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a b s t r a c t 

The popularity of wearable devices, such as smart glasses, chestbands, and wristbands, is nowadays 

rapidly growing, thanks to the fact that they can be used to track physical activity and monitor users’ 

health. Recently, researchers have proposed to exploit their capability to collect physiological signals for 

enabling automatic user recognition. Wearable devices inherently provide the means for detecting their 

unauthorized usage, or for being used as front-end in biometric recognition systems controlling the ac- 

cess to either physical or virtual locations and services. The present work evaluates the feasibility of 

performing biometric recognition using signals captured by wearable devices, considering data collected 

through off-the-shelf commercial wristbands, and comparing recordings taken during two distinct ses- 

sions separated by an average time of 7 days. In more detail, recognition is performed leveraging on 

electrodermal activity (EDA) and blood volume pulse (BVP), considering measurements taken from 17 

subjects performing natural activities such as attending or teaching lectures. Several tests have been car- 

ried out to determine the most effective representation of the considered EDA and BVP signals, as well 

as the most suitable classifier. The best recognition performance has been achieved exploiting convolu- 

tional neural networks to extract discriminative characteristics from the combined spectrograms of the 

employed EDA and BVP data, guaranteeing average correct identification rate of 98.58% for test samples 

lasting 30 seconds. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In recent years, the use of smart wearable devices (SWD) is be- 

oming increasingly popular. Their principal use consists in mon- 

toring the health of the user from parameters such as the heart 

ate, thus acting as assistants to control physical activity, and help 

chieving fitness goals [21] . However, the capability of SWDs in 

cquiring physiological signals could be also exploited within the 

ramework of biometric recognition systems, using the recorded 

ata to discriminate between legitimate and unauthorized subjects 

6,11] . 

The use of physiological signals for people recognition is com- 

only referred to as cognitive biometrics [28] . Exploiting these 

raits to recognize individuals offers several advantages compared 

o the exploitation of traditional physical or behavioural identifiers 

uch as fingerprint, face, iris, or signature. First, being physiolog- 

cal signals not easy to be captured at a distance with conven- 
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ional acquisition devices, and reflecting the mental and emotional 

tates of an individual, they are extremely difficult to steal and 

eplicate, making spoofing attacks almost impossible to be imple- 

ented [28] . Moreover, physiological signals are able to inherently 

rovide liveness detection, in addition to uniqueness and univer- 

ality. They also allow to perform continuous user recognition, thus 

reventing session hijacking, and avoiding unauthorized access to 

nformation or services after a successful recognition. Eventually, 

iosignals can be acquired in a non-invasive way, making the ac- 

uisition procedure convenient, and the system user friendly. 

In the present study, the recognition performance achievable 

hen exploiting two biosignals, namely electrodermal activity 

EDA) and blood volume pulse (BVP), as biometric identifiers, is 

nvestigated. Electrodermal activity, also known as galvanic skin 

esponse (GSR), reflects changes in the behavior of eccrine sweat 

lands, directly controlled by the sympathetic nervous system 

SNS) [8] . It is typically measured by placing two electrodes on the 

kin, and connecting them to a voltage amplifier. EDA has been 

idely used as measure of physiological arousal, and as a proxy 

or emotions and stress [32] . EDA is characterised by peaks, also 

nown as skin conductance responses (SCRs), in correspondence 

o external stimuli [8] . EDA responses vary across individuals, de- 

https://doi.org/10.1016/j.patrec.2021.03.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.03.020&domain=pdf
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ending also on demographic characteristics such as gender, age, 

nd culture [17] . This interpersonal variability in the EDA responses 

an be actually exploited for the automatic identification of differ- 

nt subjects [4] . The blood volume pulse describes the changes in 

he peripheral blood volume due to vasodilation and vasoconstric- 

ion [27] . It is commonly measured by resorting to photoplethys- 

ography (PPG) techniques, using a pulse oximeter to illuminate 

he skin and measure light absorption. Volume changes in the mi- 

rovascular bed of tissue results in variations of the reflected light, 

ith the recorded signals therefore providing information about 

ardiovascular activities such as heart rate (HR) and heart rate vari- 

bility (HRV) [27] . Characteristics of the BVP signal depends on the 

ctivity of the parasympathetic nervous system (PSN) and SNS [30] . 

imilarly to EDA, features extracted from the BVP can be used as 

roxy for stress, cognitive load and affect [32] . It has been shown 

hat a large inter-individual variability in the physiological charac- 

eristics of the heart, as in its mass and orientation, the orientation 

nd position of the myocardium, and the shape of the torso, exists 

1] . Such differences have made the cardiovascular activity mea- 

urements suitable for biometric recognition [1,15] . 

