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a b s t r a c t 

In this paper, we tackle the task of improving biometric verification in the context of Human-Robot In- 

teraction (HRI). A robot that wants to identify a specific person to provide a service can do so by either 

image verification or, if light conditions are not favourable, through voice verification. In our approach, 

we will take advantage of the possibility a robot has of recovering further data until it is sure of the iden- 

tity of the person. The key contribution is that we select from both image and audio signals the parts 

that are of higher confidence. For images we use a system that looks at the face of each person and se- 

lects frames in which the confidence is high while keeping those frames separate in time to avoid using 

very similar facial appearance. For audio our approach tries to find the parts of the signal that contain 

a person talking, avoiding those in which noise is present by segmenting the signal. Once the parts of 

interest are found, each input is described with an independent deep learning architecture that obtains a 

descriptor for each kind of input (face/voice). We also present in this paper fusion methods that improve 

performance by combining the features from both face and voice, results to validate this are shown for 

each independent input and for the fusion methods. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Robot interaction with humans in many cases requires for the 

obot to be able to remember the identity of the individual with 

hom it is interacting. This is necessary when guiding people in 

ublic buildings like museums. Particularly in such public build- 

ngs, it is frequent that a team of robots cooperate providing ser- 

ices in different floors, simplifying the robot navigation across dif- 

erent floors, as they are not needed to manage stairs and lifts 

hich introduces additional complexity [22,23,36] . In such situ- 

tions user data, mainly non-cooperative biometric information, is 

hared among robots. Thus, the face and the voice together with 

ther soft biometrics descriptors may be used to re-identify or ver- 

fy the casual or anonymous (as he/she is not previously registered) 

ser identity [3] . 

In this paper, we tackle identity verification from the different 

nputs a robot has (audio and video). We will show that by under- 

tanding the context and taking advantage of the fact that a robot 
∗ Corresponding author . 

E-mail address: adrian.penate@ulpgc.es (A. Penate-Sanchez). 
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an look or hear twice substantial improvements can be made. We 

rovide solutions that improve on the state of the art by carefully 

nalysing what parts of the input signal are relevant to perform 

iometric verification. Results for all three possible scenarios are 

rovided: only face, only voice and a fusion of face + voice. As it 

an be expected, and proven in the experimental section of this 

aper, the best approach is the one that combines face biometric 

erification and voice biometric verification to perform user verifi- 

ation. 

. Related work 

In the context of human-robot interaction (HRI), service robots 

lay a main role with applications in a wide set of scenarios. Robot 

inerva was one of the pioneer tour guiding robots [35] perform- 

ng in the Smithsonian’s National Museum of American History 

n Washington. Other robots appeared later in different museums 

cross the world exhibiting similar capabilities: Robovie at the Os- 

ka Science Museum [31] , KTBot at the Eureka Science Museum 

f San Sebastian [34] , and Robotinho at the Deutsches Museum of 

onn [8] . Mostly, robots actions are limited to a single floor. Con- 

idering the multirobot-human interaction in different buildings, 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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he robot system network proposed in [10] guide customers in a 

hopping mall, integrating sensors and cloud resources. More re- 

ently, the authors of [28] describe GidaBot, a heterogeneous ser- 

ice multi-robot team which cooperate in different floors. Later, 

hey integrated face recognition to verify user identity when re- 

eiving a user in a different floor, providing real life results for 56 

uiding actions, i.e. identities [29] . 

Face and audio are the main cues used to recognize individ- 

als during HRI and feature fusion has also been analyzed in the 

RI scenario. In [26] the authors combine clothing, complexion and 

eight to recognize individuals by a humanoid. However, such in- 

ormation may not be easy to obtain for other kind of robots which 

ay not see the whole body. There is a lack of results presented 

or HRI real-applications, likely due to the unrestricted acquisition 

etup [38] . Recent advances in face recognition have introduced 

he use deep learning for such task in robotics. In this sense, sin- 

le robots such as the one presented in Jiang and Wang [15] or 

ERESA [38] integrate FaceNet [30] embeddings to perform face 

haracterization. 

