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A B S T R A C T

With the escalated usage of a biometric authentication system (BAS), template protection for
biometrics attracted research interest in recent years. The assumption behind the existing
homomorphic encryption-based BASs is that the server performs the computations honestly. In
a malicious server setting, the server may return an arbitrary result to save the computational
resources, which may result in false accept/reject. To tackle this challenge, we propose a
secure and verifiable classification based iris authentication system (SvaS). SvaS aims to achieve
both privacy-preserving (PP) training and PP classification of Nearest Neighbor and Multi-class
Perceptron models. The Fan-vercauteren scheme provides confidentiality for the iris templates,
and aggregate verification vector helps to verify the correctness of the computed classification
result. Extensive experimental results on benchmark iris databases demonstrate that SvaS
provides privacy to the iris templates with no loss in accuracy and eliminates the need to trust
the server.

. Introduction

Unlike, password or token authentication systems, a biometric authentication system (BAS) is more flexible for users since they
o not need to carry or remember anything. Fingerprint, iris, face etc. are the commonly used biometric modalities. Biometric
odalities are used to provide security on the Internet of Medical Things based remote health-care systems [1]. The properties like

tability and uniqueness make the iris to be mostly used in various applications when compared to other biometric modalities [2].
The iris recognition system includes two phases, namely the enrollment and identification/verification phases. The iris template

btained from a reference iris image is stored in a centralized server during the enrollment phase. In authentication phase, the
ris template obtained from the probe iris image is compared with the iris templates stored during enrollment phase. As the
iometric data is unique to a person, it is irrevocable if it gets compromised. Studies such as [3], proved that an iris image could
e reconstructed from its template. The unauthorized access to biometric templates results several attacks like hill-climbing attack,
eplay attack, masquerade attack, and stolen-token attack. For instance, in 2018, hackers stole 1 billion Indian user’s biometrics
f Aadhaar. Homomorphic Encryption (HE) is used as a template protection scheme to ensure the privacy & security to iris
emplates [4]. HE is categorized into Partial HE (PHE), Somewhat HE (SHE), and Fully HE (FHE). FHE offers to perform unlimited
ultiplications & additions on the encrypted data. SHE offers to perform a limited number of addition & multiplication on the

ncrypted data. PHE offers to perform either multiplication or addition but not both on the encrypted data.

∗ Corresponding author at: Center for Affordable Technologies, Institute for Development and Research in Banking Technology (IDRBT), Hyderabad, India.
vailable online 23 November 2020
045-7906/© 2020 Elsevier Ltd. All rights reserved.

E-mail address: morampudimahesh@gmail.com (M.K. Morampudi).

ttps://doi.org/10.1016/j.compeleceng.2020.106924
eceived 30 December 2019; Received in revised form 6 August 2020; Accepted 18 November 2020

http://www.elsevier.com/locate/compeleceng
http://www.elsevier.com/locate/compeleceng
mailto:morampudimahesh@gmail.com
https://doi.org/10.1016/j.compeleceng.2020.106924
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2020.106924&domain=pdf
https://doi.org/10.1016/j.compeleceng.2020.106924


Computers and Electrical Engineering 89 (2021) 106924M.K. Morampudi et al.

e
d
k
b
i
(
b
t

c
t
s
w
p
r
b
p
f
s

k
t

a
S
a

The early secure biometric authentication system was designed in an outsourced environment by Sedenka et al. [5]. Haghighat
t al. [6] suggested a biometric verification in a cloud environment. The method used a searching-based matching instead of
istance-based matching. Xiang et al. [7] introduced a secure face recognition with computation in a cloud server by using public
ey encryption & fully homomorphic encryption algorithm. Gomez et al. [8] discussed a template protection approach for multi-
iometric recognition using Paillier method. The final comparison was performed on the unencrypted data by the server; as a result,
ntroduced a breach into the security of the system. A light-weighted encryption scheme named ‘‘Threshold Predicate Encryption
TPE)’’ was proposed by Zhou et al. [9]. A privacy-preserving user-centric biometric authentication system (PassBio) was proposed
y using TPE. Barni et al. [10] introduced a secure multi-modal biometric authentication (‘‘SEMBA’’), which combines face & iris
emplates. The above methods assume that the server is ‘‘Honest-but-curious’’.

Machine learning techniques have been providing useful tools for solving a wide range of problems in multiple domains including
omputer vision, bio-informatics, biometric recognition and many more. Since last decade, machine learning algorithms are used
o detect, segment and recognize the irises effectively. Rai et al. [11] suggested a method to identify the iris patterns by using
upport vector machines (SVM) and Hamming distance. Authors proposed two feature extraction techniques, namely 1D Log Gabor
avelet and Haar wavelet decomposition. An iris recognition system was proposed by Ahmadi et al. [12] to increase generalization
erformance by using particle swarm optimization & multi-layer perceptron (MLP). The authors extended their work in [13] by using
adial basis function (RBF) with a genetic algorithm to reduce the computational complexity. A deep learning model was designed
y Arsalan et al. [14], to determine the exact iris region without pre-processing the eye image. Unlike existing approaches, the
erformance is not affected by non-ideal situations. Zhao & Ajay [15] used fully convolutional network and proposed a framework
or accurate iris detection, segmentation and recognition. Authors developed an ‘‘Extended Triplet Loss (ETL)’’ function to learn the
patially corresponding features of an iris image.

The emergence of machine learning as a service originates the privacy dilemma. According to this dilemma, either the model is
nown to the user or the user’s private data is revealed to the entity, which evaluates the machine-learning model. Training and
esting are the two phases involved in machine learning classification (MLC) task. The algorithm learns a model 𝑤 using a set of

labeled instances in the training phase. A classifier C is run over a new feature vector 𝑥, using the model 𝑤 to output a prediction
C(𝑥, 𝑤). Private machine learning classification (PMLC) is a method, in which both training & testing takes place on encrypted
data. FHE, which supports homomorphic operations on encrypted data without decryption, contributes to MLC without leaking
user privacy, especially in the outsourcing scenario. Recently, various PMLC schemes have been constructed [16,17] which can
perform MLC on encrypted data but fails to attain both Privacy-preserving (PP) training as well as PP classification at the same
time.

Most of the existing BASs based on HE assume a ‘‘Honest-but-Curious’’ server to provide privacy for biometric templates.
Therefore, the existing methods only solve the modify templates attack of BAS and fail to overcome the override comparator attack
of BAS. On the other hand, most of the existing MLC methods on encrypted data provides either PP training or PP classification but
not both. In BAS, it is essential to conduct training & testing on encrypted iris templates to provide the privacy of both iris templates
and the model. Therefore, in this paper we construct a method which do not compromise privacy of templates and provides privacy
and trust to the classification result. The main contributions of our method are listed below:

• We propose a secure and verifiable machine learning-based iris authentication system (SvaS), which performs PP training, PP
classification and eliminates the need to trust the centralized server.

