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a b s t r a c t 

Electroencephalography (EEG) provides appealing biometrics by encompassing unique attributes includ- 

ing robustness against forgery, privacy compliance, and aliveness detection. Among the main challenges 

in deploying EEG biometric systems in real-world applications, stability and usability are two important 

ones. They respectively reflect the capacity of the system to provide stable performance within and across 

different states, and the ease of use of the system. Previous studies indicate that the usability of an EEG 

biometric system is largely affected by the number of electrodes and reducing channel density is an ef- 

fective way to enhance usability. However, it is still unclear what is the impact of channel density on 

recognition performance and stability. This study examines this issue for systems using different feature 

extraction and classification methods. Our results reveal a trade-off between channel density and stabil- 

ity. With low-density EEG, the recognition accuracy and stability are compromised to varying degrees. 

Based on the analysis, we propose a framework that integrates channel density augmentation, functional 

connectivity estimation and deep learning models for practical and stable EEG biometric systems. The 

framework helps to improve the stability of EEG biometric systems that use consumer-grade low channel 

density devices, while retaining the advantages of high usability. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

EEG is potentially a superior biometric modality as it presents 

nique attributes not possessed by other modalities such as finger- 

rints, retina and face scan, in terms of robustness against forgery, 

rivacy compliance, aliveness detection and multi-uses as cognitive 

iomarkers [1–3] . Existing research on EEG biometrics has mainly 

plit into two genres, one based on event-related potential (ERP) 

hich is EEG response to a stimulus, and the other based on on- 

oing EEG which is a spontaneous signal naturally produced by 

he brain. The ERP biometric system usually tightly controls the 

ognitive state of the subject through repetitive sensory stimula- 

ion and strict signal elicitation protocols. On the contrary, the on- 

oing EEG biometric system is more flexible in signal acquisition, 

uitable for unobtrusive and continuous application scenarios, but 

ts stability is relatively poor [2] . The major problems of deploying 

ngoing EEG biometric systems in real-life scenarios are: the rela- 

ively low recognition rate, unstable performance over diverse hu- 

an states, and human inconvenience during the signal acquisition 
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rocess due to the discomfort caused by prolonged attachment of 

lectrodes [1] . Previous studies focused more on the basic aspects 

f EEG biometrics, including the feature extraction methods and 

lassification models. This study targets the stability and usability 

ssues which are two key factors towards the practical deployment 

f EEG biometric systems. 

EEG signals are sensitive to the physical and mental states of a 

ubject, which can generate large intra-subject variations that hin- 

er the recognition accuracy of EEG-based biometric recognition 

ystems. Stability refers to the robustness of the system to differ- 

nt states and reflects the capacity of the system to provide stable 

erformance within and across different states and tasks. A few 

ecent studies tested the stability of different methods of EEG bio- 

etrics in intra-state and inter-state scenarios [2,4–6] . Specifically, 

n the intra-state scenarios, the system was trained and tested on 

EG signals collected in the same state or task; while in the inter- 

tate scenarios, the system was tested on unseen states that were 

ifferent from the one used for training. Their results show a sig- 

ificant drop of correct recognition rate (CRR) in the inter-state 

cenarios, which confirmed the EEG intra-subject variations. In ad- 

ition, the results show that the channel set that provides high in- 

ividual uniqueness varies with state, which implies that having 

https://doi.org/10.1016/j.patrec.2021.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.04.003&domain=pdf
mailto:maggie.wang1@adfa.edu.au
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ufficient channels is important to maintain the stability of EEG 

iometric systems [5] . 

On the other hand, the usability of EEG biometrics, which refers 

o the ease of use of the system, has been increasing in recent 

ears with the development of sensor technology and consumer- 

rade EEG collection devices. These devices usually have fewer 

umbers of electrodes compared to clinical-grade devices. Su Yang 

nd Farzin Deravi defined a usability score to evaluate EEG biomet- 

ic systems [7] , i.e., U = 

N×CRR 
T r + K×T s 

, where K and N denote the num- 

er of electrode employed and the number of subjects for which 

he system was tested on, and T r and T s are the recording dura- 

ion of the training set and test set, respectively. Among these fac- 

ors, N, T r , and T s are experiment-related ones that are adjustable 

ith different setups, while K is a system-related factor which is 

etermined by the electrode configuration and directly affects fea- 

ure extraction and classification. The equation indicates that the 

sability of an EEG biometric system is inversely proportional to 

he number of electrodes employed, therefore, reducing the chan- 

el density is an effective way to enhance usability. 

