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Eye-movement recognition is a new type of biometric recognition technology. Without considering the
characteristics of the stimuli, the existing eye-movement recognition technology is based on eye-
movement trajectory similarity measurements and uses more eye-movement features. Related studies
on reading psychology have shown that when reading text, human eye-movements are different between
individuals yet stable for a given individual. This paper proposes a type of technology for aiding biometric
recognition based on reading eye-movement. By introducing a deep-learning framework, a computa-
tional model for reading eye-movement recognition (REMR) was constructed. The model takes the text,
fixation, and text-based linguistic feature sequences as inputs and identifies a human subject by measur-
ing the similarity distance between the predicted fixation sequence and the actual one (to be identified).
The experimental results show that the fixation sequence similarity recognition algorithm obtained an
equal error rate of 19.4% on the test set, and the model obtained an 86.5% Rank-1 recognition rate on
the test set.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Biometric recognition technology is widely used in e-
commerce, electronic products, and network security. Reading
eye-movement is a human behavior with the biometric character-
istics of convenience, security, universality and collectability [1].
Thus, users can be identified by comparing human eye-
movement trajectories.

Based on measurements of eye-movement trajectory similarity,
the existing eye-movement recognition technology extracts the
measurable features of the eye-movement trajectory, including
the fixation duration and the lengths of the saccades. Other tech-
nologies compare the eye-movement trajectories using more com-
plicated space and time information of the eye-movement. The
existing technologies are usually used to obtain the similarity mea-
surement value (or values) of eye-movement trajectories. How-
ever, the characteristics of the stimuli are not considered.

Related studies on reading psychology have shown that human
eye-movements during reading are significantly different between
individuals [2–4], but the same individual exhibits a certain simi-
larity. This suggests that human eye-movement is unique and
stable to some extent and can be used in biometrics [5,6]. Fig. 1
shows the fixation sequences as ten subjects read the same text.

In this study, multiple-input deep neural networks were uti-
lized to learn the reading eye-movement behaviors and construct
a computational model for reading eye-movement recognition
(REMR). The model can learn the features of the stimuli (reading
materials) and the eye-movement trajectory. The model can fully
simulate human eye-movement after training and can be applied
for user identification by comparing the predicted and actual (to
be identified) fixation sequences. Combined with other biometric
recognition technologies, this technology can be used as a supple-
mentary tool for the existing identity authentication methods to
realize multi-factor identity authentication.

The main contributions of the present paper are as follows.

1. A biometric recognition technology is proposed based on read-
ing eye-movement. Accounting for the stimuli (reading materi-
als) and scanning path, this technology uses fewer handcrafted
features to obtain effective recognition by utilizing the deep-
learning characteristics of automatic feature extraction. As a
result, the model obtained an 86.5% Rank-1 recognition accu-
racy on the test set.
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Fig. 1. Fixation sequences as ten subjects read the same text. The horizontal axis
represents the subject’s ID, and the vertical axis indicates the word’s location labels
in the text (60 words total). The dots in the figure represent the subjects’ fixation
location distribution while reading. The fixation sequences are significantly
different when different subjects read the same paragraph.
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2. A REMR computational model based on deep-learning is pro-
posed. This model uses a deep neutral network to generate
the predicted fixation sequence and measure the similarity dis-
tance between the predicted and actual fixation sequences to
identify the subject.

3. An algorithm is presented for evaluating the fixation sequence
similarity. The algorithm uses dynamic time warping (DTW)
to measure the similarity between two fixation sequences,
and the proposed algorithm obtained an equal error rate
(EER) of 19.4% on the test set.

2. Related work

The biometric study of eye-movement stems from the early
study of scanpath theory, in which the word ‘‘scanpath” refers to
the space path formed by an orderly fixation and saccadic
sequence. In 1971, Noton and Stark [7] found that the general scan-
path followed by a subject during the first viewing of a pattern was
repeated in the initial eye-movements of roughly 65% of subse-
quent viewings, and the scanpath for specific stimuli varied from
person to person.