More recently, robots guiding humans have taken a step further 

nd began to visually identify the humans they seek to guide. In 

he works of [11] and [9] a complex model to identify social in- 

eraction between the robot and the human that is being assisted 

as proposed and tested. In those works, the role of identifying 

eliably the specific person in an environment that is constantly 

hanging due to the movement of both human and robot is key. 

veRobot [25] , was created to provide a challenging benchmark for 

ace recognition in HRI across multiple floors, where different fea- 

ures of relevant databases are compared. The recordings provide 

udio and video using eight sensors in different locations across 

hree different floors, posing a complex re-identification and veri- 

cation scenario [24] . This dataset is used to evaluate the approach 

roposed in this paper. 

Also, recently several solutions to noise and low-quality envi- 

onments have been proposed. In [5] , a novel approach to tackle 

ace detection in low resolution images can found. In this work a 

unnar Farneback optical flow is used first to understand moving 

arts of the image, while afterwards, Haar Cascades and Local Bi- 

ary Patterns are used as to detect face on those moving parts. 

nother recent method that tries to advance face re-identification 

rom low quality images can be found in Apicella et al. [4] . This

aper proposes the use of super-resolution techniques to enhance 

he image of the face through a sequence of frames in order to 

mprove performance and reliability. The results presented in his 

aper indicate that this is a viable option to tackle this task. Fi- 

ally, a survey on techniques devoted to further the research on 

ace recognition on low quality images can be found in Li et al. 

21] . 

. Visual proposal description 

Biometric verification from visual cues is usually based on facial 

nformation. Thus, face detection is applied, using eye and mouth 

ocations to crop each facial sample, composing a set of samples 

or each clip. The samples are ranked to select a subset to model 

n identity. Next subsections summarize the whole procedure. 

.1. Face detection 

AveRobot presents unrestricted illumination conditions making 

ace detection challenging. In addition, the dataset contains video 

lips recorded by eight different sensors, with some of them cap- 

uring interlaced video. For those particular videos, the clip frames 

re pre-processed to reduce interlacing artifacts that affect nega- 

ively face detection and cropping. Basically, odd lines are removed, 
180 
esizing the resulting image to the original image dimension apply- 

ng a pixel nearest interpolation. 

Once pre-processing is done, if necessary, face detection is per- 

ormed. After evaluating different standard face detectors [17,18] , 

TCNN [41] was chosen given the acceptable speed, stability and 

obust answer for this scenario. 

.2. Face cropping 

MTCNN face detector provides a face container, and also five fa- 

ial landmarks (eyes, nose and mouth), being eye and mouth loca- 

ions used to guide the face cropping step. No further alignment is 

dopted in the experiments below. Being X the difference in the 

 axis between the eye locations, and Y the difference in the y 

xis between the eyes and mouth landmarks, the face container is 

orced to have a dimension of 3 · X × 3 · Y pixels, locating the eyes 

t 1/3 and 2/3 in the x axis, and similarly eyes and mouth at 1/3

nd 2/3 in the y axis. 

.3. Detection quality 

Once that the collection of cropped faces is obtained for a given 

lip, each detection is ranked combining the MTCNN detector con- 

dence, con f det . and two Image Quality Assessment (IQA) criteria. 

he first one, brisque , is based on Blind/Referenceless Image Spatial 

uality Evaluator (brisque) [27] that provides a value based on the 

mage luminance. The second one, cont , introduces contour statis- 

ics assuming that typically a good contrasted facial image should 

ontain a higher number of edge pixels. Therefore, after applying a 

anny operator the number of edge pixels is divided by the total 

umber of sample pixels. For two samples with identical con f det , 

he one with larger IQA would be selected in first place. For the 

xperimental setup used below, the final confidence value is cal- 

ulated as follows: 

on f idence = X 1 · con f det + X 2 · brisque + X 3 · cont (1)

here X1 + X2 + X3 = 1 and con f det , brisque, cont ∈ [0 , 100] 

.4. Sample selection 

After the previous steps, each face included in the collection 

f cropped faces of a given clip is characterized by a con f idence 

alue. At this point, a number of facial samples are chosen ac- 

ording to their con f idence . The proposal assumes that samples 

ith the same confidence are quite similar and likely located quite 

lose in time. Therefore, the selection within the video clip is 

one forcing a difference in the confidence, to avoid the inclusion 

f rather similar captures and increase the intra-class variability. 

he objective is to extract the max _ detection samples with highest 

uality, but not identical from the clip. In the experiments below, 

ax _ detection = 4 , but later just one of them is randomly taken 

o compute distances. Examples of selected and non-selected faces 

an be seen in Fig. 1 . The samples selection is done according to 

he following steps: 

1. The clip maximum con f idence is obtained. 

2. Samples are clustered according to their confidence value, using 

a step value of 0.0 0 0 01, and sorted in descendent order from 

the maximum value. 