• We propose private nearest neighbor (PNN) and private multi-class perceptron (PMCP) algorithms to perform both training
and classification phases on encrypted data.

• SvaS includes a verification procedure to verify whether the classification result computed by the cloud server is correct or
not. The verification procedure allows a public verifier to validate the result without using the private information of the user.

• SvaS solves the attacks like modify templates, intercept channel and override comparator in BAS.
• We show the effectiveness of SvaS by experimenting it on publicly available benchmark iris databases.

Organization The rest of the paper is organized as follows. Section 2 presents a system to authenticate the user using PNN and
PMCP. Section 3 illustrates the implementation details and experimental results analysis. The conclusion and future scope are given
in Section 4.

2. Secure and verifiable machine learning based iris authentication system using FHE

To the best of our knowledge, SvaS is the first iris authentication system which provides confidentiality of the iris template
s well as trust on the computed result. Table 1 presents the list of notations used in SvaS. Fig. 1 shows the flow diagram of
vaS. The client device, cloud server, authentication server, and public verifier are the four entities involved in SvaS. The role of
uthentication server is to (1) Generate secret (𝛿𝑑) and public (𝛿𝑒) keys. (2) Send accept/reject decision to the client device. The

cloud server provides the classification service & storage to the client device. During the training phase, the cloud server builds a
machine learning model. The end-user is authenticated using the generated model in the testing phase. The false accept/reject may
happen if the cloud server does not perform the computations honestly. So, the correctness of the classification result computed by
the cloud server is verified by the public verifier to avoid false acceptances/rejections. Instead of returning the class label during the
classification phase, PNN classifier returns the Manhattan distances, and PMCP returns the dot product values to the public verifier.
2

Algorithm 1 and Algorithm 2 depicts the steps involved in the enrollment & authentication phases of SvaS.
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Table 1
Notations used in SvaS.

Parameter Description

𝑎, 𝑛, 𝑞 Modulus in the plaintext space, A power of 2, Modulus in the ciphertext space.
𝑥𝑛 + 1 The polynomial modulus which specifies the ring 𝑅.
𝑅 The ring Z[x]/(𝑥𝑛 + 1).
𝑅𝑎 The ring Z𝑎[x]/(𝑥𝑛 + 1) i.e., same as the ring 𝑅 but with coefficient reduced modulo 𝑎.
𝜔 A base into which cipher text elements are decomposed during relinearization.
𝑑 Dimensions of the feature vector i.e., iris template.
𝑁 Number of reference iris templates i.e., training instances.
𝑐 Number of classes i.e., subjects.
𝛿𝑒 , 𝛿𝑑 Public & secret keys.
{𝑋𝑖}𝑁𝑖=1 Reference iris template with 𝑑 dimension.
𝑌 Probe iris template.
{𝑤𝑖}𝑐𝑖=1 Weight vectors.
Enc(𝛿𝑒, 𝑋) The encryption of 𝑋 with 𝛿𝑒.
𝜀(𝑎) Encrypted value of 𝑎.
𝜀(𝑍𝑛+1) Encrypted verification vector generated by authentication server. The dimension of 𝜀(𝑍𝑛+1) is same as reference template.
𝜀(𝑣𝑖) Encrypted random integer.
𝜀(𝑅) Computed Manhattan distances in the case of nearest neighbor (NN) and dot products in the case of multi-class perceptron (MCP).
𝑖𝑑 Identifier of the end-user.
𝑙 Class label of the training instance.

Fig. 1. Block diagram of SvaS. The model is only accessible to the server and the input i.e., iris code is accessible only to the client in both the training and
testing phases.

2.1. Assumptions

SvaS assume the following

1. During the enrollment and authentication phases, the client device is a trusted entity and has limited computational and
memory resources.

2. The cloud server does not perform the computations honestly.
3. The authentication server is a trusted entity which generates the secret & public keys differently for each user. The secret

key of the user is stored securely and the public keys are broadcast to the client device.
4. The public verifier is only trusted to check the correctness of 𝜀(𝑅).
3
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Algorithm 1 Enrollment Phase
Input: Reference iris image, Corresponding class label 𝑙

1: The authentication server generates the public key, 𝛿𝑒 and secret key, 𝛿𝑑 .
2: The client device generates the reference iris template, 𝑋𝑖 from the reference iris image using the University of Salzburg Iris

Toolkit [18].
3: The client device encrypts 𝑋𝑖 and sends 𝜀(𝑋𝑖) along with a class label to the cloud server.
4: The cloud server applies PP training on encrypted reference iris templates 𝜀(𝑋𝑖), 𝑖 ∈ [1, 𝑁] using PMCP or PNN and generates a

model.
5: The cloud server sends the model parameters of PMCP, 𝜀(𝑤[𝑓 ]), 𝑓 ∈ [1, 𝑐] i.e., weight vectors and parameters of PNN, 𝜀(𝑋𝑖),

𝑖 ∈ [1, 𝑁] to authentication server.
6: The authentication server generates the encrypted verification vector, 𝜀(𝑍𝑛+1), encrypted random vector, 𝜀(𝑉 ) separately for

each classifier using the model parameters.

Algorithm 2 Authentication Phase
Input: Probe iris image, Identifier or class label 𝑖𝑑 of the end user
Output: Reject or Accept

1: The authentication server send the 𝜀(𝑍𝑛+1) & 𝜀(𝑉 ) to the public verifier.
2: The client device generates the probe iris template, 𝑌 from the probe iris image using the University of Salzburg Iris Toolkit

[18]. It also acquires the identifier 𝑖𝑑 of the end-user and sends 𝑖𝑑 to the authentication server.
3: The client device encrypts 𝑌 and sends 𝜀(𝑌 ) to the cloud server.
4: The cloud server calculate the classification result, 𝜀(𝑅) and send to the public verifier. (Instead of returning the class label,

PNN returns the encrypted Manhattan distance between 𝜀(𝑌 ) and 𝜀(𝑋𝑖) and PMCP returns the dot products between 𝜀(𝑌 ) and
𝜀(𝑤[𝑖]), 𝑖 ∈ [1, 𝑐]).

5: The public verifier checks the correctness of the computed result 𝜀(𝑅) by using 𝜀(𝑍𝑛+1), 𝜀(𝑉 ), 𝜀(𝑌 ) and sends the verification
result to authentication server.

6: If the verification succeeds, then the authentication server computes the predicted class label and compares with 𝑖𝑑 given by
the end-user to determine whether the user is genuine or not.

Fig. 2. Comparison of accuracy between iris code of sizes 10 240, 2560, 1280 and 640 for MCP and NN.

2.2. Generation of iris codes and encryption

Compression of iris codes and encryption are the two phases involved in this section. The compression of the iris code phase
helps to reduce the size of the iris templates results in the improvement of the system performance. The compressed iris code is
encoded into polynomials, and encoded polynomial is encrypted in ensuring the confidentiality of iris templates (encryption) phase.