The 2004 paper by Kasprowski and Ober [8,9] was, as far as we
know, the first study that applied eye-movement to biometric
research. Referring to a method commonly used in the voice recog-
nition, they conducted an eye-movement biometric recognition
test and obtained an average false positive rate (FPR) of 1% and
false negative rate (FNR) of 23% based on a dataset of nine subjects.
In 2011, Holland and Komogortsev [10] started to study complex
eye-movement patterns (CEM-P) and made use of averages and
aggregate features, including fixation counts, the average fixation
duration, the average vector saccade range, the average horizontal
saccade range, the average vertical saccade range, the average vec-
tor saccade speed, the average vector peak saccade velocity, the
velocity waveform indication, the scanpath length, the convex hull
area of the scanpath, the region of interest, inflection point counts,
the coefficient of the relationship between the range and time of
duration, and the coefficient of the relationship between the range
and peak velocity. They accomplished this using a Gaussian kernel
and linear combination. During testing, they obtained an EER of
27% from 32 subjects. In 2013, Holland and Komogortsev [11]
achieved an EER of 16.5% using modified CEM-P technology. This
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is the lowest EER reported thus far. In 2012, Rigas et al. [12] applied
graphics-based matching technology (similar to face recognition)
to comparisons of eye-movement location labels and compared
the minimum spanning trees using the multivariate Wald–Wol-
fowitz runs test. In this method, an EER of 30% was achieved on
a dataset of 15 subjects. In 2015, Cantoni et al. [13] proposed a type
of gaze analysis technique (GANT), in which the eye-movement
model was constructed using the fixation time and regression
counts on the different gaze points of different subjects, and the
similarity between the two records was found using the Frobenius
norm of the density map. The study of computational eye-
movement models has been mainly based on psychology methods
[14–16], traditional machine learning methods [17–21], and neural
network learning methods [22–25].

Eye-movement biometric technology has been developed for
more than ten years and is still in an early and exploratory stage
[13]. All the above eye-movement biometric technologies contrast
two given scanpaths by extracting the easily measurable eye-
movement space and time information without taking the stimuli
into account. Taking advantage of deep-learning techniques that
can extract data features automatically [26], a type of biometric
recognition technology based on reading eye-movement is pro-
posed in this paper that accounts for the stimuli (reading materi-
als) and scanning path to obtain effective identification results
while requiring fewer eye-movement features.
3. Method

3.1. Problem setting

Experimental results of eye-movement and reading have indi-
cated that eye-movement during reading is goal-oriented and dis-
crete [4]. This means that the saccade is non-random in selecting a
visual target and that the saccade target points to a particular word
rather than a specific distance. Based on this notion, there are
many candidate words in the latent saccade period, and each word
has a chance to be selected as the target of subsequent saccades. In
this work, the probability of each word in the text being fixated on
is set by the eye-movement model without any constraints. The
text and fixation sequence are elaborated on below.

R represents a set of readers, and a single reader is denoted as
r 2 R. T represents text whose word order is (w1, . . .,wn). For each
r 2 R, we generate a fixation point sequence FRAW based on each
word in T and assume that FRAW obeys the following relation:

FRAW � p(FRAWjT , r), ð1Þ

where p(FRAW|T, r) is the distribution of eye-movement patterns
when a particular subject reads a piece of text. For example, the text
‘‘Kate quivered and went to the window” is expressed as T = (Kate,
quivered, and, went, to, the, window). A possible fixation sequence
FRAW is recorded as (Kate, quivered, and, Kate, quivered, went, the,
window), and the corresponding location sequence is (1, 2, 3, 1, 2,
4, 6, 7). The area is divided by the rectangular region in which the
word is located, and the set of region locations corresponding to
FRAW is {1, 2, 3, 4, 6, 7}. For all the regions, if there is a fixation on
the region, the region is marked as 1; otherwise it is marked as 0.
The area tag sequence is represented by IA, and the corresponding
IA is (1,1,1,1,0,1,1). The number of elements in IA is the same as that
in T. Using the method described above, we refined our target by
excluding regressions from the fixation data.

In the case of identity recognition based on the reading eye-
movement model, it is assumed that M is a computational eye-
movement model, and the given text sequence is T. When a reader
r reads text T, the sensor acquires the fixation sequence FRAW of the
eye-movement. The following formula is deduced:
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r ¼ argmax
r2R

pðRjM; T; FRAWÞ: ð2Þ

To facilitate the data processing of the model, the IA sequence is
used instead of the FRAW sequence, and a linguistic feature
sequence A1. . .An (n 2 N) corresponding to T is introduced. The
length of An is the same as that of T. Therefore, the following for-
mula is deduced:

r ¼ argmax
r2R

pðRjM; T; IA;A1:::AnÞðn 2 NÞ: ð3Þ

A reading eye-movement recognition computational model
based on deep-learning was constructed to solve the above prob-
lem. The model takes advantage of deep-learning techniques that
extract the features automatically.