3. The attention is given to the first cluster, i.e. with largest confi- 

dence. 

4. While the number of collected samples is lower than 

max _ detection : 

(a) A sample is taken randomly from the current cluster. 

(b) Next cluster in descendant order is taken. 
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Fig. 1. Sample selection. Top row: Selected image from a specific sequence, the 

image shown is ranked as the best image by the face detector (highest confidence). 

Bottom row: Example of non selected image from a specific sequence, the image 

shown is ranked as the 20th image by the face detector (lowest confidence). 
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(c) When the last cluster is reached without reaching 

max _ detection samples, clusters rejected samples are 

reconsidered, selecting those with highest confidence. 

.5. Descriptors 

Each selected sample is used to feed a pre-trained neural net- 

ork that computes face embeddings. This step encloses a face 

ample resize to match the net expected input dimensions. In 

ome preliminary evaluations experimental setups, two of them 

ave been explored: FaceNet which is based on an Inception 

esNet v1 architecture [30] , and the dataset VGGFace2 that is used 

o fine-tune a ResNet50 originally trained on MS-Celeb-1M [6] . 

hose preliminary experiments, not included here given the lack 

f space, reported a significantly better performance of the sec- 

nd approach, and therefore, VGGFace2 is used in the experiments 

resented below. Euclidean distance is later adopted in the visual- 

ased verification matching. 

. Audio proposal description 

The speaker verification, see Fig. 2 , is tackled through three dif- 

erent stages. Raw audio is first pre-processed using a noise sup- 

ression technique. Secondly, a voice activity detection algorithm 

xtracts the utterance speaker audio. Finally, the speaker audio is 

sed in a feed-forward deep neural network for speaker verifica- 

ion purposes. 

.1. Noise suppression 

The presence of highly non-stationary noise conditions can be 

onsidered problematic. In our sense, the detected noise fluctua- 

ions over short time scales can contaminate the audio signal. In 

ur proposal, the RNNoise approach is used to address the noise 

uppression process. RNNoise is a technique to real-time full-band 

peech enhancement proposed by Valin [37] . This approach com- 

ines DSP-based techniques with deep learning. It consists of a 

onventional pitch filter and several hidden layers of a deep neu- 

al network. Traditional noise suppression algorithms make use of 

hree different stages to tackle the problem: (i) voice activity de- 

ection, (ii) noise spectral estimation and iii) spectral subtraction. 

owever, RNNoise uses a three-layer recurrent neural networks 

RNN) instead of these three stages. RNN layers are organized in 

ascade, where each RNN layer is the input for the successive RNN 

ayer. The input of the network is the frequency spectrum features 

f each frame, and the output is the frequency bands gain. Each 

riginal audio is converted to single-channel, 16-bit streams at a 
181 
8 kHz sampling rate in order to fit the RNNoise input. The band 

ain ( g b ) is defined as follows: 

 b = 

√ 

E s (b) 

E x (b) 
(2) 

here E s (b) and E x (b) are the energy of the clean (ground truth) 

peech and the energy of the input (noisy) speech of the frequency 

and b respectively [37] . By observing Eq. (2) , one may infer that 

he clean speech energy can be computed by adjusting a gain value 

in the range [0, 1]) that multiplies the noisy speech energy. 

.2. Voice activity detection 

Once the noise suppression has been handled, the next stage 

s to extract the speech regions of an utterance which are the 

ost effective for speaker discrimination. If a large number of non- 

peech frames are considered for classification purposes, they can 

orrupt the decision process and hence significantly reduce the 

erformance of our proposal. This second stage is known in lit- 

rature as voice activity detection (VAD). 