2.2.1. Compression of the iris template
The size of the iris template determines the performance of the system. So, the 10 240-bit binary vector is grouped into blocks

of size 𝑚 by using Eq. (1). 𝑚 denotes the size of the block, and we consider 4, 8, and 16 as 𝑚 values. These 𝑚-bits are converted to
decimal values and stored in a vector. Each integer value is further divided by 2 to obtain the binary vector. The 2560 integers are
replaced with binary values.

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑟𝑖𝑠 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 𝑠𝑖𝑧𝑒 =
𝑇 𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑏𝑖𝑡𝑠 (1)
4
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The accuracies obtained for the original iris template and different sizes of iris template are shown in Fig. 2. From Fig. 2, it is
observed that there is a slight variation of accuracy between the actual iris code and compressed iris template of size 2560 for both
MCP and NN. Hence, SvaS considers the compressed iris template as a feature vector instead of the original iris template.

2.2.2. Ensuring the confidentiality of iris templates
The compressed iris templates are encoded with a polynomial ring 𝑅𝑎 using Batching scheme [19] results in the performance

improvement of homomorphic multiplication & addition. The encoded polynomial is encrypted using the Brakerski Fan–Vercuateran
(BFV) scheme [19] to ensure the confidentiality of iris templates and to perform computations on the encrypted data.

2.3. Secure and verifiable machine learning classification

The procedures to implement the NN & MCP on the encrypted data is described in this section. The advantage of PNN and PMCP
is that they provide privacy not only to the iris templates but also to the model by performing both PP training and PP classification.
The model is only accessible to the server, and the training & test instances are only accessible to the client device.

2.3.1. Private nearest neighbor (PNN)
The aim of PNN is to achieve NN on encrypted templates. Instead of returning the class label, PNN returns the Manhattan

distances between 𝜀(𝑋𝑖) and 𝜀(𝑌 ).

𝑅 = {𝑟𝑖∕𝑟𝑖 =
𝑑
∑

𝑗=1
(𝑋𝑖[𝑗] − 𝑌 [𝑗]),∀ 𝑖 = 1 𝑡𝑜 𝑁} (2)

The server does not learn either 𝜀(𝑋𝑖) or 𝜀(𝑌 ). In particular, we show how the server can execute Eq. (2) when both the training and
testing instances are encrypted. The detailed procedure to find the NN on encrypted data is illustrated in Algorithm 3. The inputs to
the PNN are the encrypted reference templates, corresponding class labels and encrypted probe template, respectively. PNN returns
the Manhattan distances, 𝜀(𝑅) between 𝜀(𝑋𝑖) and 𝜀(𝑌 ) as an output which is given in Eq. (3).

𝜀(𝑅) = {𝑟𝑖∕𝑟𝑖 = (𝜀(𝑋𝑖) − 𝜀(𝑌 )),∀ 𝑖 = 1 𝑡𝑜 𝑁} (3)

Since both the reference and the probe templates are encrypted, the privacy of iris templates, i.e., user privacy is maintained.

Algorithm 3 Nearest Neighbor on Encrypted data (𝑃𝑁𝑁)
Input: 𝜀(𝑋1), 𝜀(𝑋2), . . . , 𝜀(𝑋𝑁 ), Corresponding class labels 𝑐𝑙𝑠1, 𝑐𝑙𝑠2, . . . , 𝑐𝑙𝑠𝑁 , 𝜀(𝑌 )
Output: 𝜀(𝑅)

1: begin
2: for 𝑖 ← 1 to 𝑁 do
3: 𝑟𝑖 ← 𝑠𝑢𝑏(𝜀(𝑋𝑖), 𝜀(𝑌 ))
4: for 𝑗 ← 0 to 𝑝 do // where 𝑝 = 𝑙𝑜𝑔𝑞𝑤
5: 𝑟𝑖 ← 𝑟𝑖 + 𝑘𝑔𝑗 (𝑟𝑖)
6: end for
7: 𝑟𝑖 ← 𝑟𝑖
8: end for
9: 𝜀(𝑅) = (𝑟1, 𝑟2, ....., 𝑟𝑁 )

10: return 𝜀(𝑅)
11: end

Let 𝜀(𝑋𝑖) and 𝜀(𝑌 ) are the encrypted vectors. The aim is to achieve Eq. (3) i.e., find the Manhattan distances between 𝜀(𝑋𝑖)
nd 𝜀(𝑌 ) without decryption. 𝑟𝑖 is the variable to store the subtracted result of 𝑖th encrypted reference template, 𝜀(𝑋𝑖) and probe
emplate, 𝜀(𝑌 ). To improve the performance of the system, we used batching as the encoding scheme before encrypting the reference
nd probe templates. Hence, with the computational cost of just one operation, we can accomplish 𝑑 homomorphic subtractions.
he disadvantage of batching is that it is not possible to access the individual values of the encrypted vector. Hence, it restricts to
ompute the sum of elements after the subtract operation (Eq. (2)). This problem can be solved by using the observation made by
entry 𝑒𝑡 𝑎𝑙. [20], particularly, it is likely to rotate the encrypted vectors cyclically without decryption. As a result, if the encrypted
ectors are rotated cyclically and adding the encrypted vectors 𝑝 = 𝑙𝑜𝑔𝑞𝑤 times then the first slot of the resultant vector gives the
um value. The steps (4–6) of Algorithm 3 describes the process of cyclically rotating and adding the 𝑟𝑖. This operation is explained
ith an example in Fig. 3. The 𝑖th Manhattan result is stored in 𝑟𝑖. The steps (3–7) of Algorithm 3 repeat for 𝑁 reference templates
ields 𝑁 Manhattan distances which are assigned to 𝜀(𝑅). The cloud server computes the Manhattan distance on the encrypted data;
s a result, the privacy of the iris templates is achieved. If the cloud server did not perform the Manhattan distance honestly and
eturn a random result to minimize the use of its computational resources, then the imposter may get access into the system. To
5

vercome this limitation, the public verifier checks the correctness of the result returned by the cloud server.
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Fig. 3. Homomorphic computation of Manhattan distance between vectors when vectors are encoded using batching scheme.

2.3.2. Verification scheme for nearest neighbor
The cloud server computes the Manhattan distances 𝜀(𝑅) = 𝑟𝑖,∀ 𝑖 = 1 𝑡𝑜 𝑁 between 𝜀(𝑋𝑖) ∀ 𝑖 = 1 𝑡𝑜 𝑁 and 𝜀(𝑌 ). The verification

scheme allows the public verifier to check the correctness of 𝜀(𝑅) returned by the cloud server.