3.2. Framework of REMR computational model based on deep-learning

The computational model takes the text sequence, text-based
linguistic feature sequence, and actual fixation sequence as inputs,
and it outputs the results by measuring the similarity distance
between the predicted fixation sequence and the actual one. The
framework of the model is presented in the Fig. 2.

The text sequence output processing goes through three layers.
The first layer is the word embedding layer, in which the model
transforms the word into the sparse high-dimensional one-hot
vector and maps the one-hot vector into a dense low-
dimensional word vector. The second layer is a bidirectional long
short-termmemory (LSTM) layer. It saves the previous information
in the text sequence for later use. The third layer is a dense layer,
Fig. 2. Framework of the reading eye-movement recognition (REMR) computa-
tional model based on deep-learning. The model first processes the input text
through word embedding, the bidirectional LSTM, and dense layers, after which it
outputs a vector and merges the vector with the text-based linguistic feature
sequence (digitized linguistic features with the same length as the input text) to
learn. Through the above procedures, the model generates the predicted fixation
sequence. Finally, the model outputs the results by comparing the similarity
distance between the predicted reading eye-movement fixation sequence and the
actual one (to be identified). The actual fixation sequence consists of zeros and ones
with the same length as the input text. The output of the model is the subject’s ID in
the dataset.
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which serves as the output layer of the text sequence processing.
The model merges the generated vector with the text-based lin-
guistic feature sequence vector after completing the input text pro-
cessing and feed to a dense layer to generate the predicted fixation
sequence. At this point, the task of predicting the fixation sequence
is completed, and the similarity distance between the predicted
and actual fixation sequences is measured for identity recognition.

The framework of the reading eye-movement recognition com-
putational model based on deep-learning is described in detail
later. The neural network components (layers) and the similarity
measurement for the fixation sequence will also be discussed.

3.3. Word embedding layer

The word embedding layer implements the process of text vec-
torization. The input is a sequence of numbers, and the output is a
list of vectors. The neural network model cannot receive raw text
as input, and it can only process numeric tensors. It is therefore
necessary to digitize and vectorize the text. The processing steps
are as follows:

(1) Read the text data.
(2) Build the token.
� The size of the dictionary is set to be greater than or equal
to the number of unique words in the corpus.

� Sort all the words that appear in the corpus based on the
number of occurrences.

� The established dictionary is of the form {‘the’: 1, ‘to’ 2,
‘a’: 3, ‘and’: 4, ‘of’: 5, ‘ ’: 6, ‘in’: 7, ‘that’: 8, ‘was’: 9, ‘is’:
10, . . .}.

� The dictionary is used for the vocabulary-to-digital con-
version. For example, ‘‘the” is converted to 1, and ‘‘to” is
converted to 2.
(3) Use the token to convert the ‘‘text sequence” to the ‘‘digital
sequence”.

(4) Left-pad all the ‘‘digital sequence” data, making it 60 digits
long. Since a ‘‘digital sequence” is subsequently converted
to a ‘‘vector sequence” and sent to the deep-learning model
for training, its length must be fixed. In the experiment, the
lengths of the text sequence, fixation sequence, and text-
based linguistic feature sequence are padded to 60. The text
and the text-based linguistic feature sequences are left-
padded with the number 0, and the fixation sequence is
left-padded with the number 1.

(5) Use the embedding layer to convert ‘‘digital sequence” to
‘‘vector list”.

In the steps described above, the vocabulary is converted to a
number, but the numbers are semantically unrelated. To make
the vocabulary relevant, the words are mapped into a vector of
multidimensional space. The semantically similar vocabulary vec-
tors are close in distance in the multidimensional geometric space.
Finally, the ‘‘vector list” could be sent to the deep-learning model
for training.

Along with other parameters, the embedding vector is trained
as a parameter of the network. Dyer et al. [27] proved that word
embedding plays a crucial role in improving the performance of
the sequence label.

3.4. Long short-term memory network layer

The LSTM layer is used to extract high-level linguistic informa-
tion between words in a sentence. It accepts the vector list from
the previous layer as an input and feeds the processed vector to
the output layer. A LSTM network was designed to address the gra-
dient disappearance and is the first structure to introduce the gate
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mechanism [28]. The LSTM structure decomposes the state vector
into two parts: one part is the ‘‘memory unit” and the other part is
called the ‘‘running memory.” The memory unit is designed to hold
memory and gradient information over time while being con-
trolled by the smoothing function of the micro-gate simulation,
which is known as the analog logic gate [29]. This gate mechanism
enables the gradient associated with memory to remain high for an
extended time span [30]. The algorithm proposed in this paper
learns the representations of the text sequence, processed by the
embedding layer, in both directions by making using of bidirec-
tional long short-term memory (bi-LSTM). It is composed of for-
ward and backward LSTMs and is commonly used for modeling
context in natural language processing [31].
dp½i�½j� ¼