Although there is an extensive research on different VAD tech- 

iques, speaker verification and VAD techniques have been largely 

eveloped independently from each other [16] . As Jung stated, re- 

earch on the use of VAD in the speaker verification context is very 

imited. Voice Onset Time (VOT) is defined as the period between 

he release of a plosive and the onset of vocal cord vibrations in 

he production of the following sound [32] . In other words, onset 

etection (or segmentation) is the means by which we can divide 

 signal into smaller units of sound. Several works in literature ad- 

ress the VAD problem trough the VOT. An interesting technique 

onsists of backtracking detected onset events to the nearest pre- 

eding local minimum of an energy function. This technique basi- 

ally rolls back the timing of detected onsets from a detected peak 

mplitude to the preceding minimum. This is very useful when 

sing onsets to determine slice points for segmentation [14] . We 

ake use of the onset backtracking technique to generate audio 

lusters from the input signal. Hence, given an audio signal s [ n ] ,

he energy function considered as input for the backtracking algo- 

ithm is defined as the root mean square (RMS) of the short-time 

ourier transform: 

 = 

√ 

1 

N 

N ∑ 

i 

| ST F T { s [ i ] }| 2 (3) 

here ST F T stands for the short-time Fourier transform. This 

ransform divides a longer time signal into shorter segments of 

qual length and then computes the Fourier transform separately 

n each shorter segment. Once the backtracking technique is com- 

uted, the most suitable cluster is automatically selected depend- 

ng on the density of peaks and the cluster location within the sig- 

al. This technique allow us to obtain a speech region of an utter- 

nce. 

.3. Audio classification 

The last stage seeks to determine the identity of a speaker from 

he pre-processed audio. Usually, there are two common speaker 

ecognition tasks; speaker identification [7,39] and speaker verifi- 

ation [20,33] . A speaker utterance is required to accomplish both 

asks. 

Traditionally, embedding methods have been used to map utter- 

nces into a low-dimensional feature space where distances cor- 

espond to speaker similarity. In this regard, i-vectors have been 

sed to model inter-speaker variability [39,40] . A high-dimensional 

ample can be converted into a single low-dimensional i-vector 

hat encodes speaker identity. 
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Fig. 2. The proposed audio pipeline. During the first stage, the audio signal is cleaned and the speaker utterance is extracted. Then, the frame level signal is processed 

through a pre-trained deep neural network [19] . Each of the three stacked ConvNet-ResNet blocks has an identical structure, and the skip connection is the identity mapping 

of x . The activation function considered is the clipped rectified linear (ReLU) function. 
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In this work, we used a pre-trained network known as Deep 

peaker (see Fig. 2 ) proposed by Li et al. [19] . These authors

sed a ConvNet-ResNet deep architecture for frame level audio 

eature extraction. ResNet is composed of a number of stacked 

esidual blocks. Each of these blocks contains direct links between 

he lower block outputs and the higher block inputs [12] . Af- 

erwards, an average layer converts the frame-level input to an 

tterance-level speaker representation. Finally, the dense layer and 

 length normalization layer map the temporally-pooled features 

o a speaker embedding. 

In terms of loss function, the cosine similarity has been proven 

s an efficient score function for speaker verification tasks [13,19] . 

onsequently, a triplet loss is considered as loss function. It oper- 

tes on pairs of embeddings, by maximizing the cosine similarities 

f embedding pairs from the same speaker, and minimizing those 

rom different speakers. 

. Multimodal classification: fusion of face and audio 

Both biometric inputs described in Sections 3 and 4 provide a 

ultimodal scenario. Hence, it is possible to combine the evidence 

resented by these biometric sources in order to verify the identity 

f an individual. It seems intuitive that by using more information 

esults will improve and, as we will show in the experimental sec- 

ion, this is the case for the task at hand. It is for such a reason

hat we have performed several approaches that seek to take ad- 

antage of both biometric inputs. In this work, two different fusion 

trategies are described: one based in combing the biometric in- 

uts at the feature vector level (Multimodal Feature Fusion), and 

nother, based on combining the scores obtained after matching 

he feature vectors (Multimodal Score Fusion). 

The first fusion strategy is obtained by performing a feature- 

evel fusion. In this work, feature level fusion is accomplished 

y concatenating the feature sets obtained from the audio and 

mages. Let X audio = { x 1 , x 2 , . . . , x m 

} and Y face = { y 1 , y 2 , . . . , y n } de-

ote feature vectors ( X audio ∈ R m and Y face ∈ R n ) representing in- 

ormation extracted via two different sources. The purpose is to 

ombine both feature sets in order to yield a new feature vec- 

or Z . The fused feature vector takes the following form X fusion = 

 x 1 , . . . , x m 

, y 1 , . . . , y n } . Then, as seen in Section 6 , different ap-

roaches will perform a feature selection on the resultant feature 

ector. 