From the user’s perspective, using low-density EEG facilitates 

he data collection process, enhances the user experience, and 

herefore, improves the usability of EEG biometrics. But the im- 

act of channel density on the recognition performance and sta- 

ility of EEG biometric systems is still an open research question. 

herefore, the objectives of this study are two folds, i.e., to eval- 

ate the impact of channel density on CRR and stability of EEG 

iometric systems that use different f eature extraction and classi- 

cation methods; and if low density does lead to a compromise in 

RR and stability, how to enhance the CRR and stability of a low- 

ensity system while maintaining its advantages in usability. The 

ollowing section reviews existing feature extraction and classifica- 

ion methods of EEG biometrics. Section 3 analyses the impact of 

hannel density on biometric recognition performance and stabil- 

ty for different methods. Based on the analysis, a framework in- 

egrating density augmentation, functional connectivity estimation, 

nd deep learning model is proposed in Section 4 to enhance the 

ecognition performance and stability of low-density systems. 

. Previous work on EEG biometrics 

.1. Feature extraction and selection 

Considering different characteristics of EEG signals in the time 

nd frequency domains, many feature extraction methods have 

een proposed for EEG biometrics, including autoregressive (AR) 

tochastic modelling [8,9] , Fourier-based power spectral density 

PSD) analysis [10] , entropy estimation [11] and wavelet packet 

nalysis [4] . Despite the use of different methods, what these fea- 

ures have in common is that they all rely on signals collected from 

ingle electrodes without considering inter-channel information. 

e refer to this type of feature as univariate features. Univariate 

eatures usually work well with ERP signals and EEG signals under 

esting states. However, their performance decreases significantly 

ith ongoing EEG in diverse states where the subjects’ cognitive 

tates are not under strict control [2] . The main reason for the 

rop in performance is that univariate features are sensitive to the 

mplitude changes of EEG signals, which brings large intra-subject 

ariations to the feature set [12] . This is usually inevitable, espe- 

ially in the case of ongoing EEG signals with weak experimental 

ontrol. To address this problem, brain connectivity, which consid- 

rs the relationships between channels, was proposed for more ro- 

ust EEG biometric identifiers [2,10] . While two signals may vary 

n amplitudes or phases, strong connectivity occurs when their sta- 

istical dependence or causal interaction state remains high [13] . 

his property helps to reduce the intra-subject variations and im- 

rove biometric performance. So far, several functional and effec- 
135 
ive connectivity metrics have been studied for EEG biometrics, 

ncluding the Pearson’s correlation [14] , spectral coherence [10] , 

nd phase synchronisation measures [2,6,15] . In addition to us- 

ng brain connectivity values directly as feature vectors, topolog- 

cal features extracted from brain connectivity networks were also 

nvestigated [5,14,15] . It is worth noting that, for classical meth- 

ds using univariate features and conventional classifiers, feature 

election is usually an important step before classification to en- 

ance the discriminative power of the feature set. Recursive fea- 

ure elimination and mutual information are popular methods in 

EG biometrics [5] . However, deep learning methods usually omit 

he step of feature selection since a deep and hierarchical model 

tself is capable of extracting high level representations from the 

nput [16] . 