Generation of encrypted verification vector: After the enrollment phase, the authentication server constructs the encrypted
verification vector using the encrypted reference iris templates 𝜀(𝑋𝑖),∀ 𝑖 = 1 𝑡𝑜 𝑁 . The encrypted verification vector helps the
public verifier to check the correctness of the Manhattan distances. Let 𝜀(𝑍𝑛+1) be the encrypted verification vector and is defined
as

𝜀(𝑍𝑛+1) = (𝜀(𝑋1) − 𝜀(𝑣1)) + (𝜀(𝑋2) − 𝜀(𝑣2)) +… . + (𝜀(𝑋𝑁 ) − 𝜀(𝑣𝑁 ))

=
𝑁
∑

𝑖=1
(𝜀(𝑋𝑖) − 𝜀(𝑣𝑖))

(4)

where, 𝑣𝑖 ∀ 𝑖 = 1 𝑡𝑜 𝑁 is the random integer and 𝜀(𝑉 ) = (𝜀(𝑣1), 𝜀(𝑣2),… , 𝜀(𝑣𝑁 )). As long as the secret key is secure, encrypted
verification vector is also secure and its security relies on the hardness of Ring Learning With Errors (RLWE).

Ensuring the correctness of Manhattan distance: The public verifier checks the correctness of Manhattan distances, 𝜀(𝑅) using
𝜀(𝑍𝑛+1), 𝜀(𝑌 ) and 𝜀(𝑉 ). Our verification scheme checks the correctness of the result on the encrypted data itself; as a result,
anyone can perform the correctness of 𝜀(𝑅) without the secret key. The public verifier computes 𝜀(𝐷1) = (𝜀(𝑍𝑛+1) − 𝑁𝜀(𝑌 )) and
𝜀(𝐷2) =

∑𝑁
𝑖=1(𝑟𝑖 − 𝜀(𝑣𝑖)). Finally, compute (𝜀(𝐷1) − 𝜀(𝐷2)). If the result is zero, the Manhattan distances 𝜀(𝑅) returned by the cloud

server is considered to be correct. The below proof uses Eqs. (3), (4) and some algebraic properties of vectors and explains how
𝜀(𝐷1) and 𝜀(𝐷2) are same. If the verification succeeds then the Manhattan distances 𝜀(𝑅) are considered to be correct. So, the
authentication server finds the predicted class by computing the index of the minimum value among 𝜀(𝑅). The computed predicted
class is compared with 𝑖𝑑 given by the end-user to determine whether the user is genuine or not.

𝜀(𝐷1) = (𝜀(𝑍𝑛+1) −𝑁𝜀(𝑌 ))

=
𝑁
∑

𝑖=1
(𝜀(𝑋𝑖) − 𝜀(𝑣𝑖)) −𝑁𝜀(𝑌 )

=
𝑁
∑

𝑖=1
𝜀(𝑋𝑖) −

𝑁
∑

𝑖=1
𝜀(𝑣𝑖) −𝑁𝜀(𝑌 )

=
𝑁
∑

𝑖=1
𝜀(𝑋𝑖) −𝑁𝜀(𝑌 ) −

𝑁
∑

𝑖=1
𝜀(𝑣𝑖)

=
𝑁
∑

𝑖=1
𝜀(𝑋𝑖) −

𝑁
∑

𝑖=1
𝜀(𝑌 ) −

𝑁
∑

𝑖=1
𝜀(𝑣𝑖)

=
𝑁
∑

𝑖=1
(𝜀(𝑋𝑖) − 𝜀(𝑌 )) −𝑁𝜀(𝑣𝑖)

=
𝑁
∑

𝑖=1
𝑟𝑖 −

𝑁
∑

𝑖=1
𝜀(𝑣𝑖)

=
𝑁
∑

𝑖=1
(𝑟𝑖 − 𝜀(𝑣𝑖)) = 𝜀(𝐷2)

2.3.3. Private multi-class perceptron (PMCP)
The aim of PMCP is to achieve MCP on encrypted templates. Instead of returning the class label, PMCP returns the dot products

between 𝜀(𝑤𝑖),∀ 𝑖 = 1 𝑡𝑜 𝑐 and 𝜀(𝑌 ).

𝜀(𝑅) = {𝑟 ∕𝑟 = 𝜀(𝑌 ).𝜀(𝑤[𝑖]),∀ 𝑖 = 1 𝑡𝑜 𝑐} (5)
6
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Fig. 4. Homomorphic computation of dot product between vectors when vectors are encoded with batching scheme.

Training (PMCP:training) and classification (PMCP:classification) are the two phases involved in PMCP. Algorithm 4 describes
the training phase of MCP on encrypted templates i.e., PMCP:training. The PMCP:training takes the class labels of iris templates,
encrypted reference iris templates, iterations T (not encrypted) and Bias as inputs and returns the encrypted weight vectors as an
output. The process during training phase is explained below. Let 𝜀(𝑋1), 𝜀(𝑋2), . . . , 𝜀(𝑋𝑁 ) are the encrypted reference templates.
The PMCP requires multiple training iterations to fully learn the model. During each iteration, the 𝑗th encrypted reference template
is multiplied with each unique weight vector and stores in 𝑐𝑡. As explained in Section 2.3.1, the problem with batching occurs here
as well while performing the sum of the elements after the multiplication. The problem can be solved by the process of cyclically
rotated and adding the encrypted vectors [20]. The steps (20–22) of Algorithm 4 describes the process of cyclically rotating and
adding the 𝑐𝑡. The element in the first slot is the desired product. This operation is explained with an example in Fig. 4. The class
of the 𝑗th encrypted template is the class that gives the highest product result. If the calculated class, 𝑝_𝑐𝑙𝑠 and the actual class, 𝑐𝑙𝑠𝑗
of the 𝑗th encrypted reference template are not equal then the weight vector is updated as follows: feature vector, 𝜀(𝑋𝑗 ) is added to
the actual weight vector, 𝜀(𝑤[𝑐𝑙𝑠𝑗 ]) and subtracted from the predicted weight vector, 𝜀(𝑤[𝑝_𝑐𝑙𝑠𝑗 ]). After the final iteration, the final
encrypted weight vectors should be stable.

The detailed procedure to achieve 𝜀(𝑅) is given in Algorithm 6. The inputs to the PMCP:classification are the encrypted probe
template 𝜀(𝑌 ) and encrypted weight vectors 𝜀(𝑤[𝑖]),∀ 𝑖 = 1 𝑡𝑜 𝑐 respectively. PMCP:classification returns the dot product 𝜀(𝑅)
between weight vectors and 𝜀(𝑌 ) as an output which is given in Eq. (5). In Algorithm 6, 𝑟𝑖 stores the multiplication result of 𝜀(𝑌 )
and 𝜀(𝑤[𝑖]),∀ 𝑖 = 1 𝑡𝑜 𝑐. As explained in Section 2.3.1, the problem with batching occurs here as well while performing the sum
of the elements after the multiplication. The problem can be solved by the process of cyclically rotated and adding the encrypted
vectors [20]. The steps (4–6) of Algorithm 6 describes the process of cyclically rotating and adding the 𝑟𝑖. The element in the first
slot is the desired dot product. This operation is explained with an example in Fig. 4.