The second fusion strategy adopted is a multimodal score-level 

usion. In this case, the matching scores for each biometric modal- 

ty are combined in order to provide a final verification decision. 

ence, after both audio and face distances have been computed, 

 score-level weighted data fusion is performed according to the 

ollowing rules: 

core = score audio · w audio + score face · w face (4) 

here w audio and w face denote the audio and face weights respec- 

ively. Weights values are in the range [0 , 1] where w audio + w face =
 . In this regard, an experimental evaluation took place through a 
182 
rid search considering different values for these weights. In all our 

xperiments a weight distribution of w audio = 0 . 3 and w face = 0 . 7

as been empirically found to be the best. 

. Experimental evaluation 

To evaluate the performance of both possible inputs to the 

obotic system we have used a dataset created for such purpose, 

he AveRobot dataset [25] . As briefly mentioned above, this dataset 

as showed to be more challenging than the previously existing 

s it presents many issues with lack of illumination in corridors. 

t also presents a wide array of identities, cameras and different 

ocations within the same building. Such characteristics were se- 

ected to cover many possible situations in which a robot could 

nd itself. The metric used for all experiments on the dataset is 

he commonly used Equal Error Rate (EER). This metric is specially 

uited to measure the performance of verification systems as it is 

he point where the false rejection rate (FRR) and the false accep- 

ance rate (FAR) meet. 

The experiments within the AveRobot dataset have been per- 

ormed in the same way as in the original work [25] in order to

reate a fair comparison baseline. For each test dataset 40 identi- 

ies are selected randomly. For each of those identities a list of 20 

ositive identity pairs (genuine pairs) and 20 false identity pairs 

impostor pairs) are created. We then estimate the ability of each 

ethod to differentiate between genuine and impostor pairs us- 

ng the EER metric as commented before. This experiment is per- 

ormed 20 times using random identities in each iteration. All 

ethods have been tested using the same random identities. 

In the solutions we propose to all three combinations of voice 

nd face biometric verification we apply dimensionality reduction 

o the embeddings. This serves two purposes, the first, to smooth 

he neural network response over the training samples to allow for 

 better generalization, and second, to allow for a better fusion of 

oth face and voice inputs when performing Feature Fusion. Given 

he disparity in dimensionality, performing dimensionality reduc- 

ion helps the combination of both by purging the less informa- 

ive parts of each embedding. In our experiments we used Trun- 

ated Singular Value Decomposition (TSVD) [2] and Uniform Man- 

fold Approximation and Projection (UMAP) [1] ; apart from Princi- 

al Component Analysis (PCA), which was our final selection based 

n the obtained results. We have observed no benefit from using 

ther methods and performance is fairly similar. 

.1. Face verification results 

When performing face verification experiments all the dimen- 

ionality reduction techniques reported similar results: UMAP ( 14% 

 20 components), PCA ( 13 . 38% - 100 components) and TSVD 

 13 . 48% - 100 components). These results are slightly better than 

onsidering just the raw embeddings ( 14 . 76% - 2048 compo- 

ents). However, it can be seen that compared to previous results 

rom [24] a great improvement is obtained by pruning the cho- 

en frames (see Table 1 ). Having stable and varied inputs helps 
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Table 1 

Verification results on Averobot-EER. In this table we compare our approach 

with the work developed in Marras et al. [24] . 

Modal approach Loss - Author EER 

Face Verification Margin - Marras 45 . 43% 

Center - Marras 45 . 47% 

Ring - Marras 42 . 63% 

Softmax - Marras 38 . 20% 

ResNet50 - Ours 14 . 76% 

ResNet50 + PCA - Ours 13.38% 

Voice Verification Margin - Marras 44 . 58% 

Center - Marras 42 . 33% 

Ring - Marras 43 . 27% 

Softmax - Marras 41 . 58% 

Softmax - Ours 38 . 54% 

Triplet - Ours 34 . 05% 

Triplet + PCA - Ours 32.07% 

Multimodal 

Verification 

Margin - Marras 37 . 08% 

Center - Marras 32 . 80% 

Ring - Marras 34 . 40% 

Softmax - Marras 33 . 05% 

Feature Fusion - Ours 13.35% 

Score Fusion - Ours 12.22% 

Fig. 3. Uni-modal voice verification results on Averobot-EER. A hundred frames are 

approximately one second. 
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Fig. 4. ROC curves for score fusion related to the best performing approach for each 

technique. 