.2. Classification and machine learning 

Classification is another key element of the EEG biometric sys- 

em. Although the mainstream for EEG biometrics is still tradi- 

ional classifiers such as discriminate analysis [4,9,14] and simi- 

arity measures [8,10] , deep learning has been receiving more and 

ore attention. Compared with traditional classifiers, deep learn- 

ng shows advantages in extracting identity-bearing representa- 

ions from EEG without feature engineering [17] and offers pos- 

ibilities to handle large intra-subject variations to support more 

table biometrics against diverse human states [2] . Convolutional 

eural networks (CNN) have shown promising results in learning 

iometric identifiers from EEG timeseries and functional connectiv- 

ty networks (FCN), as summarised in Table 1 . In most of the stud- 

es, the inputs of the CNNs were multi-channel EEG or ERP time- 

eries (organised in 2-D format) and the CNNs were used to learn 

he morphological characteristics and temporal dependencies from 

he signal timeseries. However, since the signal timeseries itself is 

ensitive to the state, the representations directly learned from the 

ignal timeseries are usually not robust over diverse states. This 

ay explain why these studies focus on ERP signals and EEG sig- 

als in resting state. A recent study shows that deep learning mod- 

ls integrating functional connectivity are able to provide stable 

erformance for ongoing EEG signals in different states [2] . 

Deep neural networks are essentially data-driven models and 

aving sufficient data is important for successful training. In terms 

f having sufficient EEG data, there are two dimensions: the sig- 

al length and the number of channels, which determine the num- 

er of training samples and the dimensions of each input. Genera- 

ive models, for example, the generative adversarial networks, were 

roposed to augment EEG training samples to improve classifica- 

ion performance [22] . A recent study proposed regularised auto- 

ncoders with proper gate control to learn relationships between 

EG channels, which can be used for missing channel reconstruc- 

ion [23] . However, there is so far no discussion about EEG channel 

ugmentation or the channel density issue, especially the impact of 

hannel density on deep learning-based EEG biometrics. 

. Impact of EEG channel density on biometric recognition 

In this section, we examine the impact of EEG channel density 

n biometric recognition in terms of CRR and stability against vary- 

ng states. To measure stability, we follow the existing approach 

hat evaluates the method in intra-state condition and inter-state 

ondition. The intra-state condition is to train and test a model us- 

ng EEG collected in the same state. This condition has been widely 

dopted in existing research. However, it is insufficient on its own, 

ecause it cannot be guaranteed that the cognitive state of a sub- 

ect during the test phase remains the same as during the regis- 

ration period, especially for ongoing EEG biometrics that are free 
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Table 1 

EEG biometric identification using deep learning. 

Study Subjects Channels States Inputs Models Within-state CRR 

[17] 4,10 8 ERP Raw CNN 96.8% 

[18] 40 17 ERP ERP CNN 80.65–98.8% 

[19] 10 64 Resting Raw CNN 82% 

[20] 100 64 Driving simulation Raw CNN 97% 

[21] 120 64 Resting, ERP Raw MLP, CNN, RNN 62.2–92.9% 

[2] 109,59 64,46 Diverse FCN CNN, GCNN 98.13–99.99% 

Table 2 

Methods being evaluated. 

Methods Input/ Features Dimensions Classifiers 

Raw + CNN Timeseries N c × N s CNN 

Uni + CNN AR(4), FuzzEn, Band power(5) N c × 10 CNN 

Cor + CNN FCN N c × N c CNN 

PSI + CNN FCN N c × N c CNN 

Uni + FS + Mah ∗ Selected univariate features 1-D vector Mahal. dist. 

N c and N s denote the number of channels and signal sampling rate, respectively. ∗For 

details about the feature extraction and selection, refer to Appendix A . 
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Fig. 1. Electrode placement and configurations. 

Fig. 2. Average CRR of intra-state and inter-state conditions under different channel 

configurations. The bars and error bars indicate the average and standard deviation. 
rom sensory stimulation and tight cognitive control. The inter- 

tate condition is to train and test a model using EEG collected in 

ifferent states. It evaluates whether the model is capable of deal- 

ng with EEG signals in an unseen state, i.e., the inter-state stability 

apacity of a model. 

The evaluation covers deep neural network-based methods, in- 

luding multi-channel EEG timeseries + CNN, univariate features + 

NN, functional connectivity networks + CNN, and a classic method 

sing univariate features (with feature selection) and Mahalanobis 

lassifier. Three types of univariate features, including band pow- 

rs, AR coefficients, and fuzzy entropy, are extracted from each 

hannel and concatenated into a feature vector. For calculation 

f EEG functional connectivity networks, correlation (COR) and 

hase synchronisation index (PSI) are selected based on previous 

esults [5] . Their definitions will be given in the following sec- 

ion. For clarity, the methods being evaluated are referred to as 

aw + CNN, Uni + CNN, Cor + CNN, PSI + CNN, and Uni + FS + Mah,

espectively, as summarised in Table 2 . 