Homomorphic Comparison Protocol The procedure to compare two encrypted values without decryption is given in Algorithm
5. The 𝑔th bit, 𝑏𝑔 of 𝑏 is the comparison result, where 𝑔 = 𝑙𝑜𝑔2𝑎 + 1 returned to the cloud server. If 𝑏𝑔 = 0 then 𝑚1 < 𝑚2 otherwise
𝑚1 ≥ 𝑚2.

The cmpsn protocol is secure because the protocol returns only one bit to the cloud server. Therefore, even in an attack scenario,
the cloud server can only learn at most one single bit of the secret key. On the other hand, each time cmpsn protocol is invoked by
PMCP:training protocol, the authentication server uses a new secret key. So, there will not exist any leakage of secret keys to the
cloud server.

The steps (3–7) of Algorithm 6 repeats for 𝑐 times yields 𝑐 dot products which are assigned to 𝜀(𝑅). The advantage of our method
is that the server is unable to learn any information about the user’s private data, i.e., reference templates or probe template as they
are encrypted and the client device is not able to learn the information about the model parameters, i.e., weight vectors. Hence
the privacy of both client device and model are preserved. The cloud server computes the dot products on the encrypted data; as a
result, the privacy of the iris templates is achieved. If the cloud server did not perform the dot product result honestly and return a
random result to minimize the use of its computational resources, then imposter may get access into the system. To overcome this
limitation, the public verifier checks the correctness of the result returned by the cloud server.

2.3.4. Verification scheme for multi-class perceptron
The cloud server computes the dot products 𝜀(𝑅) = 𝑟𝑖, ∀ 𝑖 = 1 𝑡𝑜 𝑐 between encrypted weight vectors 𝜀(𝑤[𝑖]) ∀ 𝑖 = 1 𝑡𝑜 𝑐 and

encrypted probe template 𝜀(𝑌 ). The verification scheme allows the public verifier to check the correctness of 𝜀(𝑅) returned by the
cloud server.

Generation of encrypted verification vector: After the enrollment phase, the authentication server constructs the encrypted
verification vector using the weight vectors 𝜀(𝑤[𝑖]),∀ 𝑖 = 1 𝑡𝑜 𝑐 returned by the cloud server. The encrypted verification vector
helps the public verifier to check the correctness of the dot product results.

Let 𝜀(𝑍𝑛+1) be the encrypted verification vector and is defined as

𝜀(𝑍𝑛+1) = 𝜀(𝑤[1]).𝜀(𝑣1) + 𝜀(𝑤[2]).𝜀(𝑣2) +⋯ . + 𝜀(𝑤[𝑐]).𝜀(𝑣𝑐 )

=
𝑐
∑

(𝜀(𝑤[𝑖]).𝜀(𝑣𝑖))
(6)
7
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Algorithm 4 Perceptron for multi-class classification on encrypted data (PMCP:training)
Input: 𝜀(𝑋1), 𝜀(𝑋2), . . . , 𝜀(𝑋𝑁 ), Corresponding class labels 𝑐𝑙𝑠1, 𝑐𝑙𝑠2, . . . ,𝑐𝑙𝑠𝑁 , Iteration number T (Not Encrypted), BIAS=1

(Not Encrypted)
Output: The encrypted weight vectors for each class, 𝜀(𝑤[𝑖]) where 𝑖 ranges from 1 to 𝑐

1: begin
2: for 𝑖 ← 1 to 𝑐 do
3: 𝑐𝑙𝑎𝑠𝑠𝑒𝑠[𝑖] ← 𝑖
4: end for
5: for 𝑖 ← 1 to 𝑐 do
6: for 𝑗 ← 1 to 𝑑+1 do
7: 𝑤𝑖,𝑗 ← 1
8: end for
9: end for

10: for 𝑖 ← 1 to 𝑐 do
11: 𝜀(𝑤[𝑖]) ← 𝐸𝑛𝑐(𝑤𝑖, 𝛿𝑒) //Batch Encryption of weight vectors
12: end for
13: for 𝑇 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
14: for 𝑗 ← 1 to 𝑁 do
15: 𝑎𝑟𝑔_𝑚𝑎𝑥 ← 0
16: 𝑝_𝑐𝑙𝑠 ← 𝑐𝑙𝑎𝑠𝑠𝑒𝑠[0]
17: 𝜀(𝑎𝑟𝑔_𝑚𝑎𝑥) ← 𝐸𝑛𝑐(𝑎𝑟𝑔_𝑚𝑎𝑥, 𝛿𝑒)
18: for 𝑖 ← 1 to 𝑐 do
19: 𝑐𝑡 ← 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝜀(𝑥𝑗 ), 𝜀(𝑤[𝑖]))
20: for 𝑘 ← 0 to 𝑝 do // where 𝑝 = 𝑙𝑜𝑔𝑞𝑤
21: 𝑐𝑡 ← 𝑐𝑡 + 𝑘𝑔𝑘 (𝑐𝑡)
22: end for //The element in the first slot is the desired dot product result
23: 𝑏𝑧 ← 𝑐𝑚𝑝𝑠𝑛(𝑐𝑡, 𝜀(𝑎𝑟𝑔_𝑚𝑎𝑥))
24: if 𝑏𝑧 = 1 then
25: 𝜀(𝑎𝑟𝑔_𝑚𝑎𝑥) ← 𝑐𝑡
26: 𝑝_𝑐𝑙𝑠 ← 𝑖
27: end if
28: end for
29: if 𝑐𝑙𝑠𝑗 ≠ 𝑝_𝑐𝑙𝑠 then
30: 𝜀(𝑤[𝑐𝑙𝑠𝑗 ]) ← 𝑎𝑑𝑑(𝜀(𝑤[𝑐𝑙𝑠𝑗 ]), 𝜀(𝑥𝑗 ))
31: 𝜀(𝑤[𝑝_𝑐𝑙𝑠𝑗 ]) ← 𝑠𝑢𝑏(𝜀(𝑤[𝑝_𝑐𝑙𝑠𝑗 ]), 𝜀(𝑥𝑗 ))
32: end if
33: end for
34: end for
35: end

Algorithm 5 Homomorphic Comparison (cmpsn)
Procedure 𝑐𝑚𝑝𝑠𝑛(𝐶1, 𝐶2)

Input: Ciphertexts 𝐶1, 𝐶2
Output: 𝑏𝑔

1: begin
2: Compute 𝐶𝑏 = 𝐶𝑎 + 𝐶1 − 𝐶2 //𝐶𝑎 is the encrypted value of 𝑎
3: 𝑏 = 𝐷𝑒𝑐(𝛿𝑑 , 𝐶𝑏)
4: return 𝑏𝑔 //𝑏𝑔 is the 𝑔𝑡ℎ bit of 𝑏, where 𝑔 = log2 𝑎 + 1
5: end

where, 𝑣𝑖 ∀ 𝑖 = 1 𝑡𝑜 𝑐 are the random integers and 𝜀(𝑉 ) = (𝜀(𝑣1), 𝜀(𝑣2),… , 𝜀(𝑣𝑐 )). As long as the secret key is secure, encrypted
verification vector is also secure and its security relies on the hardness of RLWE.

