l } . Let x min =
in (x 1 , x 2 , . . . , x l ) , x max = max (x 1 , x 2 , . . . , x l ) and μ be a predefined

uantization value for X, then a unique interval is constructed for 

as [ x min − μ, x max + μ] which we call the generated interval of

. After that, the generated interval is encoded to obtain its unique 

odeword which is selected at random. Note that if the number of 

he generated intervals is more than one, then their corresponding 

odewords should be all isometric. 

For example, the values of X are { 63 , 61 , 61 , 61 , 62 , 60 , 61 , 62 }
ith l = 8 and the quantization value is predefined as μ = 2 . Ap-

arently, x max = 63 ,x min = 60 , and the generated interval for X is

o be [58 , 65] . We can select “01” as the codeword for this gener-

ted interval. 
4 
.3.1. Generating intervals 

Based on the above conception, we construct the generated 

ntervals for the feature distance sets F D k = { (d k j , � t k j , � θk j ) | j =
 , 2 , . . . , n } , k = 1 , 2 , . . . , m . Let d j, min = min (d 1 j , d 2 j , . . . , d m j ) and

 j, max = max (d 1 j , d 2 j , . . . , d m j ) , then for each j, the generated in-

erval for the set (d 1 j , d 2 j , . . . , d m j ) is [ L j , R j ] with L j and R j defined

s the following Eq. (3) : 

L j = d j, min − δ

R j = d j, max + δ
(3) 

here d j, min = min (d 1 j , d 2 j , . . . , d m j ) ,d j, max = max (d 1 j , d 2 j , . . . ,

 m j ) , and δ is the quantization parameter which is pre-tested and 

sed to extend the interval. The value of δ should be tested out by 

everal experimental tests in order to achieve the fault tolerance 

nd it is usually less than the one-tenth of 2 p . Note that, all

he differences of the orientation fields in the auxiliary data are 

lso replaced by their corresponding generated intervals with no 

ncoding. 

For a better bio-key regeneration, we should arrange the gen- 

rated intervals in order. Here the generated intervals are ordered 

ased on the rules: 1) Arranging the intervals in the order of the 

alues of the left boundary L j from the smallest to the largest. 

) Arranging the intervals in the order of the values of the right 

oundary R j from the smallest to the largest if their left bound- 

ries are equal. Finally, the feature distances are transformed and 

rranged into a set of generated intervals denoted as in Eq. (4) . 

I = { [ L j , R j ] | j = 1 , 2 , . . . , n } (4)

.3.2. Interval encoding 

Since fingerprint is almost never changed for the human whole 

ife, once user’s original fingerprint data is compromised, the 

ngerprint may become permanently unusable for his digital 

dentity-related applications. The main point of a cancellable bio- 

ey is that it can be stored and used in a kind of transformed form

o that once the transformed bio-key is compromised, we can up- 

ate the bio-key by changing the transform function or some re- 

ated parameters. 

In our approach, the generated interval [ L j , R j ] ( j = 1 , 2 , . . . , n )

s encoded into a p−bit codeword bt j which is chosen at random 

ut isometric so that we can achieve the cancellability of the bio- 
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Fig. 4. Transformation diagram from the fingerprint to its corresponding bio-key. 
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Table 1 

Mapping on the Galois field GF (2 3 ) . 

Coefficient Relationship Binary bit Decimal symbol 

0 0 000 0 

α0 1 001 1 

α1 α 010 2 

α2 α2 100 4 

α3 α + 1 011 3 

α4 α2 + α 110 6 

α5 α3 + α2 111 7 

α6 α4 + α3 101 5 
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T
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α
t
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o  

4  
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c

p
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t

ey. Furthermore, all the codewords should be chosen to be differ- 

nt even if the generated intervals are similar or identical in value 

ecause our approach needs a certain number of successful map- 

ings in the bio-key regeneration procedure which is described in 

etail in the following Section 3.6 . 

The original bio-key, denoted as BK in Eq. (5) , is the concatena- 

ion of all the codewords of GI and its length is p × n bits. Besides,

nce the user’s bio-key is lost, exposed or in danger, we can em- 

loy new codewords to update it immediately. In our experiment, 

e select p = 8 and transform user’s fingerprint into an 8 n -bit bio-

ey in result. 

K = bt 1 || bt 2 || · · · || bt n (5) 

Fig. 4 is the diagram of the whole transformation from the fin- 

erprint to the original bio-key BK. 

.4. Two-layer error correcting technique 

In our proposed approach, we use a two-layer error correct- 

ng technique which combines Hadamard code with Reed-Solomon 

ode to detect and correct unexpected errors that occur during the 

ransmission for our fingerprint bio-key BK. 