Data used for analysis is collected from the PhysioNet EEG mo- 

or movement and imagery (MMI) dataset [24] . This dataset con- 

ains EEG signals of 109 subjects in resting states and motor move- 

ent/imagery tasks. For each subject, we group these signals into 

our states: resting with eyes closed (EC), resting with eyes open 

EO), physical motor movement (PHY), and motor imagery (IMA). 

ach state will be used for training and testing, resulting in a 

otal of 16 training and testing scenarios, 4 of which are intra- 

tate conditions and the rest are inter-state conditions. The sig- 

als were recorded from 64 electrodes with a sampling rate of 160 

z, and were referenced to the earlobes. The signal preprocess- 

ng follows the common pipeline which comprises DC offset re- 

oval, bandpass filtering within [0.5 42] Hz, and artifact removal. 

inally, a non-overlapping moving window of one second was used 

or generating training and testing samples, therefore, each sample 

s a one-second EEG segment. To analyse the impact of EEG chan- 

el density on biometric recognition, we test each method with 

our channel configurations where each of them corresponds to 

 portable EEG acquisition device: all 64 electrodes, the Cognion- 

cs QUICK-20 (blue), Cognionics QUICK-30 (blue+yellow), and EMO- 

IV EPOC+ (green), as illustrated in Fig. 1 . Finally, a 5-fold cross- 

alidation scheme is adopted in all experiments. 

Fig. 2 reports the recognition performance of each method in 

he intra-state and inter-state conditions under the four channel 

onfigurations. The bar charts show the average CRR of all training 

nd testing scenarios of each condition. For detailed results of each 
136 
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Fig. 3. Illustration of the framework. ∗A desired channel configuration. 
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cenario and the significance test, please refer to Appendix B and 

ables 3 and 4 in Appendix C . Based on the results, the follow- 

ng observations are summarised. First, channel configuration has 

 significant impact on biometric recognition performance. Specif- 

cally, as the number of channels decreases, CRR shows a down- 

ard trend in both intra-state and inter-state test conditions. This 

rend is consistent for all methods, especially for methods using 

EG functional connectivity. For example, the decline in CRR of 

OR + CNN and PSI + CNN in Epoc+ configuration is larger than 

hat of Raw + CNN and Uni + CNN methods. Second, EEG func- 

ional connectivity provides higher inter-state stability than uni- 

ariate features and raw signals. For example, Raw + CNN and 

ni + CNN achieved high CRR in the intra-state test conditions, 

owever, their performance declined significantly in the inter-state 

est conditions. In contrast, COR + CNN and PSI + CNN outper- 

ormed Raw + CNN and Uni + CNN with All64 and Quick30 con- 

gurations in the inter-state test conditions. Although the CRR of 

OR + CNN and PSI + CNN dropped as the number of channels 

ecreased, their potential of improving the inter-state stability is 

emonstrated. Third, as suggested by neuroimaging studies, EEG 

unctional connectivity-based methods required a sufficient num- 

er of channels to support reliable analysis [25] . Our results show 

 similar trend that connectivity-based methods are susceptible to 

he number of channels. In addition, comparing results of the two 

onditions, a large inter-state variability within the same subject is 

bserved, which indicates that the cognitive states of subjects have 

ig impact on the identity-bearing patterns. Finally, the advantage 

f deep neural networks is demonstrated by comparing the results 

f CNN and results of Mahalanobis classifier. 

In summary, learning from EEG functional connectivity net- 

orks using CNNs is a promising way to obtain stable identity- 

earing patterns for biometric recognition. However, a sufficient 

umber of channels are needed to support stable performance. 

herefore, a framework that integrates channel density augmenta- 

ion, functional connectivity and deep learning is proposed in this 

tudy for reliable EEG biometrics. 

. Framework for reliable EEG biometrics 

The proposed framework, as illustrated in Fig. 3 , consists of a 

ignal preprocessing module, a channel augmentation module, a 

ynamic functional connectivity estimation module, and a deep 

earning module based on CNN. 