Ensuring the correctness of dot product: The public verifier checks the correctness of dot products 𝜀(𝑅) using 𝜀(𝑍𝑛+1), 𝜀(𝑌 ) and
(𝑉 ). Our verification scheme checks the correctness of the result on the encrypted data itself as a result anyone can perform the
orrectness of the 𝜀(𝑅) without the private information. The public verifier computes 𝜀(𝐷1) = 𝜀(𝑍𝑛+1).𝜀(𝑌 ) and 𝜀(𝐷2) =

∑𝑐
𝑖=1(𝑟𝑖.𝜀(𝑣𝑖)).

inally, compute (𝜀(𝐷1) − 𝜀(𝐷2)). If the result is zero, then the dot product values 𝜀(𝑅) returned by the cloud server is considered
8

o be correct. Eq. (7) uses Eq. (5), Eq. (6) and some algebraic properties of vectors and explains how 𝜀(𝐷1) and 𝜀(𝐷2) are same.
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Algorithm 6 Perceptron for Multi-class Classification on encrypted data (PMCP:classification)
Input: 𝜀(𝑌 ), 𝜀(𝑤[𝑖]) from training phase where 𝑖 ranges from 1 to 𝑐
Output: 𝜀(𝑅)

1: begin
2: for 𝑖 ← 1 to 𝑐 do
3: 𝑟𝑖 ← 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝜀(𝑌 ), 𝜀(𝑤[𝑖]))
4: for 𝑗 ← 0 to 𝑝 do // where 𝑝 = 𝑙𝑜𝑔𝑞𝑤
5: 𝑟𝑖 ← 𝑟𝑖 + 𝑘𝑔𝑗 (𝑟𝑖)
6: end for //The element in the first slot is the desired dot product result
7: 𝑟𝑖 ← 𝑟𝑖
8: end for
9: 𝜀(𝑅) = (𝑟1, 𝑟2, ....., 𝑟𝑐 )

10: return 𝜀(𝑅)
11: end

If the verification succeeds then the dot products 𝜀(𝑅) are correct. So, the authentication server computes the predicted class by
computing the index of the maximum value among 𝜀(𝑅). The computed predicted class is compared with 𝑖𝑑 given by the end user
to determine whether the user is genuine or not.

𝜀(𝐷1) = 𝜀(𝑌 ).𝜀(𝑍𝑛+1)

= 𝜀(𝑌 ).
𝑐
∑

𝑖=1
(𝜀(𝑤[𝑖]).𝜀(𝑣𝑖))

=
𝑐
∑

𝑖=1
(𝜀(𝑤[𝑖]).𝜀(𝑌 ).𝜀(𝑣𝑖))

=
𝑐
∑

𝑖=1
𝜀(𝑣𝑖).(𝜀(𝑤[𝑖]).𝜀(𝑌 ))

=
𝑐
∑

𝑖=1
𝜀(𝑣𝑖).𝑟𝑖

= 𝜀(𝐷2)

(7)

3. Implementation details and security analysis

The following measures are used to evaluate the efficiency of a biometric system according to biometric information protection.1

1. Performance evaluation in terms of Equal Error Rate (EER), d-prime and KS-test.
2. Irreversibility and Unlinkability Analysis.
3. Computational cost.

3.1. Performance evaluation

Test Environment: We have compiled PNN and PMCP using Python 3.5.2 on Ubuntu 14.04 system. To validate the methods, we
ran the experiments on a system with a 2.40 GHz Intel i7 processor & 16 GB RAM.

Experimental Setup: The University of Salzburg tool kit [18] is used in SvaS to extract the iris template from the human eye. SvaS
considers the right & left eye images of the same person as different subjects due to the dissimilarity of patterns between them.
CASIA-V 1.0 consists of 108 subjects with 7 samples each. The CASIA-V3-Interval consists of 165 subjects of the right eye & 172
subjects of the left eye, each having five samples. The first five samples out of 10 samples in IITD & SDUMLA-HMT databases are
considered. We performed multiple experiments with 40%–60% (S1), 60%–40% (S2) and 80%–20% (S3) training–testing partitions
respectively.

Classification Accuracy: The classification accuracy of SvaS with PNN & PMCP for CASIA-V 1.0, CASIA-V3-Interval, IITD and
SDUMLA-HMT with S1, S2 & S3 are shown in Fig. 5. The comparison of accuracy between protected & unprotected templates of
SvaS for different databases when train–test split ratio is 60–40 is shown in Fig. 6. From Fig. 6, we infer that there is no degradation of
accuracy between unprotected & protected templates in SvaS. Measures like EER, d-prime and KS-test are also considered to validate
the efficiency of SvaS. KS-test and d-prime values are calculated to identify the separability of genuine and imposter scores. Fig. 7,

1 https://www.iso.org/standard/52946.html.
9
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Fig. 5. Accuracy of SvaS (PMCP & PNN with different train–test split ratio) obtained for (a) CASIA-V 1.0 (b) CASIA-V3-Interval (c) IITD (d) SDUMLA-HMT iris
databases.

Fig. 8 shows the EER, d-prime, KS-test obtained for different databases of iris template with size 2560. The imposter and genuine
scores are well separated if the d-prime value is larger. The range of KS-test value lies between 0 and 1. The imposter and genuine
scores are well separated if KS-test value is closer to 1.

The statistical significant tests such as McNemar’s test and paired T-test are considered to show the significance of MCP and NN
ith other classifiers such as Support Vector Machines (SVM), Decision Tree (DT), Random Forest (RF), and Naive Bayes (NB). The
cNemar’s and paired T-test values for different databases are given in Table 2. From Table 2, we can infer that the p-values are
ell below the accepted significance level of 0.05 except for SVM, which indicates that the performance improvement of MCP and
N over DT, NB and RF are statistically significant.