.4.1. Two error correcting codes 

In this section, the two error correcting codes applied in our 

pproach will be separately introduced with examples. 

Reed-Solomon code (RS code) is a BCH code and can be de- 

oted as (r, s ) with r = 2 p − 1 , s = 2 p − 1 − 2 t . The parameters rep-

esent that when we input s symbols, the output RS code will be r

ymbols and it can correct at most t errors with 2 t verifying sym- 

ols, in which every symbol is a decimal number containing p bits 

nformation. The RS encoding is based on the polynomial division 

n the Galois field GF (2 p ) and we will take an example to illustrate

ts mechanism. 

Assume that “2, 5, 4, 1, 6” is the input symbols while each 

ymbol contains no more than 3 bits, then p = 3 , r = 7 , s = 3 and

 = 2 are suitable for RS encoding. Let α be a root of the primitive
5 
olynomial f (x ) = x 3 + x + 1 in GF (2 3 ) , then α3 + α + 1 = 0 and we

et the generator polynomial g(x ) = α0 x 2 + α4 x + α3 as in Eq. (6) .

hen, we transform the decimal symbols “2, 5, 4, 1, 6” into the bi- 

ary bits “010, 101, 10 0, 0 01, 110” and map them on GF (2 3 ) with

eference to Table 1 to obtain the input polynomial s (x ) = α1 x 4 +
6 x 3 + α2 x 2 + α0 x 1 + α4 . According to the polynomial division on 

he Galois field, calculate the remainder as in Eq. (7) and we 

an obtain the remainder s r (x ) = α3 x 1 + α1 . Finally, the polynomial

(x ) = α1 x 6 + α6 x 5 + α2 x 4 + α0 x 3 + α4 x 2 + α3 x 1 + α1 is comprised

f s (x ) · x 2 t and s r (x ) as in Eq. (8) and the decimal symbols “2, 5,

, 1, 6, 3, 2” of the coefficients of r(x ) is regarded as the RS code.

(x ) = (x − α)(x − α2 ) · · · (x − α2 t ) (6) 

 r (x ) = s (x ) · x 2 t mod g(x ) (7) 

(x ) = s (x ) · x 2 t + s r (x ) (8) 

In the RS decoding and error correction process, the primitive 

olynomial f (x ) on GF (2 3 ) with its primitive root α and the RS 

ode are known in advance. The RS code are transformed into a 

olynomial R (x ) and the corresponding syndromes for R (x ) are cal- 

ulated as in Eq. (9) . If all the syndromes are 0, it indicates that

here is no error in the RS code and we can obtain the original 
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Fig. 5. Examples of Hadamard encoding process. 
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ymbols directly form the first s symbols of the RS code. Oth- 

rwise, all the errors will be detected and corrected using the 

erlekamp-Massey decoding algorithm [25] . 

 i = R (αi ) , i = 1 , 2 , . . . , 2 t. (9)

As for the example above, the RS code is transformed into the 

olynomial R (x ) and we assume that R (x ) = m 4 x 
6 + m 3 x 

5 + m 2 x 
4 +

 1 x 
3 + m 0 x 

2 + q 1 x 
1 + q 0 . The syndromes s 0 ,s 1 as in Eq. (10) are

alculated according to Eq. (9) . When the RS code is “2, 5, 4, 1,

, 3, 2”, the syndromes s 0 ,s 1 are both 0 and the decoded symbols

s “2, 5, 4, 1, 6”. 

s 0 = m 4 α
6 + m 3 α

5 + m 2 α
4 + m 1 α

3 + m 0 α
2 + q 1 α

1 + q 0 
s 1 = m 4 α

12 + m 3 α
10 + m 2 α

8 + m 1 α
6 + m 0 α

4 + q 1 α
2 + q 0 

(10) 

When the RS code is “2, 6, 4, 1, 6, 3, 2”, the corresponding syn-

romes are s 0 = α6 and s 1 = α1 so that the error is occurred at

 3 in the syndrome s 0 with the factor s 0 /s 1 = α5 . After the error

etection, we can correct the symbol m 3 by substituting the right 

ymbols in the RS code into Eq. (11) to obtain that m 3 = α6 . There-

ore, the RS code after the error correcting is “2, 5, 4, 1, 6, 3, 2” and

he decoded symbols is also “2, 5, 4, 1, 6”. 