The performed experimental evaluation has been explicitly de- 

igned to obtain a preliminary evidence that promising recogni- 

ion performance can be achieved exploiting physiological data ac- 

uired using a commercial, off-the-shelf wristband. Furthermore, 

n order to perform a proper analysis of the discriminative capabil- 

ties of the considered biometric traits, signals recorded during two 

istinct acquisition sessions have been compared in the performed 

ests. In order to achieve such aims, we have exploited a longi- 

udinal database comprising samples taken from 17 different sub- 

ects attending or teaching lectures, therefore taking into account 

 natural setting representing practical working conditions. Physi- 

logical signals have been captured, for each subject, during two 

ifferent acquisition sessions, separated by an average period of 7 

ays. A multimodal approach, jointly using EDA and BVP to per- 

orm recognition, is here proposed, resorting to feature-level fusion 

o improve the performance of the proposed system. Discrimina- 

ive representations of the employed signals are obtained consid- 

ring representations in the time and time-frequency domains, fed 

o both shallow classifiers and deep-learning-based approaches to 

erform user identification. The effects of adopting different win- 

ow sizes are also investigated, demonstrating that the proposed 

pproach is able to guarantee good recognition performance even 

ith test samples lasting only 10 s . 

The state of the art on biometric recognition using SWDs is 

utlined in Section 2 . The employed database is described in 

ection 3 , while the performed signal processing is presented in 

ection 4 . The adopted classification strategies are then detailed in 

ection 5 , with the obtained results discussed in Section 6 . Finally, 

onclusions, including limitations and possibilities for further ad- 

ancements, are drawn in Sections 7 and 8 . 

. Related work 

Although the use of wearable devices became increasingly com- 

on in recent years, the field of biometric recognition based on 

hysiological signals recorded by SWDs is still under-explored. An 

verview of relevant related works on biometric recognition using 

WD is given in Table 1 , where the achieved performance, the kind 

f considered wearable devices, the experimental setting, and the 

ime needed to perform recognition, are summarized. More in de- 

ail, when considering the experimental settings employed in liter- 

ture, we refer to three different categories: laboratory (L), field (F), 

.e., real-life scenarios in completely unconstrained environments, 

nd field with constraint (FC), with subjects having constraints in 

erms of movements and environment [32] . In the present study, 

e take into account an FC scenario, since signals are recorded 
261 
rom students and teachers participating to lectures taking place 

n a room. 

The first relevant study on the effectiveness of biosignals 

ecorded through wearable devices to perform biometric recogni- 

ion has been proposed by Cornelius et al. [13] , taking bioimpe- 

ence into account. Tests on eight subjects have achieved 98% ac- 

uracy, when comparing signals collected during a single-day us- 

ge. A deep-learning-based approach has been proposed by Ever- 

on et al. [16] , exploiting a database of 12 subjects whose PPG 

ignals have been recorded during physical activity. The collected 

emporal data have been fed into a framework consisting of two 

onvolution neural networks (CNN), in conjunction with two long 

hort-term memory (LSTM) units, and followed by a dense output 

ayer, achieving a 96% recognition accuracy. Luque et al. [25] have 

xploited a dense neural network (DNN) classifier for PPG-based 

iometric recognition, achieving classification with an area under 

urve (AUC) of 0.78 and 0.83 for the two considered databases. In 

15] , the authors used wristbands to collect data from 28 subjects. 

eart rate variability (HRV), derived from PPG, has been employed 

o authenticate users through features extracted in the frequency 

omain, and machine learning techniques have been used for clas- 

ification. The best reported performance correspond to a correct 

dentification rate (CIR) at 98.48%, and an equal error rate (EER) at 

.96%. All the aforementioned studies have performed recognition 

sing a single physiological signal, and considering data recorded 

uring a single session. 

Multimodal biometric recognition has been instead proposed in 

lasco et al. [7] , where signals acquired through several SWDs, in- 

luding PPG, ECG, EDA, and accelerometer (ACC), have been em- 

loyed for biometric recognition. The authors have built their own 

ow-cost wearable sensors, that have been used to capture data 

rom 25 subjects while walking or being seated, at either resting 

tate and after a gentle stroll. Features have been extracted ex- 

loiting the discrete Fourier and WalshHadamard transforms, and 

hen compared using Gaussian models, obtaining an EER = 2%. 

ultimodal physiological signals have been employed to perform 

iometric recognition also in [4] , considering breathing rate (BR), 

R, palm electrodermal activity (P-EDA), and perinasal perspita- 

ion (PER-EDA). Classification approaches consisting of a CNN with 

ono-dimensional kernels, and inputs represented as windows of 

he raw signals stacked along the channel dimension have been 

mployed. A database with 37 subjects, acquired during a con- 

rolled experiment on a driving simulator, has been collected and 

sed to reach a top accuracy of 88.74%. In [3] the authors col- 

ected signals acquired from 25 people. A combination of principal 

omponents analysis (PCA) and support vector machines (SVMs) is 

pplied to identify people using ECG, EDA, airflow (AF), tempera- 

ure (Temp), pulse oximetry (SPO2), and electromyogram (EMG). 

he testing results have achieved a correct identification rate of 

2%. Alemán-Soler et al. [2] have presented an approach to use 

ifferent biomedical signals, namely EMG, ECG, and EDA, in order 

o perform biometric identification. Several statistical parameters 

ave been used as features, performing classification with a neural 

etwork, achieving a CIR of 85.55%. 