ða½0� � b½0�Þ2 i ¼ 0; j ¼ 0

ða½0� � b½j�Þ2 þ dp½0�½j� 1� i ¼ 0

ða½i� � b½0�Þ2 þ dp½i� 1�½0� j ¼ 0

ða½i� � b½j�Þ2 þminðdp½i� 1�½j�; dp½j� 1�½i�; dp½i� 1�½j� 1�Þ i; j > 0

8>>>><
>>>>:

ð5Þ
3.5. Merged module layer

To introduce domain expert knowledge in the fixation sequence
prediction task, in addition to inputting the text sequence, we also
hope to be able to input some linguistic features (such as the word
length and frequency) that have an effect on reading eye-
movement fixation. Thus, the fixation sequence prediction tasks
presented in this paper require a multi-mode input, and the input
must include at least one text sequence and a text-based linguistic
feature sequence. One simple approach involves these two kinds of
data being used simultaneously to train two independent recurrent
neural network models, after which a weighted average of the two
predictions is calculated. However, this method is not optimal
because it cannot extract the correlated information of the two
sequences, and redundancy may exist in the extracted information.
A better approach is to use a model that can examine all available
inputs simultaneously and jointly learn a more accurate data
model [32]—a model with multiple input branches (see Fig. 3).

For convenience, we selected only one linguistic feature. In Sec-
tion 4.2, we will discuss which effective linguistic feature to
choose. The merged input model uses the text sequence t1:n and
the text-based linguistic feature sequence a1:n as inputs, converts
them into vector representations, and splices them to obtain the
corresponding input representation x1:n:
Fig. 3. Multi-input neural network model.
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xi ¼ ½ti; ai� ð4Þ
The merged module layer feeds the merged vector to the next

dense layer and outputs the predicted fixation sequence composed
of zeros and ones, where 1 indicates that the word at this position
is fixated and 0 indicates that the word at this position is skipped.
3.6. Method for fixation sequence similarity measurement

Based on dynamic time warping (DTW) [33], the similarity
measure of two fixation sequences is determined. First, a distance
matrix dp[i][j] containing the distances between the fixation
sequences a and b is constructed based on dynamic programming;
dp[i][j] refers to the square of the similarity distance between a[0:i]
and b[0:j], as follows:
In this formula, dp[len(a) � 1][len(b) � 1] is the square of the
similarity distance, and the extraction of dp[len(a) � 1][len
(b) � 1] is the similarity distance between two fixation sequences.
The optimal path of the distance matrix dp[i][j] from the upper-left
corner to the lower-right corner is the required similarity distance.
However, the algorithm does not calculate the distances of the
periodic sequences very well, especially when two sequences have
similar periods, but one of the sequences is obtained by the trans-
lation of the other sequence. The eye-movement sequences of a
subject reading the same text at different times may be such a
sequence with a similar cycle [3]. Thus, we obtain a penalty coeffi-
cient a and multiply this by the original distance to get the
updated distance. The procedure is as follows.

1. The first step is to determine the longest common substring of
the two fixation sequences seq1 and seq2, and the length is
recorded as a.

2. Since seq1 and seq2 are numerical sequences, the standard devi-
ations of seq1 and seq2 are first obtained when finding the long-
est common substring, and the larger one is set as the
maximum standard deviation (STD). For any i, j, we use the for-
mula |seq1 [i] � seq2 [j]| < STD instead of the formula seq1
[i] = seq2 [j] to indicate that they are part of the common
substring.

3. Finally, the penalty coefficient is obtained:
a ¼ 1� a�a

lenðseq1Þ�lenðseq2Þ. Thus, the longer the longest common sub-

string of two numerical sequences is, the smaller the penalty
coefficient is. In this way, if a is multiplied by the distance of
the original algorithm, the updated distance will be smaller.