6 m 4 + α5 m 3 + α4 m 2 + α3 m 1 + α2 m 0 + α1 q 1 + q 0 = 0 (11)

Hadamard code is generated by Hadamard matrix H h (h = 2 q ) 

hich is comprised of “1” and “-1”. However, the symbol “1” is 

apped into “1” and “-1” is mapped into “0” in the practical ap- 

lications. Hence, a pairwise-orthogonal h -order Hadamard matrix 

an generate 2 h completely different codewords of h bit long. The 

inimum Hamming distance between any two different Hadamard 

odes is 2 q −1 bit, hence, it can detect at most 2 q −1 − 1 bit errors,

nd correct 2 q −2 − 1 bit errors. 

The process of the Hadamard encoding from the bi- 

ary string B = { b i | i = 0 , 1 , . . . , q } to its Hadamard code

C B = [ h 0 , h 2 0 , . . . , h 2 q −1 ] is denoted as Eq. (12) in which

 h 0 = b 0 , h 2 i = b i +1 | i = 0 , 1 , . . . , q − 1 } are the information bit

n HC B and the remaining bits are the verifying bits. 

C B = Encode (b 0 , b 1 , ., b q ) (12) 

For example, let q = 2 ,h = 4 , “111” and “010” are two 3-bit bi-

ary strings. The 4-order Hadamard matrix and the whole encod- 

ng process are shown in Fig. 5 . The bits in the binary string cor-

esponds to the first, 2 0 th, 2 1 th bit in Hadamard code successively, 

hus the corresponding Hadamard codes for “111” and “010” are 

1111” and “0101”, respectively. 

The main idea of the Hadamard decoding is to find out a corre- 

ponding row in the pairwise-orthogonal Hadamard matrix whose 
6 
amming distance with the received Hadamard code is less than 

 

q −2 . If it exists, the original information can be successfully de- 

oded by extracting the information bit from the corresponding 

ow. Otherwise, the decoding process is failed. 

.4.2. Implementation 

For the purpose of an effective combination, the number of bits 

ontained in a symbol of the RS code must be equal to the input 

it number of the Hadamard code, that is p = q + 1 . Here we give

he diagram of the two-layer error correcting encoding process of 

he bio-key as Fig. 6 . 

Firstly, as the original bio-key is p × n -bit long, we should trans- 

orm the binary string into n decimal symbols with each of which 

eing a p bit binary number. Secondly, in order to fulfill the input 

its, we insert (s − n ) zeros ahead of the n decimal symbols, and 

hen encode them into an original RS code which contains r sym- 

ols. The first (s − n ) zeros of the original RS code are removed and

very symbol is encoded into a h -bit Hadamard code, respectively. 

inally, the binary codeword string which is connected by all the 

adamard codes is transformed into the symbol form where p pit 

orresponds to one symbol and it is also the final two-layer error 

orrecting codeword EC for the bio-key. 

For example, assume that the bio-key is “01010110 0 0 01110” and 

p = 3 ,n = 5 . Firstly, we divide and transform the bio-key into the

ymbol form “2, 5, 4, 1, 6” where 3 bits correspond to one sym- 

ol. Obviously, it is unnecessary to insert any zero since s = n = 5 .

hen, according to the example above, we know that the RS code 

or “2, 5, 4, 1, 6” is “2, 5, 4, 1, 6, 3, 2”. Encode the RS code symbols

nto the Hadamard codes one by one so that we can obtain the 

inary codeword string “0101101010010011110 0 0110 0101”. Finally, 

e transform this string into its symbol form “0, 5, 5, 2, 2, 3, 6,

, 4, 5” by complementing some zeros in the front of the string. 

ence, the final two-layer error correcting codeword for the bio- 

ey is “0, 5, 5, 2, 2, 3, 6, 1, 4, 5”. 

After the two-layer error correcting operation is performed, the 

ser’s original bio-key BK becomes a � (r − s + n ) × 2 q /p	 symbol

odeword EC. 

.5. Storage of user’s information 

In order to make sure the correctness of the decoded bio-key, 

e also apply a hash function on the original bio-key BK as used in 

he literature [26] . Hence, when the decoded bio-key is correct, its 

ash value must be equal to the hash value of BK. In our approach, 

HA256 is selected and the hash value of the original bio-key BK is 

enoted as H K = SH A 256(BK) . 

The information for a bio-key generation scheme generally con- 

ains four parts, that is, the generated intervals GI with corre- 

ponding codewords, the auxiliary data, the error correcting code- 

ord EC and the hash value HK of the original bio-key BK, all of 

hich will be stored in user’s smart card at the end of the bio-key 

eneration procedure. 