Although the aforementioned works have conducted interesting 

tudies regarding the joint usage of multiple physiological signals 

o perform biometric recognition, all of them suffer from a notable 

aw, that is, only single-session databases have been used for the 

xperiments. Under this scenario, the estimated performance may 

epend more on session-specific recording conditions than on in- 

ividual characteristics of the involved subjects [26] . Furthermore, 

ignals have been always acquired in laboratory conditions, which 

re unlikely to reflect real-world situations, preventing the findings 

o be robust to the typical noise of natural scenarios. 

To the best of our knowledge, very few studies have taken into 

ccount the permanence of the considered physiological signals, 
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Table 1 

Overview of the state-of-the-art approaches for biometric recognition using physiological signals and wearable devices. 

Reference Signals Database Performance Wristband Experimental Time needed for 

Subjects Sessions settings recognition 

[13] Bioimpedence 8 1 CIR = 97.8% 
√ 

F 15s 

EER = 12.7% 

[16] PPG 12 1 CIR = 96.00% 
√ 

L Not specified 

[25] PPG 43 1 AUC = 78.2% ✗ L 3s 

20 1 AUC = 83.2% 1s 

[15] HRV 28 1 EER = 3.96% 
√ 

FC 120s 

CIR = 98.48% 

[7] PPG, ECG, 25 1 AUC = 99.00% 
√ 

L 2s 

ACC, EDA EER = 2.00% 

[4] HR, BR, 37 1 CIR = 88.74% ✗ L 60s 

EDA, PER-EDA 

[3] SPO2, AF, ECG, 25 1 CIR = 92% ✗ L Not 

specified EMG, EDA,Temp 

[2] EDA, EMG, ECG 18 1 CIR = 85.55% ✗ L Not specified 

[10] ECG 211 2 CIR = 98.99% ✗ L Not 

specified 99 1 CIR = 94.03% 

[30] PPG 42 1 EER = 1.0% ✗ L Not 

specified 56 2 EER = 8.0 - 21.5% ✗ 

24 3 EER = 6.6 - 23.2% ✗ 

24 3 EER = 6.0 - 20.5% ✗ 

[35] step count, HR, 400 17 months CIR = 90 - 93% 
√ 

F 300s 

calorie consumption, MET EER = 5% (activity-dependent) 

[34] step count, HR, 421 2 years CIR = 92.97% 
√ 

F 300s 

calorie consumption, MET (activity-dependent) 
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roperly performing tests by recording and comparing data ac- 

uired through SWDs during multiple acquisition sessions. Byeon 

t al. have evaluated electrocardiogram (ECG) biometrics using pre- 

onfigured models of convolutional neural networks, such as VG- 

Net, ResNet, DenseNet and Xception, with various time-frequency 

epresentations, namely spectrogram, log spectrogram, mel spec- 

rogram, and scalogram [10] . Two different databases, one com- 

osed of two sessions, and the other one with data captured dur- 

ng a single session, have been there considered, achieving a cor- 

ect identification rate (CIR) of 98.99% and 94.04%, respectively. A 

ong-term feasibility study on the use of PPG signals as biometric 

rait has been performed in [30] . Several feature extractors, based 

n the time domain and the KarhunenLo ȿ ve transform, and match- 

ng metrics, including Manhattan and Euclidean distances, have 

een tested using four different databases. The achieved equal er- 

or rates (EERs) range from 1.0% to 8.0% when a single session is 

sed, and from 19.1% to 23.2% when signals from different sessions 

re compared. Despite the good results obtained in the aforemen- 

ioned studies, they present some limitations. First of all, the per- 

ormed experiments have been carried out in laboratory settings. 

ore importantly, medical devices have been there employed, with 

uch acquisition modalities being hard to be replicated in practical 

pplications, due both to the required costs and to the user in- 

onvenience. In this regard, it is worth remarking that the present 

tudy has been instead conducted considering the multi-session 

atabase presented in [14] , collected in a real-life scenario while 

he involved subjects attend lectures performing natural activi- 

ies such as listening, talking, making gestures, and taking notes. 

urthermore, a commercial off-the-shelf wristband has been em- 

loyed for data collection, thus allowing to considering signals 

roperly representing practical working conditions. 