Fig. 5. FAR/FRR curves for score fusion related to the best performing approach for 

each technique. 
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he robot make better decisions when determining the identity of 

he person who is in front of it. By taking into account the con- 

ext of the robot such an improvement is possible. In this partic- 

lar case, the smoothing of the embedding space by performing a 

CA dimensionality reduction lowers the error rate from 14 . 76% to 

3 . 38% . 

.2. Audio verification results 

As can bee seen in Fig. 3 , the number of considered frames 

lays a key role. Accordingly to Section 4.2 , the VAD ensures the 

ocation of speech frames at the beginning of each file. Otherwise, 

f not enough speech frames are detected, then the neural network 

ay not be able to detect the speaker. It is justified to truncate 

ll the audio samples somehow because we want all of them to 

ave the same number of frames. For instance, let’s consider 200 

rames per sample. On the one hand, for the audio samples shorter 

han 200 frames, we pad them with silence. On the other hand, 

or the audio samples larger than 200 frames, we truncate them. 

ig. 3 shows this trade-off between the number of frames, finding 

he best results when 160 frames are considered. The considered 

echniques reported analogous results: UMAP ( 33 . 02% - 20 com- 

onents), PCA ( 32 . 07% - 200 components) and TSVD ( 33 . 96% - 80

omponents). Again these results are quite similar between them 

ut better than considering just the raw embeddings ( 34 . 05% - 512 

omponents). 

In Table 1 the EER results can be seen for our proposed audio 

dentity verification approach. In this case, it can also be seen that 
183 
aying attention to only the parts of the speech that are of inter- 

st nearly a 10% improvement is obtained between the best of the 

ompared baselines and our best approach (PCA triplet). We show 

esults of both our chosen neural network trained with a softmax 

nd a triplet loss. In the reported results, the triplet loss performs 

uch better. 

.3. Fusion verification results 

The third experiment shows the results achieved in this work 

y combining both biometric inputs to achieve better global re- 

ults. As we stated in Section 5 , two different fusion strategies are 

onsidered in our work. The feature-level fusion scheme adopted is 

ased on the concatenation of the two embedding vectors, while 

he score-level fusion scheme exploits variable weights for the 

oice and face components. 

On the one hand, the feature fusion experiment reported the 

ollowing rates: raw embeddings ( 15 . 02% - 2560 components), 

MAP ( 14 . 36% - 10 components), PCA ( 13 . 35% - 160 components)

nd TSVD ( 14 . 32% - 190 components). On the other hand, the score

usion experiment reported the following rates: raw embeddings 

 13 . 33% - 2560 components), UMAP ( 13 . 39% - 10 components), PCA

 12 . 2% - 160 components) and TSVD ( 12 . 58% - 160 components). In

ll our score fusion experiments a weight distribution of w audio = 

 . 3 for audio biometric signal and w face = 0 . 7 for face biometric

ignal has been empirically found to be the best. Table 1 shows 

he results for each fusion strategy. Both fusion strategies outper- 

orm all uni-modal approaches, being the best fusion strategy the 

core-level approach. We also report the full ROC curves ( Fig. 4 ) 

or all embedding approaches used in our tests. Moreover, Fig. 5 

hows FAR/FRR curves for the best embedding approaches when 

he score fusion is considered. It can be appreciated that perfor- 
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ance is quite similar among the considered approaches. For all 

imensionality reduction methods used several number of compo- 

ents were tested. For all methods components in a range from 

0 to 200 were tested, the number of components reported in this 

aper is the one with the highest experimental results for each. 

. Conclusions 

We have showed in this work that by understanding the con- 

ext and the task in which identity verification is performed re- 

arkable improvements in performance can be achieved. By ac- 

nowledging that a robot can take a second, and even a third look, 

o the person the overall performance of identity verification from 

ither audio or faces can be greatly boosted. By performing a care- 

ul selection of the regions of interest for voice and face identity 

erification complex real life scenarios, like the ones handled in 

his paper, can be solved. In this worked we have also demon- 

trated that by combining both face and voice biometric inputs a 

ore robust approach can be achieved. It is the use of multiple in- 

uts what can make a robot capable of handling the complex sce- 

arios that it will encounter on a daily basis. We believe that with 

olutions that report high levels of robustness, like the ones pre- 

ented in this work, robots can begin to helps us in an increasing 

anner. 
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