.6. Bio-key regeneration 

In this section, we will mainly discuss the inverse procedures 

f our approach. Assume that the user wants to regenerate his bio- 

ey BK with his fingerprint and his smart card, the bio-key regen- 

ration procedure can be described as the following six steps and 

he flow diagram is embodied in Fig. 7 . 

(1). Extract and obtain the minutia set M 

′ = { α′ 
i 
= 

(x ′ 
i 
, y ′ 

i 
, t ′ 

i 
, θ ′ 

i 
) | i = 1 , 2 , . . . , N} from the fingerprint, and then

calculate the feature distances between each minutia α′ 
i 

and 

all the other minutiae α′ 
j 
( j � = i ) to obtain its feature distance

set F D 

′ 
i 
= { (d ′ 

ik 
, � t ′ 

ik 
, � θ ′ 

ik 
) | k = 1 , 2 , . . . , N − 1 } ,i = 1 , 2 , . . . , N. 
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Fig. 6. Two-layer error correcting encoding process. 

Fig. 7. Bio-key regeneration process. 

 

 

cessful, otherwise, the regeneration is failed. 
(2). Read the user’s information from his smart card. The infor- 

mation includes the generated intervals GI with the corre- 

sponding codewords, the auxiliary data, the error correct- 

ing codeword EC and the hash value HK of the original 

bio-key. 

(3). A successful mapping means that the Euclidean distance 

of one feature distance locates in one generated interval, 

as well as the difference of the orientation field locates 

in its corresponding generated interval and the difference 

of the minutia type is equal to the type difference value 

in auxiliary data. Try to map the values in the feature 

distance set F D 

′ 
i 
(i = 1 , 2 , . . . , N) into the generated inter-

vals GI and the auxiliary data, and record the successful 

mapping times for each group. The successful mapping is 

non-repeating. 
7 
(4). Select the feature distance set with the maximum successful 

mapping times and replace the mapped generated intervals 

with their corresponding codeword and the unmapped gen- 

erated intervals with all zero codeword. The concatenation 

in order of all the codewords is regarded as the regenerated 

bio-key BK 

′ of the user. 

(5). Apply the two-layer decoding operations on the error cor- 

rection codeword EC to obtain a decoded bio-key BK 

′′ . The 

hash value of BK 

′′ is denoted as HK 

′ . If HK 

′ = HK, then the

decoding is successful and BK = BK 

′′ , otherwise, decoding is 

failed. 

(6). If the above decoding is successful, we calculate the Ham- 

ming distance HD between BK 

′ and BK. If HD is less than the 

predefined threshold, then the bio-key regeneration is suc- 
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Fig. 8. Interface from fingerprint to feature distance. 
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. Experiments 

In this section, we will experiment with our approach in 

he computing environment with Windows10 64-bit, an Intel(R) 

ore(TM) i5-3470 CPU @ 3.20 GHz ×4, and the used softwares in- 

luding Visual Studio2015, MyEclipse 2016 Stable 1.0 and Mat- 

abR2014a. 

.1. Key generation 

.1.1. Fingerprint to feature distance 

Fig. 8 shows the interface of the extraction and computation 

rocedures from the fingerprint images to the feature distance sets. 

irstly, we extract 8 minutia sets from 8 fingerprint images of 

ser’s one finger, then click “GetDistance” button to obtain the fea- 

ure distance sets and the corresponding Euclidean distances will 

e listed in the following blank. 

.1.2. Bio-key generation 

The bio-key generation interface in our experiment is exhibited 

s Fig. 9 . We should firstly input the feature distance sets obtained 

n the previous step as in Fig. 8 and the related Euclidean distances 

ill be listed in the form. Next, click “Generate” button to generate 

he original bio-key binary string BK for the user and construct the 

enerated intervals GI with corresponding codewords in the back- 

round. Then, we encode the bio-key BK into the two-layer error 

orrecting codeword EC. Later, the system calculates the hash value 

K of BK using the hash function SHA256 in the following step. Fi- 

ally, the “Save” button is designed to store the user’s related infor- 

ation as mentioned in Section 3.5 into the user’s smart card. Our 

xperiments show that it will take about 51.1 milliseconds (ms) to 

enerate a 128 bit key from the input fingerprint image patterns. 