Commercial devices have been also used in the longitudinal 

tudies performed in [35] and [34] . In more detail, three types 

f biometric identifiers, namely step count, HR, calorie consump- 

ion, and metabolic equivalent of task (MET), have been acquired 

hrough a Fitbit wearable device, and later used for user recogni- 

ion, in [35] . Recordings from over 400 users have been acquired 

n a 17-month long health study, and used to achieve an average 

ecognition accuracy at about 93%, and an EER at 5%. A similar ap- 

s

262 
roach has been also investigated in [34] , where an analysis on 

21 Fitbit users has been carried out for two years, achieving an 

verage recognition accuracy at 92.97%. In both studies, statistical 

eatures have been used to discriminate users, and SVMs exploited 

or user classification. People taking part to the experiments wore 

he Fitbit SWDs all day long, yet biometric recognition has been 

erformed according to an activity-dependent modality, recogniz- 

ng users only when involved in specific tasks. Moreover, the time 

equired to perform recognition is in the order of five minutes, 

hich seems overly long to be practically considered in real-life 

pplications. Conversely, the proposed work focuses on keeping 

ow the required recognition time, with promising recognition re- 

ults achieved while resorting to query samples lasting only 10 s . 

. Employed database 

In this paper we investigate the feasibility of using physiologi- 

al signals gathered with commercial wristbands to automatically 

dentify several users. In more detail, the employed database, col- 

ected in natural environments, for multiple days, and with wrist- 

orn devices, has been presented in [14] , where it has been em- 

loyed to evaluate students’ engagement during lectures. The con- 

idered database contains EDA and BVP data from 33 healthy par- 

icipants (24 students and 9 instructors), collected during 41 ac- 

ual lectures in classroom from four courses over a period of three 

eeks. The average duration of a lecture is about 43 minutes. Phys- 

ological data have been collected using the unobtrusive off-the- 

helf E4 wristband [19] , that participants wore during the lectures. 

or further details regarding the data collection procedure we refer 

o [14] . 

To perform the analysis presented in this paper, we have se- 

ected a subset of the available data. Specifically, only participants 

or which EDA and BVP samples have been recorded during at least 

wo different days have been considered. For each subject, we have 

mployed signals lasting at least 30 minutes, and taken from four 

andomly-selected lectures (two in one day, and two in another). 

e refer to data collected in the same day for each participant 

s session . The average distance between two sessions of the same 

ubject is 7 days. Following the aforementioned criteria, we have 
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mployed data recorded during a total of 34 unique sessions, with 

amples belonging to 17 subjects, including four instructors. 

. Template generation 

The employed representations of EDA and BVP signals have 

een obtained by first applying the pre-processing procedures 

ommonly adopted in literature [8,20,23,36] . 

In particular, we have filtered-out noise from the EDA traces, 

ampled at 4Hz, using the Butterworth low-pass filter with a 0.4Hz 

ut-off frequency, similarly to [23] . We have then decomposed the 

DA signal, to which we refer as EDA-mixed , in its phasic and tonic 

omponents, using the Python implementation 

1 of the convex op- 

imisation approach proposed by Greco et al. [20] . The two com- 

onents differ in time resolution: the phasic component is char- 

cterised by fluctuations in response to stimuli at time resolution 

f seconds, while the tonic component changes at scale of minutes, 

nd provides information about the trend of the signal [8,9] . Differ- 

nt combinations of the computed mixed, phasic, and tonic com- 

onents of the EDA signals have been employed in the performed 

ests, with the configurations providing the best recognition results 

n each considered scenario detailed in Section 6 . 

As for BVP signals, we have removed high-frequency noise from 

he original data, sampled at 64 Hz, using the first order Butter- 

orth filter with a cut-off frequency of 5 Hz, similarly to [36] . 

To guarantee the same amount of samples for all the subjects, 

e have selected the central 30 minutes of each lecture. We have 

hen segmented the physiological signals into overlapping frames, 

sing a sliding window approach with a window size W and an 

verlap O . A single frame is considered as either a training sample, 

r a recognition probe, in the performed tests. We have used time 

indows with lengths W = {10, 20, 30} seconds. Time windows 

arger than 30 s have not been considered due to the inconvenience 

 long recognition time can cause to the user. On the other hand, 

he minimum windows size has been set to 10 s to be able to ac-

uire enough discriminative information. An O = 75% overlap factor 

etween consecutive frames is also employed to generate a num- 

er of samples allowing to properly train the employed CNNs. 