.1. Preprocessing 

The signal preprocessing procedure adopted in the framework 

onsists of the following steps: DC offset removal, bandpass filter- 

ng, missing channel detection, and artifact removal. Four types of 

rtifacts are detected and corrected, including (1) channel artifacts 

poor quality signals or erratic signals) due to bad contact or elec- 

rode mechanical faults; (2) epoch artifacts due to subject move- 

ent; (3) artifactual independent components which reflect ocu- 
137 
ar and muscular contamination; and (4) transient artifacts such as 

hort bursts of white noise due to transient electrical faults or tem- 

orary poor contact. A thresholding method using statistical pa- 

ameters of the data is used for artifact detection [26] . 

.2. Density augmentation 

The density augmentation module is designed for boosting the 

umber of EEG channels collected by low-density portable devices, 

s well as reconstructing missing channels or contaminated chan- 

els. The spherical spline interpolation is used [27] . It assumes a 

nit sphere for the scalp and projects the real scalp surface onto 

he sphere. Thus, any surface location can be represented as a vec- 

or emitted from the centre point of the sphere. This vector, can 

hen be expressed by two angles θ and φ which denote the rota- 

ion from the x -axis towards the y -axis and the angular displace- 

ent from the xy plane towards the z, respectively, in spherical 

oordinate system. 

Let r denote the location of an arbitrary point on the surface, 

ith its potential as V (r ) , and r i denote the spherical projection

ocation of electrode i, i ∈ { 1 , 2 , . . . , N ele } . Then spherical spline in-

erpolation assumes that the EEG potential at any point r on the 

urface of the sphere, V (r ) , can be expressed as: 

 (r ) = c 0 + 

N ele ∑ 

i =1 

c i g m 

(cos (r , r i )) (1)

here c 0 , c 1 , . . . , c N ele 
are constants fit to the data obtained by solv-

ng: 

N ele 
 

j=1 

g m 

( cos (r i , r j ) ) c j + c 0 = V (r i ) (2) 

ith a condition that: 

N ele 
 

j=1 

c j = 0 (3) 

here V (r i ) is EEG potential measured at electrode i, and i, j ∈
 1 , 2 , . . . , N ele } . The cos (r i , r j ) denotes the cosine of the angle be-

ween the two surface projection locations r i and r j , which is 

iven by: 

os (r i , r j ) = 

r i · r j 

| r i | · | r j | = 1 − (x i − x j ) 
2 + (y i − y j ) 

2 + (z i − z j ) 
2 

2 

(4) 

here (x i , y i , z i ) and (x j , y j , z j ) are the Cartesian coordinates of

urface projection of electrode i and j assuming a unit sphere. The 

unction g m 

(x ) is used for cosine distance and is given by: 

 m 

(x ) = 

1 

4 π

N order ∑ 

n =1 

(2 n + 1) P n (x ) 

n 

m ( n + 1) m 

(5) 
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here P n is the Legendre polynomial of order n which defines the 

patial harmonic frequencies, and m is a parameter that controls 

he spline flexibility. Computing P n (x ) can be done through recur- 

ent iteration according to: 

n + 1) P n +1 (x ) = (2 n + 1) xP n (x ) − nP n − 1 (x ) (6)

ith P 0 = 1 and P 1 = x . We set m = 4 and N order = 7 , as suggested

y Perrin [27] , to ensure sufficient precision on estimating g(x ) 

 10 −6 ) considering the electrode settings of our study. 

.3. Functional connectivity estimation 

The functional connectivity estimation module is designed to 

apture the dynamic coupling relationship between brain regions 

channels). Two connectivity metrics are selected based on a pre- 

ious study [5] which are Pearson’s correlation (COR) and phase 

ynchronisation index (PSI). 