.2. Key regeneration 

For the bio-key regeneration, we should input the user’s finger- 

rint and read the information in user’s smart card at the first step, 
8 
hen we calculate the feature distance sets and try to map the val- 

es in the sets into the generated intervals GI in the background. 

he feature distance set with the maximum successful mapping 

imes will be selected and then the corresponding codewords will 

e concatenated to produce the regenerated bio-key BK 

′ when we 

lick the “ReGenerate” button. The “Decode” button will implement 

he two-layer error correcting decoding of the codeword EC to ob- 

ain a decoded bio-key BK 

′′ and the “SHA256” button produces the 

ash value of the decoded bio-key BK 

′′ using SHA256 so that it 

ill be verified whether BK 

′′ is the original bio-key BK or not. If 

ot, it will give a failed tip. Otherwise, click the “Check” button 

o calculate the Hamming distance between the original bio-key 

K ( BK = BK 

′′ ) and the regenerated bio-key BK 

′ . 
As we can see, the Hamming distance between BK and BK 

′ is 

alculated as the determinant. If the Hamming distance is smaller 

han the predefined threshold, it will give a succeed tip and re- 

enerate the user’s bio-key BK successfully. Otherwise, the bio-key 

egeneration is failed. The whole interface of the bio-key regener- 

tion is designed as Fig. 10 and the Hamming distance used in our 

xample is 3 when the bio-key is 128 bits. 

We noticed that, in our bio-key regeneration simulation, the re- 

ulted bio-key will be obtained in about 27 . 9 ms . It means that

ur bio-key generation costs 23 . 2 ms more time than our bio-key 

egeneration. This is mainly because that our approach will take 

uch time to extract multiple training samples from the same in- 

ut biometric feature during the bio-key generation, while it only 

eeds to extract one sample from the input biometric feature dur- 

ng the bio-key regeneration. 

. Evaluation and analysis 

We tested our proposed approach on FVC2004 DB3 and our fin- 

erprint database HD-FP2015 DBv1 which has totally 600 finger- 

rint images from 30 different students, each of whom contributed 

0 samples of his same finger. As for the performance evaluation, 

he bio-key regeneration rate and error correcting result will be 

emonstrated for the effectiveness. In addition, we will give a se- 
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Fig. 9. Bio-key generation interface. 

Fig. 10. The bio-key regeneration interface. 
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9 
urity analysis on our approach. In our experiments, the parame- 

ers mentioned above are set as m = 8 , p = 8 and q = 7 . The pre-

efined quantization parameter δ is tested from 0 to 20 in our ex- 

eriments. Our experimental result is relatively better when δ = 5 . 

.1. Bio-key regeneration rate 

The bio-key regeneration rate relates to the threshold values. In 

ur approach, we choose the Hamming distance between the re- 

enerated bio-key BK 

′ and the original bio-key BK as a reference 

hreshold. The bio-key regeneration rates which vary with the in- 

rease of Hamming distance for both genuine and imposter are 

lotted in Fig. 11 . The bio-key is 128 bits with n = 16 in this sec-

ion. 

When the threshold is 15-bit long, the bio-key regeneration rate 

or the genuine user goes up to at least 92 . 92% while the bio-key

egeneration rate keeps 2 . 58% for the imposter. In other words, 

he probability that the imposter regenerates the bio-key is only 

 . 58% while the probability for the genuine user is 92 . 92% . In ad-

ition, the bio-key regeneration rate for the fingerprint samples in 

VC2004 DB3 is also at a high level as Fig. 11 shows, the bio-key 

egeneration rate for FVC2004 DB3 is 91 . 14% when the threshold 

s 15-bit long. 

.2. Regeneration rates with increasing minutiae 

In our approach, the size of the bio-key increases with the 

umber n of the selected minutiae. To illustrate the bio-key re- 

eneration rate varies with n, we tested different bio-key genera- 

ion rates with the increasing of the extracted minutia numbers. 

s it is shown in Fig. 12 , the bio-key regeneration rate decreases 

n some degree with the growth of the number n . As n goes from
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Fig. 11. The bio-key regeneration rate. 

Fig. 12. Bio-key regeneration rates with the number growth of the selected minu- 

tiae and predetermined thresholds. 
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Fig. 13. The effect of error correcting on the regeneration rate with the same 

thresholds. 

Table 2 

The bio-key regeneration rates for our approach’s 4 versions having two- 

layer, one-layer or no error correcting. 

Our approach’s different versions The bio-key regeneration rate (%) 

Two-layer error correcting 92.92 

Reed-Solomon error correcting 90.28 

Hadamard error correcting 88.63 

No error correcting 85.01 

5

c

t

5

t

t

g

t

m

a

a

r

d

f

o

5

c

a

c

w

m

fi

i

a

a

t

t

5 to 21, its corresponding bio-key’s size will go from 120 to 168 

its, and the bio-key regeneration rate will reach to an ideal value. 

hus, it is especially important to obtain both a proper number of 

he extracted minutiae and an appropriate predetermined thresh- 

ld for practical applications. Our experiment shows that we can 

enerate a bio-key with its length from 120 to 168 bits at a good 

io-key regeneration rate. In addition, we can increase the sizes of 

ur generated bio-keys by choosing the interval codewords with 

arger sizes, and we can also apply some cryptographic hash func- 

ion on our bio-key to get a new bio-key having the same size as 

hat of the hash value. 