.2. Security analysis

The template protection method must satisfy the requirements of irreversibility, revocability and unlinkability to ensure the
rivacy of the iris templates. The vulnerability of attacks in SvaS may happen in the entries namely, the cloud server, the client device,
he communication channel between the cloud server and the client device, the authentication server, the public verifier. The features of
he iris image is extracted by the client device. So, security is to be ensured for the client device. Since, SvaS assume the client
evice is a trusted entity, the features of iris image are secure. The authentication server generates the secret and public keys. SvaS
ssume that the authentication server is also a trusted entity. Since the security of SvaS depends on the apparent hardness of RLWE
roblem, the iris templates stored in the server database are secure. It is difficult to decrypt the encrypted iris templates without
he secret key. As a result, the communication channel is also reliable.

rreversibility Analysis: Irreversibility refers to obtaining the original template from the encrypted template. The client device
ends the encrypted reference templates to the cloud server during the enrollment phase, and encrypted probe iris template of a
ser to the server for classification result. The server classifies the encrypted probe template and returns the encrypted classification
esult to the authentication server. As the SvaS uses BFV scheme to protect the templates, and the security of BFV scheme relies on
10
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Fig. 6. Comparison of accuracy between protected and unprotected templates for a) MPC and b) NN; DB1: CASIA-V 1.0, DB2: CASIA-V3-Interval, DB3: IITD
and DB4: SDUMLA-HMT.

Fig. 7. EER, d-prime and KS-test for benchmark iris databases using NN.
11
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Fig. 8. EER, d-prime and KS-test for benchmark iris databases using MCP.

Table 2
Statistical significance results for SvaS.

Model-1 vs.
Model-2

CASIA-V 1.0 CASIA-V3-Interval IITD SDUMLA-HMT

T-value p-value T-value p-value T-value p-value T-value p-value

Paired
T-test

MCP vs. DT 14.32 .0009 11.32 .009 10.95 .004 12.84 .001
MCP vs. SVM .95 .3782 .68 .824 .64 .956 .75 .529
MCP vs. NB 5.72 .00359 3.89 .00986 3.12 .00994 4.24 .00924
MCP vs. RF 75.24 9.3e−05 72.58 8.2e−04 71.38 9.8e−04 73.82 3.2e−04
NN vs. DT 40.24 3.4e−08 31.36 .00001 15.24 .00001 35.82 1.2e−06
NN vs. SVM 3.25 .00924 .95 .3782 1.42 .12594 1.25 .16324
NN vs. NB 7.24 .000527 3.64 .00659 7.52 .00072 5.72 .003529
NN vs. RF 37.89 6.9e−07 30.54 .00001 79.24 2.3e−12 34.24 3.2e−06

𝜒2-value p-value 𝜒2-value p-value 𝜒2-value p-value 𝜒2-value p-value

McNemar’s
test

MCP vs. DT 89.24 3.24e−21 86.24 1.2e−20 85.98 5.4e−20 87.24 8.23e−21
MCP vs. SVM 1.4 .2892 .8 .4231 .73 .548 .9 .3924
MCP vs. NB 25.32 5.39e−06 23.52 9.24e−06 22.89 1.89e−05 24.89 7.82e−06
MCP vs. RF 108.59 8.34e−29 106.32 8.24e−28 105.18 1.48e−27 107.24 3.9e−28
NN vs. DT 87.48 1.89e−20 80.01 3.72e−19 104.01 9.34e−25 84.23 2.52e−19
NN vs. SVM 2.9 .0924 .5 .4795 .3 .6248 1.4 .2892
NN vs. NB 14.24 .00048 8.47 .00361 29.45 7.38e−08 11.32 .000952
NN vs. RF 84.24 2.35e−19 75.11 4.45e−18 140.01 3.54e−32 80.01 3.72e−19

Table 3
Security and timing parameters for PMCP and PNN.

Security
(𝜆)

𝑑 No FHE
time (s)

Parameters Time with Batching scheme (s) Time without Batching scheme (s)

𝑛 𝑞
(bits)

𝑎 Enc Score Dec Total Enc Score Dec Total

PMCP

128-bit
640 0.16 1024 29 40 961 0.003 1.19 0.0008 1.1938 2.688 482.2615 0.64 485.59
1280 0.3 2048 56 40 961 0.005 2.1 0.0018 2.1068 5.376 964.5250 1.28 971.181
2560 0.38 4096 110 40 961 0.011 4.13 0.0038 4.1448 12.544 1929.0498 4.096 1945.690

192-bit
640 0.16 1024 20 40 961 0.004 1.21 0.0009 1.2149 2.688 483.2615 0.768 486.7175
1280 0.3 2048 39 40 961 0.005 2.2 0.0016 2.2066 5.504 964.825 1.664 971.993
2560 0.38 4096 77 40 961 0.013 4.15 0.0040 4.167 12.8 1930.212 4.096 1947.108

PNN

128-bit
640 0.15 1024 29 40 961 0.003 2.24 0.0008 2.2438 2.688 680.393 0.64 683.721
1280 0.27 2048 56 40 961 0.005 4.4 0.0018 4.4068 5.376 1360.786 1.28 1367.442
2560 0.52 4096 110 40 961 0.011 13.3 0.0038 13.3148 12.544 2721.603 4.096 2738.243

192-bit
640 0.15 1024 20 40 961 0.004 2.12 0.0009 2.1249 2.688 681.3421 0.768 684.849
1280 0.27 2048 39 40 961 0.005 4.4 0.0016 3.4666 5.504 1360.796 1.664 1367.964
2560 0.52 4096 77 40 961 0.013 13.71 0.0040 13.727 12.8 2722.603 4.096 2739.499
12
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Table 4
Baseline comparison (Iris template is of 1 × 2560 dimension).

Database Template type Accuracy (%) 𝐸𝐸𝑅 (%) Time

CASIA-V 1.0

Classification using MCP on unprotected iris templates 94.44 1.17 0.38
Classification using PMCP on protected iris templates with 𝜆 = 128-bit 94.44 1.17 4.1448
Classification using PMCP on protected iris templates with 𝜆 = 192-bit 94.44 1.17 4.167
Classification using NN on unprotected iris templates 98.81 0.87 0.52
Classification using PNN on protected iris templates with 𝜆 = 128-bit 98.81 0.87 13.3148
Classification using PNN on protected iris templates with 𝜆 = 192-bit 98.81 0.87 13.727

CASIA-V3-Interval

Classification using MCP on unprotected iris templates 91.52 1.32 0.38
Classification using PMCP on protected iris templates with 𝜆 = 128-bit 91.52 1.32 4.1448
Classification using PMCP on protected iris templates with 𝜆 = 192-bit 91.52 1.32 4.167
Classification using NN on unprotected iris templates 98.12 0.95 0.52
Classification using PNN on protected iris templates with 𝜆 = 128-bit 98.12 0.95 13.3148
Classification using PNN on protected iris templates with 𝜆 = 192-bit 98.12 0.95 13.727

IITD

Classification using MCP on unprotected iris templates 90.89 1.38 0.38
Classification using PMCP on protected iris templates with 𝜆 = 128-bit 90.89 1.38 4.1448
Classification using PMCP on protected iris templates with 𝜆 = 192-bit 90.89 1.38 4.167
Classification using NN on unprotected iris templates 97.35 1.02 0.52
Classification using PNN on protected iris templates with 𝜆 = 128-bit 97.35 1.02 13.3148
Classification using PNN on protected iris templates with 𝜆 = 192-bit 97.35 1.02 13.727