Let x i and x j denote EEG signals from two different channels, 

espectively. The COR connectivity is given by: 

OR (x i , x j ) = 

1 

N s 

N s ∑ 

k =1 

x i (k ) x j (k ) (7) 

here N s is the number of time points of the signals. The phase 

ynchronisation measure is defined by the relative phase which is: 

φr (t) = | φx i (t) − φx j (t) | mod 2 π (8) 

here φx (t) denotes the instantaneous phase of signal x (t) and it 

s calculated by applying Hilbert transform to the signal. Then the 

SI measures how far the Deltaφr (t) is deviated from a uniformly 

istributed phase using Shannon entropy, as follows: 

HO (x i , x j ) = 

E( uniform ) − E(�φr ) 

E( uniform ) 
(9) 

here E(·) denotes calculation of entropy and E(�φr (t)) = ∑ 

k p k ln (p k ) with the probability p k approximated by generat- 

ng a histogram of �φr (t) . The E( uniform ) represents the maxi- 

um entropy of a uniform distribution. Considering the effect of 

he frequency content, the PSI is calculated on beta band EEG sig- 

als based on previous findings [5] . 

.4. Learning EEG biometric identifiers 

A convolutional neural network is designed to automatically 

earn inherent functional connectivity representations that exhibit 

nique identity-bearing patterns. The CNN cascades seven layers: 

nput ( N c × N c ) - Conv (32, 4 × 4 ) - MaxPooling ( 2 × 2 ) - Conv (64,

 × 4 ) - MaxPooling ( 2 × 2 ) - Dense (128) - Output. Specifically, in

he convolutional layer, convoluted feature maps are extracted by 

ocal linear filters and work as parallel filters to detect the struc- 

ural representations from the dynamic brain networks generated 

rom functional connectivity estimation module. In addition, the 

ax-pooling layer serves as a sub-sampling procedure that reduces 

he spatial dimensionality of each feature map while maintaining 

ts discriminative identity-bearing characteristics. 

The training procedure is based on iterating the cross entropy 

oss by the Adam optimiser. The initial learning rate is set to be 

.0 0 05 and the batch size is 100. Meanwhile, batch normalisation 

s adopted before the convolution layer and the dense layer for ac- 

elerating the training speed. Furthermore, 25% dropout is applied 

fter the max-pooling layers and the dense layer to reduce pos- 

ible over-fitting. An early stopping strategy using a validation set 

ade of 10% of the training data is also adopted to monitor over- 

tting during the training stage. The error on the validation set is 

sed as a proxy for the generalisation error in determining when 

ver-fitting occurs. 
138 
. Analysis and results 

.1. Density augmentation and stability 

We first evaluate the impact of channel density augmentation 

n biometric performance. Fig. 4 reports the results of different 

ethods with and without channel density augmentation. The two 

ows respectively show CRR results in the intra-state condition 

specifically, signals of all states are mixed and split for training 

nd testing) and inter-state condition (where resting-state EEG are 

sed for training, and non-resting EEG are used for testing). The 

verall finding is that augmenting channel density improves bio- 

etric recognition performance, especially the inter-state stabil- 

ty. Meanwhile, for different methods, electrode configurations, and 

est conditions, the enhancement brought by channel density aug- 

entation varies. 

Comparing results of each method with and without channel 

ugmentation (each pair of blue bar and red bar), we can ob- 

erve that channel density augmentation enhances CRR and this 

olds true for all the compared methods, electrode configurations 

nd test conditions (except for Raw + CNN that will be discussed 

ater). Deep neural networks are data-driven models and having 

ufficient training data is important for the models to learn ef- 

ective identity-bearing representations. As mentioned earlier, EEG 

ata has two dimensions, i.e., the signal length and the number 

f channels which affect the number of training samples and the 

nput dimensions. Previous studies have shown that obtaining a 

ufficient number of training samples through data augmentation 

an improve recognition performance, and our results demonstrate 

hat having sufficient numbers of channels for the input through 

hannel density augmentation can also facilitate the learning 

rocess. 

Comparing results of each method under the two test condi- 

ions, we can see that the augmentation of channel density played 

n even greater role in the inter-state condition, indicating that 

aving sufficient number of channels is important to maintain sta- 

le recognition performance in diverse human states. An input that 

ontains richer information provides higher possibilities for the 

odels to learn robust identity-bearing representations. 