.3. Effect of the two-layer error correcting 

By simulating the noise occurred during transmission, we get 

he bio-key regeneration rates plotted as Fig. 13 in different error 

orrecting situations. The comparison simulation results are listed 

n Table 2 with their thresholds are set the same. Both the fig- 

re and rate data show that our approach with the two-layer error 

orrecting performs better than the same situations with no error 

orrecting or with only one-layer error correcting. 
10 
.4. Security analysis 

For security of our proposed approach, there exist two key se- 

urity factors that need to be considered, that is, the security of 

he fingerprint template and the security of the generated bio-key. 

.4.1. Security of the fingerprint template 

Since the bio-key is obtained by the generated interval scheme, 

he storage of any clearly related information to user’s biometric 

emplate becomes unnecessary and so the security of user’s fin- 

erprint template information is guaranteed to the great extent. 

We utilize the relative data which combine the Euclidean dis- 

ances between the fingerprint minutiae, the differences of the 

inutia types and the differences of the direction fields to gener- 

te the bio-keys, and so once an attacker would obtain the gener- 

ted intervals and the corresponding codewords, they still cannot 

ecover any minutiae directly from the intervals and the feature 

istances. The reason is that relative data would not reveal any in- 

ormation about the minutia positions or the topological structure 

f user’s original fingerprint image. 

.4.2. Security of the bio-key 

User’s original fingerprint bio-key is the concatenation of the 

odewords of the generated intervals, so once an attacker illegally 

cquires all the interval codewords, the fingerprint bio-key can be 

racked. However, we can immediately update the interval code- 

ords to obtain a totally new fingerprint bio-key. In our experi- 

ent, it took an attacker at least 2 128 attempts to get the correct 

ngerprint bio-key via the violent cracking when the bio-key size 

s 128-bit long. As mentioned earlier, the codewords of the gener- 

ted intervals in our scheme can be randomly selected, and they 

re equal in length but different from each other. In other word, 

he dynamic interval codewords will achieve the cancellability of 

he bio-key and keep that the bio-key will not being exposed. 
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Table 3 

Comparisons with others in average in FAR, FRR, KRGR, R-New, cost and size. 

Method Biometrics FAR FRR KRGR R-New Cost (ms) Sizes 

Our approach Fingerprint 2.58 7.08 92.92 Yes 51.1 120 ∼ 168 

Sheng’s [11] Signature 0 36.10 63.90 No – 40 

Karimian’s [14] ECG – – 99.75 Yes – 217 ∼ 326 

Moosavi’s (SEF) [15] ECG – – – No 547.5 (diff-CPUs) 128 

Seo’s in Desktop [18] Fingerprint 1.65 5.38 – No 0.018 hash’s size 

Anees’s [20] Face 0.06 10.02 89.98 Yes 23.1 256 

Panchal’s [21] Fingerprint 0.14 0.73 99.27 No ≈ 930 1024 

Panchal’s [22] Fingerprint 0.00 6.48 93.52 Yes 1040.71 1274 
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.4.3. Comparisons with other recent bio-key generation methods 

The two valuable classic metrics for measuring the quality of 

 biometric authentication algorithm are FAR and FRR. Obviously, 

oth FAR and FRR vary with the preset thresholds. But, since what 

e mainly concern here is the bio-key regeneration rate, FAR and 

RR are not very suitable for measuring the regeneration rate. 

owever, our work including the referred key generation methods 

pplied thresholds to determine whether an almost irreversibly 

ransformed binary string generated from an input biometric pat- 

ern matches the previously produced one in the key generation 

rocess, hence, the obtained FAR or FRR may affect or reflect the 

io-key regeneration rate. 

In this subsection, we will compare our approach with other 

ecent valuable work in the aspects including FAR( % ), FRR( % ) and

RGR( % ), R-New, computational cost and the sizes of the generated 

io-keys in average. The renewability means that the generated 

io-key can be renewed by only changing the transform function 

r some related parameters but not the corresponding biometric 

eatures. For example in our approach, we can renew the bio-key 

y changing the (dynamic) interval codewords. 