4. Experiments

4.1. Experimental environment and dataset

The experimental environment was Python3.7 + Keras2.2.4 +
TensorFlow1.13. All the code was released on GitHub at https://
github.com/wxmgo/eye_movement_in_reading/. In addition to
being interesting to readers in the fields of biometrics and machine
learning, the public posting of the code on Github will allow others
to easily utilize or modify this method for their own problems.

https://github.com/wxmgo/eye_movement_in_reading/
https://github.com/wxmgo/eye_movement_in_reading/
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We obtained the dataset from the Provo Corpus [34]. The corpus
is open and can be downloaded from the Open Science Framework
(https://osf.io/sjefs). This eye tracking corpus contains the eye-
movement data of 84 native English speakers who have read 55
text passages, including online news articles, popular science
magazines, and public domain fiction. These text passages had an
average length of 50 words (39–62 words). None of the partici-
pants had participated in the previous experiment and none had
read the material. Eye-movements were recorded at a frequency
of 1000 Hz with an SR Research EyeLink 1000 Plus eye tracker
(with a spatial resolution of 0.01�) (further details are reported
elsewhere [34]).

Generally, function words (words that have little lexical mean-
ing or have ambiguous meanings and express grammatical rela-
tionships between other words within a sentence, e.g., in, why,
and then) are more easily skipped by readers than content words
(words that name objects of reality and their qualities, e.g., dog,
snow, and young), because function words are generally shorter
in length and have no practical meaning. However, in the Provo
corpus, 16% (4605/27430 = 16.78%) of the content words are also
skipped, because they have shorter word lengths or a higher fre-
quency. Word length and frequency are important linguistic fac-
tors that affect reading saccades [3].

The experiment used data from all the subjects (the 1st–84th
subjects), where each subject read 55 text passages. To make the
test results more objective, it was necessary to isolate the training
and test sets. These two corpora did not overlap.
4.2. Linguistic feature extraction

Evidence from psychology studies suggests that fixation and
saccade patterns are driven by high and low information at the
visual levels [35]. The word length, frequency, and predictability
are known to be the linguistic features that affect reading saccades
[36]. Among these, the word length is low-level visual information,
and the frequency and predictability are high-level language infor-
mation [37]. Related studies have also found that the effect of high-
level language information on reading saccades is much smaller
than that of low-level visual information [38]. For example, shorter
words in the text are more likely to be skipped than longer words.
To analyze this phenomenon quantitatively, Fig. 4 shows the rela-
tionship between the word length and skip frequency in the Provo
Corpus, and the word length and skip frequency were normally
distributed. In addition, previous studies [23–25] have also
reached the same conclusion, i.e., the influence of the word length
Fig. 4. Relationship between the word length and skipping frequency.
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on the reading eye-movement is most significant. Therefore, the
linguistic features of the data used in the experiment contained
only one type of low-level visual information—the word length.

4.3. Data preprocessing

4.3.1. Serialization of data
The data in the corpus were vocabulary-based and did not

reflect the linguistic relations between the vocabulary. Therefore,
serialization processing is required to merge vocabulary-based
data into sequence-based data. The first five rows of data after
the conversion are shown in Table 1.

The IA column in the table is a sequence of zeros and ones,
where 0 indicates that the area where the word was located was
skipped over by the eye, and 1 indicates that fixation occurred in
the area where the word was located.

To facilitate the one-hot processing of the data label, all the
Subject_IDs in the table were decremented by 1 to ensure that Sub-
ject_ID began with the integer 0. The 0 in the table corresponds to
the subject numbered 1.

4.3.2. Vocabulary-to-vector conversion
Since only numbers are accepted by the deep-learning model,

the model must convert the vocabulary sequence into a digital
sequence first. The experiment uses the Tokenizermodule provided
by Keras [39]. The digital sequence is then converted into a vector
sequence in the process of network training.

4.3.3. One-hot encoding of subject’s ID
To not imply big or small sizes of the subject’s ID (0–83) during

the network training process, the subject’s ID must be one-hot
encoded to be represented in a discrete form. One-hot encoding
of the subject’s ID was performed by using the to_categorical
method provided by keras.np_utils [39]. The converted vector had
a total of 84 numbers, one of which was 1, and the rest were 0.
The one-hot coding of the training data label is shown in Fig. 5.
There was a total of 550 lines with ten numbers in each line. Only
the first and last three rows are listed in the figure.

4.4. Network optimization algorithm

In this work, we used the root mean square propagation
(RMSProp) algorithm [40] to train the neural network model. This
optimizer is a top choice for training recurrent neural networks
[41]. RMSProp implicitly applies simulated annealing. In moving
toward the minimum, RMSProp automatically reduces the learning
step so as not to skip over the minimum. The loss function uses a
categorical cross-entropy function.