.1. Feature extraction and fusion 

In the performed tests, we have exploited representations of 

DA and BVP physiological signals in both time and time-frequency 

omains. Regarding the latter one, we have resorted to spectro- 

rams, providing two-dimensional representations of the frequency 

ontent over time. The computed spectrograms are based on the 

hort-time Fourier transform (STFT), dividing the considered sig- 

als into continuous short segments, and applying the Fourier 

ransform to each of them [24] . The STFT is expressed mathemati- 

ally as: 

 ST F T [ m, n ] = 

N−1 ∑ 

k =0 

x [ k ] w [ k − m ] e − j2 πnk/N (1)

here x [ k ] represents the signal and w [ k ] the window of N points

24] . The spectrogram is an intensity plot, and each row represents 

he variation of the logarithm of the signal power spectral density 

PSD), corresponding to the magnitude squared of the STFT, over 

ime. Fig. 1 presents an example of the spectrogram of 30 seconds 

egments of the BVP, the EDA-mixed , and the phasic and tonic com- 

onents of the EDA. 

The considered EDA and BVP components are employed, either 

ndividually or in a combined form, as inputs to several classifiers, 

s detailed in the following section. 
1 https://github.com/lciti/cvxEDA 

a

b

o

263 
. Employed classifiers 

In order to perform an exhaustive set of experimental tests, 

e have evaluated the effectiveness of both shallow classifiers and 

eep learning approaches. The employed standard machine learn- 

ng algorithms are detailed in Section 5.1 . The considered deep 

earning approaches are detailed in Section 5.2 , where the used 

NN architectures are outlined, and in Section 5.3 , where the re- 

urrent neural networks (RNNs) applied to the available temporal 

ignals are presented. 

.1. Shallow classifiers 

Representations based on the spectrograms of the EDA and BVP 

ignals have been used as inputs to the considered shallow classi- 

ers. In more detail, when performing recognition using only the 

omponents derived from the EDA signals, all of them, that is, the 

ixed, phasic, and tonic components, are jointly used as input to 

he employed algorithms. The spectrograms of the three compo- 

ents are in fact concatenated to create a one-dimensional fea- 

ure vector, representative of an EDA frame. On the other hand, in 

rder to maximize the achievable recognition performance, on an 

mpyrical basis we have used only the mixed and phasic compo- 

ents of the EDA when jointly exploiting both EDA and BVP data, 

erforming also in this case a feature-level fusion of the available 

pectrogram features. 

The employed feature representations have been normalized 

sing z-score before applying the used shallow classifiers, in or- 

er to speed up the learning process. A feature selection process 

s also carried out before feeding the employed representations to 

he considered shallow classifiers. Specifically, in each considered 

cenario, an ANOVA test has been performed on each feature, with 

he resulting F-scores providing information regarding the sepa- 

ation of distributions belonging to different subjects. Tests have 

een then done for an increasing number of features, sorted for 

ecreasing F-scores, used as inputs to the employed classifiers. 

Three different shallow classifiers, relying on distinct strategies 

o perform classification, have been employed in the performed 

ests. In more detail, support vector machine (SVM) has been cho- 

en as representative of parametric classifiers [5] . Its purpose is to 

nd the optimal hyperplane that allows to correctly separate train- 

ng data belonging to different classes, maximizing the margin be- 

ween the decision boundaries and the samples deemed most diffi- 

ult to classify, that is, the support vectors. A one-versus-all (OvA) 

esign has been employed in the performed tests to apply the bi- 

ary SVM approach to a multi-class scenario. Non-parametric stan- 

ard machine learning algorithms, which do not require to make 

ny assumption on the distributions of the treated data, have been 

lso exploited, resorting to random forest (RF) and gradient boost- 

ng (GB) approaches [18] . Both RF and GB rely on ensembles of 

eak classifiers, that is, decision trees in our case. Yet, while RF 

xploits a bagging approach, creating an ensemble of independent 

ecision trees trained on different subsets of the available train- 

ng data, GB instead performs an incremental learning, sequentially 

reating decision trees based on inputs depending on the outcomes 

f the previously generated predictors. In the performed tests, the 

GBoost implementation has been used for the employed ensem- 

le classifiers [12] . 

.2. Convolutional neural networks 

As done when using the considered shallow classifiers, spec- 

rograms are used as inputs of the empoyed CNNs. Specifically, 

lso in this case all the three components of the EDA signals have 

een employed when using only EDA to perform recognition, while 

nly the mixed and phasic EDA components have been used when 

https://github.com/lciti/cvxEDA
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Fig. 1. Examples of spectrograms of the 30 seconds segments of (a) BVP signal, (b) EDA-mixed, (c) phasic, and (d) tonic components of the EDA. 
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ointly exploiting EDA and BVP data. For each considered scenario, 

he spectrograms of the considered components are arranged as 

ifferent planes of three-dimensional tensors, thus again resorting 

o feature-level fusion. The created structures are then fed to well- 

nown CNNs proposed in literature to perform object classification 

n RGB images, that is, the VGG-16 [33] and MobileNetV2 [31] CNN 

rchitectures, after being resized to comply with the input require- 

ents of each network. 