We have reviewed a lot of work on biometric-based crypto- 

raphic key generation methods, however, quite some of the ref- 

renced literatures did not give the regeneration rates of the bio- 

eys or detailed key generation processes, or only some frame- 

orks about the biometric-based key generations were described. 

Here in our comparison Table 3 , “–” denotes that there is no ex- 

erimental data or results in the corresponding literatures, “547.5 

diff-CPUs)” denotes that 547.5 is the average time cost in the com- 

utational environments of different types of processors, and the 

hash’s size” means that the size is the same as that of the used 

ash function’s value. 

As shown in Table 3 , our approach’s bio-key generation rate is 

igher than that of Sheng et al.’s and Anees et al.’s, while it is 

ower than that of Karimian et al.’s and Panchal et al.’s. Four ap- 

roaches including ours have dynamic bio-key generation mech- 

nisms, that is, their bio-keys can be renewed by changing the 

ransform algorithms or some parameters without extracting or 

nputting a new biometric feature (sample). Our approach costs 

uch less time than Moosavi et al.’s and Panchal et al.’s two ap- 

roaches, while it takes a little more time to generate a bio-key 

han Anees et al.’s and Seo et al.’s in the desktop environment. 

n addition, the size of the generated bio-key by our approach 

s smaller than the sizes of the bio-keys generated by Karimian 

t al.’s, Anees et al.’s, or Panchal et al.’s. 

In addition, compared with Anees et al.’s biometric key gen- 

ration framework, though our approach also needs to store the 

uxiliary data for the bio-key regeneration, it will not expose the 

ngerprint minutiae if the auxiliary data is leaked. While if their 

tored auxiliary perturbation vector P = { ρ1 || ρ2 || · · · || ρ59 } is ille- 

ally disclosed, then the quantized features f ′ 
iq 

may be leaked as 

f ′ 
iq 

= (ρi + 1) mod 8 through ρi = [ ρi, 1 , ρi, 2 , ρi, 3 ] = ( f ′ 
iq 

− 1) mod 8 ,

nd furthermore, some LBP pattern features f i may be exposed 

hrough the inverse operations of the Eqs. (5) –(7) in [20] . As Seo

a

11 
t al. described in their work [18] , that their BB-KDF could derive 

 biometric key in much less time than others, but they assumed 

hat as many minutiae as before could be exacted at the key regen- 

ration stage, and their method’s regeneration rate was not given. 

It is worth mentioning that, for all the bio-key generation ap- 

roaches cited in Table 3 , only our approach has been practically 

xperimented to generate a bio-key. 

Based on the comparisons above, we know that our approach 

rovides a pretty acceptable bio-key regeneration rate and compu- 

ational cost since the user can regenerate his bio-key under the 

aseline probability in a reasonable short time. Note that our ap- 

roach will take much time to extract and process multiple train- 

ng biometric samples from the same input biometric feature to 

btain the more accurate biometric features while the regeneration 

rocedure costs much less time actually. Therefore, we can reduce 

he running time of our approach by controlling the number of the 

raining biometric samples. To generate longer bio-key, we can ex- 

and the size of our bio-key by making some minor changes or 

perations, such as coding the feature interval with longer code- 

ords. In addition, the generated bio-key itself is also renewable 

o that the key can be kept secure enough for cryptographic appli- 

ations. Besides, we can employ or develop a more accurate bio- 

etric (fingerprint) feature extraction algorithm for our approach 

o improve the bio-key regeneration rate. 

However, it must be mentioned, since the biometric key gen- 

ration methods given in our referenced literatures were experi- 

ented in different environments, our comparison table about the 

io-key generation rates and the related cost time may not really 

eflect their performances. 

. Four application scenarios 

Our bio-key generation approach can be considered to be ap- 

lied in the following scenarios. Digital Identity Our bio-key gen- 

ration approach can be applied for identity authentication. A user 

an prove his identity by generating his bio-key since only his 

uccessfully regenerated bio-key from his genuine biometric fea- 

ure can match with his original biometric bio-key. There are two 

dvantages to employ our bio-key generation approach for digital 

dentity: one is that in case a user’s bio-key digital identity is ille- 

ally used by others, he can renew his bio-key identity by chang- 

ng the interval codewords, and the other is that the user’s bio-key 

igital identity will not exposed the user’s real biometric features 

ven if his bio-key would be illegally used by some attacker. Dig- 

tal Wallets In a cryptocurrency or blockchain system, all users 

ust set up their own digital wallets using the wallet systems 

o securely keep their private keys. Currently, almost every digital 

allet needs a user to record a mnemonic word which is consisted 

f at least twelve words and is too long for his memory. Hence, the 

nemonic word should be recorded in a paper, a mobile phone or 

ther physical mediums. Of course, one can choose to keep his pri- 

ate key instead of the corresponding mnemonic word. But for se- 

urity, the private key used in a digital wallet is generally set to be 

 64-bit hexadecimal number with no meaning, and so it should 
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Fig. 14. An application scenario in cloud data encryption using our approach. 
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lso be recorded or stored in a physical medium. Therefore, such 