4.5. Similarity distance of fixation sequence statistics

We trained the model with the eye-movement data of a subject
using the fixation sequence similarity measurement described in
Section 3.6 and obtained the predicted fixation sequence when
the subject reads new text. We then compared the predicted fixa-
tion sequence with the actual fixation sequence. Fig. 6 shows the
contrast similarity diagrams of the fixation sequence when the
1st subject read text sample #46 (48 words). To unify the length
of the input sequence of the neural network, the text sample #46
is left-padded by zeros to a length of 60. When there are no words
that certainly should not to be fixated, this is reasonable.

From the fixation distributions in Fig. 6, we concluded qualita-
tively that the model prediction exhibited a high accuracy. To
quantitatively measure the similarity of the two sequences, we
used the method mentioned in Section 3.6 to obtain the sequence
distance matrix (Table 2).

https://osf.io/sjefs


Table 1
The initial five lines of data after serialization.

Text_ID Text Word_Length IA Subject _ID

1 [‘are’ ‘now’, ‘rumblings’, ’that’, ’Appl. . . [3, 3, 9, 4, 5, 5, 4, 6, 3, 5, 5, 5, 6, 3, 7, . . . [1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, . . . 0
2 [‘days’, ‘later’, ‘the’, ‘British’, ’ast. . . [4, 5, 3, 7, 10, 7, 0, 3, 9, 3, 11, 7, 5, 7, 3. . . [1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . 0
3 [‘agree’,‘that’, ‘‘California’s”, ‘‘three’. . . [5, 4, 12, 5, 7, 3, 6, 3, 3, 4, 2, 1, 9, 8, 3,. . . [1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, . . . 0
4 [‘was’, ‘in’, ‘a’, ‘bad’, ‘temper,’, ‘fo. . . [3, 2, 1, 3, 6, 3, 3, 3, 6, 3, 9, 8, 2, 3, 7, . . . [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, . . . 0
5 [‘Darling’, ‘quivered’, ‘and’, ‘went’, ‘t. . . [7, 8, 3, 4, 2, 3, 6, 2, 3, 8, 8, 3, 6, 3, 3, . . . [1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, . . . 0

Fig. 5. One-hot coding of subject’s ID.

Fig. 6. Contrast similarity diagrams between the predicted and actual fixation
sequences. The upper graph is the fixation sequence predicted by the model, and
the lower graph is the actual (to be identified) fixation sequence. The abscissa is the
word location label in the same text (60 words). The ordinate of 1 indicates that the
word in the location was observed, and 0 indicates that the word in that location
was skipped.

Fig. 7. Optimal path between the two fixation sequences.
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The similarity distance is the optimal path in the distance
matrix from the upper-left corner to the lower-right corner. The
coordinates of the optimal path in the matrix are as follows: [(0,
0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10,
10), (11, 11), (12, 12), (13, 13), (14, 14), (15, 15), (16, 15), (17,
16), (17, 17), (18, 18), (19, 19), (20, 20), (21, 20), (22, 21), (23,
22), (24, 23), (24, 24), (25, 25), (26, 26), (27, 27), (28, 28), (29,
29), (30, 30), (31, 31), (32, 32), (33, 33), (34, 34), (35, 35), (36,
36), (37, 37), (38, 38), (39, 39), (40, 40), (41, 41), (42, 42), (43,
Table 2
Distance matrix between predicted and actual fixation sequences.

0 1 2 3 4 5 . . .

0 0.0 0.0 0.0 inf inf inf . . .

1 0.0 0.0 0.0 0.0 0.0 0.0 . . .

2 0.0 0.0 0.0 0.0 0.0 0.0 . . .

3 inf 0.0 0.0 0.0 0.0 0.0 . . .

4 inf 0.0 0.0 0.0 0.0 0.0 . . .

.. . . . . . . . . . . . . . . . . . . . . .

56 inf inf inf inf inf inf . . .

57 inf inf inf inf inf inf . . .

58 inf inf inf inf inf inf . . .

59 inf inf inf inf inf inf . . .

60 inf inf inf inf inf inf . . .
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43), (44, 44), (45, 45), (46, 46), (47, 47), (48, 48), (49, 49), (50,
49), (51, 50), (51, 51), (51, 52), (51, 53), (52, 54), (53, 55), (54,
56), (55, 57), (56, 57), (57, 57), (58, 57)]. The optimal path of the
predicted and the actual fixation sequences when the 1st subject
read text sample #46 can be plotted, as shown in Fig. 7. The simi-
larity distance between the two fixation sequences was 1.7321.