.2.1. VGG-16 

VGG-Net has a simple structure, and for this reason it is widely 

sed. In details, it consists of 13 convolutional layers, 5 pooling lay- 

rs, and 3 fully-connected layers, the last one followed by a soft- 

ax classifier. All hidden layers are equipped with a rectification 

ReLU) non-linearity. The input of the first convolutional layer has 

 size of 224 × 224 × 3 , and a small 3 × 3 filter size is employed

or kernels. 

We have initialized VGG-16 weights with those estimated for 

n image classification task over Imagenet [29] . The layers have 

een then fine-tuned using a cross-entropy loss function for back- 

ropagation, with stochastic gradient descent (SGD) and a batch 

ize of 16. Learning rate has been set to 0.001, with momentum 

t 0.9. The maximum number of training epoch is set to 100, with 

arly stopping in case the validation loss is minimized. 

.2.2. Mobilenetv2 architecture 

MobileNetV2 is a neural network architecture that runs very ef- 

ciently on mobile devices, making the proposed application feasi- 

le for a real scenario where wearable devices are coupled with a 

martphone. MobileNetV2 builds upon the ideas from MobileNetV1 

22] , using depthwise separable convolution, and a pointwise con- 

olution replacing the full convolutional operator. However, Mo- 

ileNetV2 introduces two new features to the architecture: linear 

ottlenecks between the layers, and shortcut connections between 

he bottlenecks. The architecture of MobileNetV2 contains the ini- 

ial fully convolution layer with 32 filters, followed by 19 residual 

ottleneck layers. The input of the first convolutional layer has size 

24 × 224 × 3 . ReLU is used as non-linearity, together with a ker- 

el size 3 × 3 . Dropout and batch normalization are utilized during 

raining. 

As done for VGG-16, also MobileNetV2 has been initialized with 

he weights estimated over Imagenet, with fine-tuning performed 

sing a cross-entropy loss function and SGD with momentum. The 

aximum number of training epoch is set to 100 also for Mo- 

ileNetV2. 

.3. Recurrent neural networks 

Tests have been also performed using the temporal behavior of 

DA and BVP signals as inputs to RNNs. Long short-term memory 

LSTM) networks, the most-widely employed kind of RNN architec- 

ure, have been used for this purpose. Specifically, signals created 

ombining, at feature level, the temporal components of EDA and 
264 
VP data, are fed to networks comprising a bi-directional LSTM 

ith 1300 hidden states, followed by a dropout layer with dropout 

robability equal to 40%, and a fully connected layer with a soft- 

ax as loss function. 

. Results and discussion 

In order to estimate the achievable recognition performance, in 

erms of correct identification rate (CIR), we have used for each 

ubject’s enrolment the data from the first session (the first 20% 

or validation, and the remaining 80% for training), while sam- 

les belonging to the second session have been reserved for test- 

ng. The validation samples have been used for tuning the hyper- 

arameters of the shallow classifiers using a grid search approach. 

pecifically, we have chosen the hyper-parameters optimizing the 

IR achievable on the validation set, and then used them to per- 

orm the final training process on the whole first session data. As 

or the hyper-parameters of the employed CNNs, we have lever- 

ged on those of the pre-trained networks, and used the validation 

et for early stopping only. For each subject, a value of CIR is com- 

uted. In order to obtain the overall performance of the system, 

he average of the performance obtained for each subject is taken 

nto account, with the standard deviation used as indicator of the 

tability of the achieved results. 

Table 2 shows the results, in terms of best CIR for different sets 

f employed features, obtained for different combinations of em- 

loyed signals, shallow classifiers, and time window durations. The 

btained results show that the considered non-parametric classi- 

ers are more efficient than the parametric one. Specifically, RF 

ypically performs better than SVM. More importantly, the best re- 

ults are generally achieved when exploiting the GB learning ap- 

roach, testifying that the incremental boosting strategy adopted 

n GB fits the available data better than a bagging approach such 

s the one employed in RF. This could imply that the available data 

re characterized by a limited amount of noise, thus minimizing 

ossible overfitting risks [18] . The best results obtained with shal- 

ow classifiers correspond to a CIR of 93.82% when using the fusion 

f the spectrograms of the EDA and BVP components, computed 

n window of length W = 20s, as input to the GB classifier. The 

mployed hyper-parameters are a learning rate of 0.15, 120 esti- 

ators, and a maximum depth equal to 6. The GB algorithm has 

lso shown better stability, expressed in terms of smaller standard 

eviation, in comparison to the other standard classifiers. 