igital wallet systems are not very convenient for the users who do 

ot trade frequently. We can develop a biometric based digital wal- 

et system which employs our approach to generate a bio-key used 

s a user’s private key. Such biometric private key needs not to be 

ept in the digital wallet since it can be regenerated by extracting 

he user’s biometric features when the user wants to enter his dig- 

tal wallet. In addition, such biometrics-based wallet systems will 

ave us from having to generate mnemonic words. Data Encryp- 

ion Nowadays, a large amounts of data are transmitted on public 

etworks everyday and they are faced with the privacy and secu- 

ity issues. The bio-key generated using our approach is not only 

onvenient for acquisition and recognition but also has the stabil- 

ty and uniqueness which a general digital key or physical identity 

bject does not have for a specified user. Hence, our bio-key gener- 

tion approach can be applied in symmetric encryption algorithms. 

 user can transmit his secret data to the cloud services for secure 

torage or for some cloud computing services by encrypting his 

ata using his unique bio-key without needing to remember any 

assword or worrying about the loss of his private key. The appli- 

ation of our approach in cloud data encryption can be described 

s Fig. 14 . In addition, in case his bio-key becomes compromised, 

e can update his bio-key by changing the codewords of the gen- 

rated intervals. 

ID-based Cryptographic Algorithm In particular, our bio-key 

pproach can be applied for ID-based cryptographical algorithms. 

or example, in an ID-based signature, the bio-key generated by 

ur approach from the signer’s biometric feature can be used as 

is public identity ID bio . The key generation center (KGC) who has 

 master public and secret key pair (mpk, msk ) can use ID bio and

sk to generate the signer’s private key d ID bio 
. Then, the signer can 

se his private key d ID bio 
to make a signature on the message m :

ig bio = Sign (m, d ID bio 
) . Later, any one not only can verify the sig-

ature sig bio using the signer’s ID bio and mpk, but also can simul- 

aneously authenticate the signer’s genuine identity since only the 

igner can generate the identity ID bio from his biometric feature. 

. Conclusion 

In this work, we propose a new biometric bio-key generation 

pproach based on the generated interval scheme with a two-layer 

rror correcting technique. We design and simulate the realization 

nterfaces and made the experimental tests based on the two fin- 

erprint databases. 
12 
Our experiment results prove that this bio-key generation ap- 

roach shows a better security performance and provides an ac- 

eptable bio-key regeneration rate at a low computational cost. The 

io-key size of our approach is adjustable between 120 to 168 bits 

ong for the extracted minutia numbers from 15 to 21, and the fin- 

erprint bio-key regeneration rate is up to 91 . 14% for the database 

VC2004 DB3. However, we can increase the generated bio-key’s 

ize by choosing longer interval codewords or applying some hash 

unction on the bio-key to generate a new bio-key of a larger fixed 

ength. Moreover, the positive effect of the two-layer error cor- 

ecting technique is also tested out and it indeed illustrated that 

his technique can efficiently insure the personal data against some 

npredictable interference occurs during transmission. Finally, we 

ave given four possible practical scenarios in which our biometric 

ey can be applied and hope it can inspire others to some extent. 

However, our approach exists some limitations. Compared with 

he minutia alignment-free method for fingerprint template pro- 

ection presented in [27] , our generated bio-key is constructed by 

rranging the distance intervals which may expose some biomet- 

ic information, but we can set the codewords of the intervals dy- 

amically and isometrically to protect the security of the finger- 

rint and also achieve the cancellability of the fingerprint bio-key. 

esides, we have to extract multiple training image samples of a 

ngerprint to get a stable minutia set and it makes our approach 

ake much time to generate a bio-key. Hence, in our future work, a 

ore precise minutia extraction algorithm is urgently needed to 

e developed for our approach since our bio-key information is 

ainly depended on the extracted minutia information. In addi- 

ion, a formal mathematical security model needs to be set up for 

ryptographic bio-key generation algorithms. Naturally, Our bio- 

ey generation approach on fingerprint is also feasible for other 

iometrics such as finger vein and face. 
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