Comparing results of the four methods, different degrees of en- 

ancement can be observed. For the two functional connectivity- 

ased methods, COR + CNN and PSI + CNN, channel augmentation 

ubstantially improved the CRR. For example, for COR + CNN in 

he inter-state condition, channel augmentation improved CRR by 

%, 7%, and 5% on average for the Epoc+, Quick20, and Quick30 

onfigurations, respectively. The enhancement for Uni + CNN is 

lso visible. However, for Raw + CNN, channel augmentation only 

chieved similar CRR equivalent to that of without channel aug- 

entation. For example, results of the significance test in Table 5 

n Appendix C show that, for Raw + CNN configured with Quick30, 

he difference between results of with and without augmenta- 

ion is statistically insignificant. The same situation happened with 

aw + CNN configured with Quick20 in the intra-state condition 

nd Raw + CNN configured with Epoc+ in the inter-state condition. 

 possible explanation is that for raw EEG signals, channel den- 

ity augmentation will introduce dependencies among the input 

ignals, which will affect the learning process of neural networks. 

herefore, directly training CNNs on the augmented EEG raw sig- 

als, i.e., Raw + CNN, will not necessarily improve CRR. However, 

he functional connectivity networks and univariate features ex- 

racted and established from the augmented raw signals are less 

ensitive to the impact of dependency between augmented raw 

ignals. Instead, the augmented channels bring a richer input or 

eature set that may contain robust representations in different 

tates. This is particularly true for functional connectivity-based 

ethods, such as COR + CNN and PSI + CNN, where the number of 
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Fig. 4. The impact of channel density augmentation on biometric recognition. The average and standard deviation of the CRR results of the 5-fold cross-validation are 

reported. Results of the significance test are summarised in Appendix C . 
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hannels have a large impact on the learning process, as discussed 

n Section 3 . 

In summary, the increase in channel density has a positive 

mpact on biometric recognition performance. The improvement 

rought about by increased channel density is particularly promi- 

ent for COR + CNN and PSI + CNN. The results demonstrate that 

he proposed framework consisting of channel density augmenta- 

ion, functional connectivity estimation and CNN is effective in en- 

ancing the recognition accuracy and stability of EEG-based bio- 

etric systems. 

In addition, we partition the whole scalp area (64 channels) 

nto four regions (frontal, central, parietal-occipital, and temporal) 

ccording to the cerebral cortex functions and analyse the contri- 

ution of each region. Results, in Appendix D , suggest that the 

rontal and central regions are strong biometric markers. Besides, 

he frontal area, especially the prefrontal area is superior in prac- 

ical use since the preparation procedure is usually more conve- 

ient than the other regions and the forehead sensors are superb 

n terms of duration and ease of use. 

.2. Volume conduction effects and biometric recognition 

We further evaluate the effect of volume conduction on EEG 

iometric recognition. Volume conduction describes the effects of 

ecording electrical potentials at a distance from their source gen- 

rator. For EEG signals recorded from the scalp surface, the vol- 

me conduction effects are generally high as each channel is a lin- 

ar mixture of concurrently active brain and non-brain electrical 

ources whose activities are conducted to the scalp with broadly 

verlapping patterns [28] . On the one hand, this confounding effect 

an lead to spurious features, especially for connectivity estimates 

hich measure the interaction between signals [28] . On the other 

and, the volume conduction effect depends on the morphology 

nd conductivity of the subject’s head structure, which may con- 

ribute to the individual distinctiveness of the EEG signal [10] . We 

pply surface Laplacian, to localise signals in order to study the 

mpact of volume conduction effects on biometric recognition. 

The implementation of surface Laplacian follows Perrin’s solu- 

ion which is based on spherical spline interpolation due to its ef- 

ciency and high accuracy with few electrodes [27] . It is essen- 

ially a local operator based on the second spatial derivative of the 

otentials, as � 

2 
sur face 

V (r ) . Considering the property of P n (x ) , we

ave: 

 

2 
sur face P n = −(2 n + 1) P n . (10) 
139 
hen the current source density at r , D (r ) can be estimated 

traightforwardly according to: 

 

2 
sur face V (r ) = 

N ele ∑ 

i =1 

c i h m 

(cos (r , r i )) (11) 

ith 

 m 

(x ) = − 1 

4 π

N order ∑ 

n =1 

(2 n + 1) 2 P n (x ) 

n 

m (n + 1) m 

. (12) 

 smoothing parameter λ = 10 −5 is added to the diagonal of the 

matrix when computing the current source density. The surface 

aplacian reduces contributions of deep and distant sources and 

stimates current flow at each channel, thus, attenuating the po- 

ential volume conduction effects [29] . 