A decrease of recognition performance is typically observed 

ith a decrease of the window size. However, when combined rep- 

esentations of EDA and BVP features are used as inputs to GB clas- 

ifiers, the obtained recognition rates remain pretty stable, guar- 

nteeing good performance also when exploiting very short seg- 

ents. 

The recognition rates achieved when training the considered 

hallow classifiers over combined representations of BVP and EDA 

eatures are typically better than those achieved when exploiting 

ndividual modalities. This confirms the usefulness of the proposed 
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Table 2 

Performance of the considered shallow classifiers in terms of CIR, reported as mean ± standard deviation. Best performance in bold. 

Signal SVM RF GB 

W = 30 s W = 20 s W = 10 s W = 30 s W = 20 s W = 10 s W = 30 s W = 20 s W = 10 s 

EDA 28.37 ±26 . 37% 23.14 ±23 . 86% 12.60 ±12 . 32% 58.83 ±17 . 46% 48.94 ±17 . 87% 35.31 ±17 . 91% 91 . 01 ± 6 . 52 % 91 . 83 ± 5 . 67 % 91 . 65 ± 5 . 74 % 

BVP 63.03 ±17 . 01% 47.55 ±18 . 29% 16.14 ±9 . 26% 79.68 ±8 . 97% 67.70 ±10 . 00% 35.90 ±17 . 68% 86.69 ±7 . 30% 86.72 ±6 . 86% 86.62 ±7 . 25% 

Fusion 56.89 ±21 . 67% 67.10 ±15 . 96% 45.63 ±18 . 47% 73.68 ±12 . 53% 59.94 ±16 . 26% 44.14 ±16 . 15% 93.55 ±4 . 29% 93.82 ±4.19% 93.30 ±4 . 12% 

Table 3 

Performance of the employed deep learning approaches in terms of CIR, reported as mean ± standard deviation. Best performance in bold. 

Signal VGG-16 MobileNet v2 LSTM 

W = 30 s W = 20 s W = 10 s W = 30 s W = 20 s W = 10 s W = 30 s W = 20 s W = 10 s 

EDA 86 . 18 ± 11 . 26 % 91 . 71 ± 8 . 28 % 90 . 14 ± 7 . 07 % 92 . 69 ± 5 . 56 % 94 . 91 ± 3 . 90 % 94 . 31 ± 4 . 43 % 59 . 00 ± 23 . 15 % 59 . 02 ± 21 . 35 % 58 . 88 ± 19 . 78 % 

BVP 96 . 29 ± 3 . 10 % 94 . 90 ± 3 . 45 % 80 . 19 ± 9 . 68 % 96 . 23 ± 2 . 86 % 95 . 12 ± 3 . 27 % 91 . 46 ± 4 . 10 % 92 . 42 ± 5 . 83 % 92 . 91 ± 6 . 11 % 92 . 44 ± 5 . 83 % 

Fusion 98.13 ± 2.09% 96 . 83 ± 2 . 35 % 97 . 62 ± 1 . 81 % 98.58 ±1.49 % 97 . 66 ± 2 . 06 % 97 . 28 ± 2 . 46 % 92 . 84 ± 5 . 95 % 93 . 30 ± 5 . 85 % 91 . 03 ± 5 . 46 % 
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pproach relying on multiple sources to perform recognition. Some 

xceptions to this general behavior can be found, when using SVM 

r RF classifiers, in cases of large discrepancies between the results 

chieved using separately EDA or BVP features. 

Table 3 shows the performance, in terms of correct identifica- 

ion rate, obtained when exploiting the considered deep learning 

pproaches, that is, CNNs relying on VGG-16 and MobileNetV2, and 

STM networks. While these latter achieve performance compara- 

le to the best shallow classifier, i.e., GB, the employed CNNs out- 

erform both the consider standard machine learning algorithms 

nd LSTM. The CNNs are also generally more stable, in terms of 

erformance standard deviation, compared to the shallow classi- 

ers. In more detail, the best recognition results are obtained when 

esorting to time-frequency features extracted from a window of 

ize W = 30 s, and using them as input to CNNs. CIR at 98.13%

or the VGG-16, and 98.58% in case of MobileNetv2 are obtained 

2 . 

n general, this latter architecture guarantees the best recognition 

erformance. It is worth remarking that MobileNetV2 has been de- 

igned to be optimized for mobile devices, thus entailing the pos- 

ibility of its use in real-life scenarios, where the recognition pro- 

edure is carried out by a smartphone connected to a wearable 

evice, or by the device itself. 