The statistical data of the similarity distances between the pre-
dicted and actual fixation sequences of the 1st–84th subjects in the
Provo Corpus were obtained using the fixation sequence similarity
measurements described in Section 3.6. The results are shown in
Table 3, where, for example, A1–P1 denotes the similarity distance
of the 1st subject between the predicted and actual fixation
sequences. The minimum similarity distance was 0.9004 in row
17, column 49, and the maximum value was 2.3403 in row 41, col-
umn 5. Therefore, the threshold value of the fixation sequence sim-
ilarity distance ranged from 0.9004 to 2.3403. Within this range,
we set a fixed step and used the evaluation metric to evaluate
55 56 57 58 59 60

inf inf inf inf inf inf
inf inf inf inf inf inf
inf inf inf inf inf inf
inf inf inf inf inf inf
inf inf inf inf inf inf
. . . . . . . . . . . . . . . . . .

1.000000 1.000000 1.000000 0.0 0.0 0.0
1.414214 1.414214 1.414214 0.0 0.0 0.0
1.732051 1.732051 1.732051 0.0 0.0 0.0
2.000000 2.000000 2.000000 0.0 0.0 0.0
2.236068 2.236068 2.236068 0.0 �1.0 �1.0



Table 3
Similarity distance between predicted and actual fixation sequences.

Text_ID A1-P1 . . . A4-P4 A5-P5 A6-P6 . . . A48-P48 A49-P49 A50-P50 . . . A84-P84

Text1 2.1146 . . . 1.6636 2.0180 1.1102 . . . 1.4689 1.5603 2.2537 . . . 1.0884
Text2 1.7833 . . . 2.1302 1.0207 2.2017 . . . 1.2655 2.1932 0.9979 . . . 1.9809
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Text16 1.5061 . . . 2.1687 0.9028 1.8789 . . . 2.0043 0.9441 1.7238 . . . 1.2789
Text17 2.0578 . . . 1.3679 1.5973 2.0742 . . . 2.2683 0.9004 1.1440 . . . 1.9521

Text18 2.1306 . . . 1.1812 2.2985 0.9013 . . . 1.8768 1.9175 2.0462 . . . 1.3511
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Text40 1.7501 . . . 2.0273 0.9965 1.0456 . . . 1.7956 1.9455 0.9636 . . . 1.7510
Text41 1.5221 . . . 1.2680 2.3403 1.3968 . . . 2.2948 1.3463 1.9741 . . . 1.0029

Text42 1.2543 . . . 2.2644 1.7617 1.1004 . . . 1.6325 1.1004 1.9905 . . . 2.2753
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Text55 1.3334 . . . 1.1547 2.1070 1.2138 . . . 1.7226 1.5274 1.0292 . . . 1.3723

The underlined values indicate the maximum and minimum values in the table.

Fig. 8. Detection error tradeoff curve.

Table 4
Comparison of results.

Metrics Graph-based matching CEM-P Our model

R1 70% 82.6% 86.5% ± 2.96%
EER 30% 16.5% 19.4%
Handcrafted features 4 12 1
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the influence of different thresholds in turn. The results are dis-
cussed in the next section.

5. Results and discussion

5.1. Evaluation metric

The proposed method was evaluated by the Rank-1 (R1) accu-
racy rate and the equal error rate (EER). The Rank-1 accuracy rate
is the ratio of the total number of correct recognitions to the num-
ber of samples. The EER is the value when the false acceptance rate
(FAR) and the false rejection rate (FRR) are equal.

The false acceptance rate is the ratio that is considered to be the
same subject when the similarity distance of different eye-
movement sequences is greater than the given threshold during
the testing of the biometric recognition reading eye-movement
on the eye tracking corpus. More simply, it refers to the ratio of
taking the mismatched eye-movement sequence as the matched
sequence.

The false rejection rate is the ratio that is considered to be dif-
ferent subjects when the similarity distance of different eye-
movement sequences is smaller than the given threshold during
the testing of the biometric recognition reading eye-movement
on the eye tracking corpus. It refers the ratio of taking the matched
eye-movement sequence as the mismatch sequence.

5.2. Results

Based on the threshold range determined in Section 4.5, we set
the threshold values in a fixed step size within this range, with
each threshold corresponding to a set of FAR and FRR values. When
the FAR and FRR were equal, the common value was the EER, which
was 19.4%, and the corresponding threshold value was 1.6071.
Fig. 8 shows the detection error tradeoff (DET) curve. The EER is
where the curve intersects with the line that passes through the
points (0, 0) and (1, 1).

When measuring the Rank-1 accuracy, if the similarity distance
between the predicted fixation sequence and the actual one (to be
identified) was less than 1.6071, it was considered to be the same
subject. The Rank-1 accuracy rate was measured by a 10-fold
cross-validation method on the dataset. Since the initial value of
the neural network was randomly selected, the experiment was
repeated 100 times, and the average Rank-1 accuracy were
obtained, which was 86.5%. The experimental results and the stan-
dard deviation are given in Table 4.