Fig. 5 reports the impact of channel density augmentation on 

iometric recognition for those methods with volume conduction 

ffects reduced. The overall finding is consistent with that of Fig. 4 , 

hich is, augmenting channel density effectively improved recog- 

ition accuracy and inter-state stability. Not only that, the elim- 

nation of volume conduction effects even intensified the con- 

ribution of channel density enhancement in improving recogni- 

ion accuracy and stability. For example, in the inter-state condi- 

ion, for COR + CNN with surface Laplacian, channel augmenta- 

ion improved CRR by 18%, 21%, and 22% on average for the Epoc+, 

uick20, and Quick30 configurations, respectively. In contrast, in 

he same situation, for COR + CNN without surface Laplacian, the 

RR improvement brought by channel augmentation is 6%, 7%, and 

%. The impact of volume conduction effects can be observed by 

omparing results in Figs. 4 and 5 . A more direct comparison is 

resented in Appendix E . For inputs without channel density aug- 

entation, eliminating the volume conduction effect led to a de- 

rease in CRR in most cases. This trend is consistent for differ- 

nt channel configurations and for both functional connectivity and 

ignal timeseries inputs. The only exception is with univariate fea- 

ures, especially in the inter-state condition, where removing the 

olume conduction effect did not reduce CRR. Our results support 

he hypothesis that the volume conduction effects which depend 

n the morphology and conductivity of the subject’s head struc- 

ure are also a contributing component to individual EEG distinc- 

iveness. Therefore, by applying the surface Laplacian to reduce 

he volume conduction effects, some identity-bearing patterns that 

ay contribute to biometric recognition are lost. As shown in the 

esults, the confounding effects of volume conduction particularly 

ffect scalp-based functional connectivity estimates, while for uni- 
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Fig. 5. The impact of channel density augmentation on biometric recognition - with surface Laplacian. The average and standard deviation of the CRR results of the 5-fold 

cross-validation are reported. Results of the significance test are summarised in Appendix C . 

v

a

s

e

c

r

t

t

c

6

n

R

r

o

m

p

p

f

r

i

l

e

R

t

s

t

c

c

d

E

i

t

t

n

D

c

i

A

e

S

f

R

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

ariate features, the effect is small. On the other hand, for inputs 

fter channel density augmentation, the opposite trend can be ob- 

erved that surface Laplacian improves recognition accuracy. One 

xplanation is that the density augmentation introduces dependen- 

ies between the signals which further introduces spatial autocor- 

elation that limits spatial precision and cause spurious connec- 

ivity [29] . The surface Laplacian, which can be viewed as a spa- 

ial filter, attenuates spatial autocorrelation, and thus improves the 

onnectivity estimates. 

. Conclusion 

This study evaluated the impact of channel density of EEG sig- 

als on biometric recognition, especially the inter-state stability. 

esults validated that insufficient density has a negative impact on 

ecognition accuracy and inter-state stability. This is true for vari- 

us methods regardless of the features and classifiers. Specifically, 

ethods based on functional connectivity and deep learning show 

romising potential in improving inter-state stability, but the im- 

rovement is largely limited by the channel density. Therefore, a 

ramework was proposed to augment EEG density to achieve high 

ecognition accuracy as well as improving the inter-state stabil- 

ty. The framework supports reliable EEG biometric systems using 

ow-density ongoing EEG collected by portable devices with sparse 

lectrode settings, and thus facilitates flexible and practical uses. 

esults demonstrated that the framework dramatically improves 

he biometric recognition performance, especially in the inter-state 

cenarios. However, the proposed method is not suitable for sys- 

ems with single electrode configurations because the functional 

onnectivity estimation does need certain number of independent 

hannels to support reliable estimates. Future study will focus on 

esigning the optimal electrode configuration to achieve reliable 

EG biometric systems of high usability and stability with min- 

mum number of electrodes. In addition, we will further assess 

he framework in cross-session setups for a longitudinal evalua- 

ion [30] and extend the analysis scope to the authentication sce- 

ario. 
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