Differently from what observed when using shallow classifiers, 

he behavior of deep learning approaches when varying the length 

f the employed inputs is less predictable. In fact, although recog- 

ition performance generally worsens when shortening the em- 

loyed time window, it also happens that the best results for EDA 

re achieved for the shortest inputs. This may be due to the larger 

umber of training samples available when resorting to smaller 

ime windows, and to the capability of the employed networks to 

ffectively exploit such greater amount of data for achieving im- 

rovements in recognition performance. The possibility of achiev- 

ng good recognition performance with time windows as short as 

0 s implies the feasibility to design highly-performing recognition 

ystems requiring an acceptable recognition time. 

It is worth mentioning that, in the performed experimental 

ests, also fusion at the score level has been employed to combine 

he information from BVP and EDA signals. Nonetheless, the best 

ecognition results have been achieved when resorting to feature- 

evel fusion, which has been therefore reported. Such behavior 

emonstrates that the employed CNNs are not only able to pro- 

ide classification accuracies better than those achievable through 

hallow classifiers, yet they are also able to effectively exploit joint 

epresentations of EDA and BVP signals. Better results are obtained 
2 The trained model is available at https://github.com/emapici/wearable- 

iometrics-cnn 

m

e

f

i

265 
hen CNNs are trained over combined representations of the em- 

loyed data rather than performing separate training over disjoint 

epresentations, and then fusing the produced output scores. 

. Limitations of the present work 

Despite the presented promising results, further research is 

eeded to perform an in-depth analysis about the effectiveness of 

sing physiological signals collected through SWDs to perform bio- 

etric recognition. 

First of all, the present study has been conducted on a limited 

et of subjects. It would be therefore important to collect signals 

sing commercial SWDs from a larger number of users, and exploit 

uch data to conduct further analysis. 

Moreover, although the performed study demonstrates the exis- 

ence of discriminative characteristics in EDA and BVP signals col- 

ected in two different days separated by a week, multiple record- 

ng sessions performed at increasing time distances from the first 

ne should be considered in order to further speculate about the 

ermanence of the employed traits. The availability of multiple ac- 

uisition sessions could be also exploited to evaluate the possibil- 

ty of improving the achievable recognition rates, employing for in- 

tance samples acquired during different enrolment sessions, to be 

ble to collect more information regarding the variability of the 

mployed data and then designing template update strategies. 

It has also to be mentioned that, although the employed data 

ave been collected asking participants to attend, or to teach, lec- 

ures still behaving as they would have normally done, the spe- 

ific classroom settings might have limited the range of possible 

ovements, with a possible impact on collected recordings and on 

he obtained recognition performance. Therefore, for future devel- 

pments, it would be interesting to investigate the role of differ- 

nt operative scenarios on the achievable recognition performance, 

valuating field conditions in completely unconstrained real-life 

nvironments. 

Furthermore, in this work we have focused our analysis only on 

ser identification, while verification scenarios could be also con- 

idered in future investigations. 

Lastly, it is worth mentioning that, in the performed tests, 

e have trained the employed models using, for each subject, 

ata recorded during two lectures, for a total of 60 minutes. 

ven though the proposed approach has guaranteed good recogni- 

ion performance while using very short identification probes, the 

mount of time needed for the user’s enrolment in a real scenario 

ight be too long. Therefore, an evaluation of the effects of short- 

ning the enrolment acquisition duration on the recognition per- 

ormance could be beneficial to assess the feasibility this system 

n real-life applications. 

https://github.com/emapici/wearable-biometrics-cnn
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. Conclusions 

In this work we have evaluated the feasibility of identifying 

ubjects exploiting physiological signals gathered with off-the-shelf 

earable devices, collecting data in practical conditions. Using the 

usion of the EDA and BVP spectrograms as input to a MobileNet- 

2 network, we have achieved an average CIR at 98.58%, comparing 

amples taken from 17 subjects at a time distance of a week. We 

ave also verified the superiority of deep learning models, based 

n CNNs, over shallow classifiers to achieve higher recognition per- 

ormance. We have also analyzed the impact of the selected win- 

ow length in the recognition performance, showing that our ap- 

roach guarantees good recognition performance even when only 

0-second identification probes are used. The methods presented 

n this study could be integrated into wearable devices for en- 

bling a fast and reliable user identification, and preventing unau- 

horized usage of these devices. Although additional research, us- 

ng databases involving a high number of subjects and comprising 

ultiple sessions, as well as evaluating proper training strategies 

o derive feature representations usable within verification scenar- 

os, is needed to further speculate on the drawn conclusions, the 

resent study represents the first evidence that physiological sig- 

als collected through commercial SWDs could be employed to 

erform biometric recognition while normally carrying out real-life 

ctivities. 
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