SDUMLA-HMT

Classification using MCP on unprotected iris templates 92.26 1.24 0.38
Classification using PMCP on protected iris templates with 𝜆 = 128-bit 92.26 1.24 4.1448
Classification using PMCP on protected iris templates with 𝜆 = 192-bit 92.26 1.24 4.167
Classification using NN on unprotected iris templates 98.68 0.92 0.52
Classification using PNN on protected iris templates with 𝜆 = 128-bit 98.68 0.92 13.3148
Classification using PNN on protected iris templates with 𝜆 = 192-bit 98.68 0.92 13.727

solving the RLWE problem, it is difficult to decrypt the templates by the server or an imposter without secret key (𝛿𝑑). Therefore,
vaS satisfies the irreversibility property.

evocability Analysis: Revocability ensures that a new protected template should be generated by the protection method if the
ld template is compromised or stolen. In SvaS, Revocability can be achieved by re-encrypting the samples in the database with a
ew key pair (𝛿′𝑒, 𝛿

′
𝑑) instead of acquiring the new samples from the users.

nlinkability Analysis: Unlinkability ensures that there will not be any correlation between the protected templates used in
ifferent applications. BFV scheme used in SvaS is based on probabilistic encryption. Due to the randomness involved in BFV scheme,
ifferent ciphertexts can be generated even if the same message is encrypted multiple times with the same key, and there will not
xist any similarity between the generated ciphertexts.

.3. Computational analysis

The security parameters used in SvaS are polynomial modulus (𝑥𝑛+1), coefficient modulus (𝑞), plaintext modulus (𝑎) and security
evel (𝜆). We considered two different values for 𝜆. From Table 3, it can be inferred that the higher security level has nearly no
nfluence on the execution time. 𝑥𝑛 + 1 must be a power-of −2 cyclomatic polynomial, i.e., of form 𝑥2 + 1. The security level is
irectly proportional to the polynomial modulus. On the other hand, larger 𝑥𝑛 + 1 makes ciphertext size larger, and all operations
ecome slower. 𝑛 value must be a power of 2 and greater than the size of the iris template. So, we choose different 𝑛 values for
ifferent sizes of iris templates. 𝑎 can be any positive integer, and mostly it is a power of two. But, batching encoding only works
hen 𝑎 is chosen to be a prime number and congruent to 1 (𝑚𝑜𝑑 2𝑛). So, we considered plaintext modulus as 40 961.

Table 3 shows the time taken (in seconds) to encrypt, decrypt and to classify 𝜀(𝑌 ) for various sizes of iris templates with different
ecurity parameters. The experiments are run by ten times and the average time is considered. The table also shows the time taken
o perform classification on unencrypted values. From Table 3, we infer that the reduction in the size of the iris template and
atching scheme can speed-up homomorphic iris computation over element-wise (without batching scheme). The iris template size
s proportional to the computational time. SvaS converts 1 × 10 240 into 1 × 640, 1 × 1280, 1 × 2560 respectively. Even though
he total time taken for iris code of size 640, and 1280 is less when compared to iris code of size 2560, but the optimal accuracy is
chieved with iris template of size 1 × 2560. The higher security level has nearly no influence on the execution time.

.4. Comparison analysis

Table 4 shows the baseline comparison of overall average classification accuracy and average computational time between
nprotected and protected templates. During enrollment, the time or space is not restricted. Therefore, we did not consider the
ime taken to encrypt the reference templates, 𝜀(𝑋𝑖) and time taken to perform training of classifiers on encrypted templates. For
13

he protected templates, we consider the overall average time, i.e., a sum of encryption time, classification time, verification time
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Table 5
Comparison of SvaS with the existing approaches (in terms of accuracy).
Method CASIA-V3-Interval IITD

Sardar et al., [21] 97.12% 97.19%
Barpanda et al., [22] 91.65% 89.72%
Arsalan et al., [14] 99.10% 98.41%
Zhao et al., [15] 96.92% 96.80%
Noruzi et al., [23] 98.80% 99.57%
SvaS 98.12% 97.35%

Table 6
Comparison of SvaS with existing approaches (in terms of separability measure (d-prime)).

CASIA-V 1.0 CASIA-V3-Interval IITD

Sadhya, D. et al. [24] – 2.39 2.92
Barpanda. et al. [22] – 1.71 1.76
Walia, G.S. et al. [25] 2.6053 – 1.9578
SvaS (NN) 4.8989 3.5938 3.797
SvaS (MCP) 4.1024 3.7146 3.677

and decryption time. From Table 4, we infer that there is no accuracy loss between protected and unprotected templates for NN
and MCP. Even though the computational time of authentication on unencrypted templates takes less time when compared to the
authentication on encrypted templates, the advantage of SvaS is that it satisfies the properties of the biometric template protection
scheme. Hence, SvaS is secure. The increase in computational time is due to the enhanced functionalities of the machine learning
algorithms (PMCP and PNN) used in SvaS.

Table 5 shows the accuracy comparison of SvaS with the other existing works for CASIA-V3-Interval and IITD databases. SvaS
hows a better accuracy when compared to [15,21,22] and lesser accuracy when compared to [14,23], which are devoid of guarantee
he requirements of biometric template protection schemes. The d-prime comparison of SvaS with the existing approaches are shown
n Table 6. We can infer from Table 6 that the imposter and genuine scores are well separated. The classification on the encrypted
emplates guarantees the requirements of biometric template protection schemes without a drop in the accuracy. SvaS guarantees
he irreversibility, diversity & performance degradation and additionally, SvaS verifies the result computed by the cloud server to
void false accept/reject.

. Conclusion

A secure and verifiable machine learning-based iris authentication system using fully homomorphic encryption on a malicious
loud server is proposed. Our method is the first known iris authentication system where training and testing are performed on
he encrypted templates by using private multi-class perceptron and private nearest neighbor algorithms. Our method mitigates the
roblem of trusting a third party or cloud server for classification. The idea is to generate an encrypted verification vector which
hecks the correctness of the result returned by the cloud server. We experimented our method on four benchmark publicly available
ris databases to check the efficiency. The experimental results show that the accuracies of the nearest neighbor and multi-class
erceptron on protected and unprotected templates are the same, which proves the effectiveness of the system. The training and
lassification are performed on encrypted templates; as a result, the training and test templates are known only to the client device,
nd the model is accessible only to the server. Our method fulfills all the requirements of biometric information protection.

Private nearest neighbor and private multi-class perceptron can experiment on other biometric traits like a fingerprint, face,
inger-vein, etc. to ensure the privacy of both the user’s data and the model. Further research has to be done in terms of the public
erifier directly checks the classification result. Since the template size is directly proportional to the computation time, an optimal
lgorithm has to be proposed in the future work which compresses the templates without compromising the accuracy.
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