As is well known, the CEM-P method [11] obtains the highest
EER and Rank-1 accuracy among the existing reading eye-
movement biometric recognition technologies, and the graph-
based matching method [12] makes use of the fewest features.
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As shown in Table 4, the proposed method used fewer handcrafted
feature to obtain the values of the Rank-1 accuracy and EER that
were similar to those obtained by the CEM-P method.
5.3. Discussion

In our study, there are two reasons that R1 and EER values were
similar to those obtained by the CEM-P method while using fewer
handcrafted feature. First, the proposed method allows the com-
puter to automatically learn the reading eye-movement features
based on deep-learning, and the feature learning is integrated into
the process of model construction, thereby reducing the incom-
pleteness caused by artificial design features. Furthermore, the
text-based linguistic feature sequence selects a word length
sequence that is easily obtained and conforms to human process-
ing of low-level visual information. Meanwhile, LSTM is a type of
time-recurrent neural network that can process and predict impor-
tant events with long interval and time delays in the time
sequence, which is in line with human processing of high-level lan-
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guage information. The proposed model makes full use of high and
low information at the visual level, which is more in line with the
practical principle of reading eye-movements.

Although the proposed method makes use of the features of the
stimuli (reading materials) and eye-movement sequence, it is not
strictly end-to-end learning, and we needed to label the word
length in advance; this is the limitation of this method. Fortu-
nately, the word length feature can be automatically labeled by
the computer. Further study is required to evaluate the effects of
other linguistic features from multiple angles and solve the prob-
lem of automatic labeling of features such as parts of speech.

The proposed biometric recognition method based on reading
eye-movement obtained a high recognition accuracy rate on the
specified data set, but we believe that it is not a ‘‘true” biometric
recognition measure and cannot be used alone. ‘‘True” biometric
identification measures, such as fingerprints and iris patterns,
remain more-or-less constant during a person’s life, while eye-
movement is controlled by cognitive state and oculomotor func-
tion, which are relatively unstable. We can easily infer that the
eye-movement pattern on the first and subsequent readings of
the same text by the same person will be different. Furthermore,
there are many factors that affect reading eye-movement, such
as the difficulty of the material, the reader’s familiarity with the
material, the reading environment, the reading goals (some tasks
require answering questions after reading, and some only require
a readthrough), and even the font size. As a kind of behavioral-
feature-based biometric method, eye-movement recognition can
never obtain a higher recognition rate or better robustness than
physical-feature-based biometric methods.

However, biometric recognition based on behavioral features
still has the following unique advantages. 1. Behavioral features
are not easily forged. As eye-movement-based recognition uses
information that is produced mostly by the brain (so far impossible
to imitate), forging this kind of information is much more difficult.
However, physical-feature-based biometric methods, such as fin-
gerprint verification or iris recognition, are mostly based on phys-
iological properties of the human body. Therefore, what is needed
for proper identification is only the ‘‘body” of a person who is to be
identified. This makes it possible to identify an unconscious person
or, in some cases, a dead person. 2. Biometric recognition methods
based on behavioral features can identify people without being
perceived. Eye-movement recognition can achieve this using hid-
den cameras or eye trackers. For physical-feature-based recogni-
tion, it is necessary to actively allow the sensor to collect the
data from a certain part of the body.

In summary, the combination of behavior-based and physical-
feature-based recognition can compensate for the latter’s deficien-
cies and make a system more secure.
6. Conclusion

In this paper, a type of reading eye-movement biometric recog-
nition technology was proposed based on deep-learning. This tech-
nology constructs a reading eye-movement recognition (REMR)
computational model based on a multi-input deep neural network
and identifies human subjects by comparing the predicted and
actual fixation sequences. This model is less dependent on the data
features and requires less pre-possessing, which makes it attrac-
tive for industrial and engineering applications [42]. The results
of the simulations show that the Rank-1 recognition rate on the
dataset was 86.5%. The experimental results further proved that
the proposed method is novel, effective, and superior to other
methods in the biometric field. As a kind of behavior (rather than
a physical) feature, eye-movement features have not been as accu-
rate in biometric recognition as physical characteristics such as fin-
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gerprints and iris patterns. However, behavioral feature-based
biometrics is not easily forged and can identify people without
being perceived. This gives such methods broad application pro-
spects in the security field after deep integration with physical
feature-based biometrics.
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