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A B S T R A C T

In this paper we present a novel strategy that utilizes concept drift to improve some biometric procedures. The
proposed method can be applied whenever behavioral signals change and those changes need to be detected.
From a security point of view, this is important because detection of and appropriate response to change
should result in some alteration in the operation of the biometric system. As one example, this allows for the
detection of legitimate and illegitimate users.

Experiments performed on real biometric signals have demonstrated that the proposed techniques could
be introduced into existing professional biometric systems based on behavioral features.
. Introduction

The effective detection of changes in stream-based data is an im-
ortant task from both the theoretical and practical points of view.
onventional classification methods often assume that input signals are
tatic and are emitted from the same distribution, so that classifiers
an be trained on historical data. Variation is assumed to occur only
ithin a class of instances. Indeed, in many biometric tasks these
ssumptions are true. In retinal and fingerprint analyses, individual
iometric features of a given individual are stable and can be employed
n biometric recognition. In other cases and especially in behavioral
iometrics, the features gathered can change over time. This can be
bserved in the analysis of keystroke-based biometrics where, for exam-
le, personal dynamic features change over various time intervals. Such
henomena are observed also during facial recognition procedures.
aces constantly change due to different haircuts, beards or moustaches
eing shaved, glasses, makeup. etc. Another typical example is weather
rediction. The scenarios mentioned above indicate that previous data
ay be unsuitable and of insufficient quantity for recognition of a

iven object at the present time. Such changes should be monitored and
lassification procedures adapted to these changes. Problems with the
etection of data changes over time can be overcome by the application
f concept drift (Gonçalves et al., 2014).

Generally, concept drift assumes that some anomalies in the data
tream will be observed. As the data stream changes, additional actions
eed to be undertaken to maintain classification quality. In these
ases, either new classifiers should be included in the classification
rocess or old classifiers re-programmed. In biometrics, concept drift
escribes changes in a user’s behavior over time. The anomaly detection
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procedure applied must be capable of adapting to such changes if the
user is legitimate, recognize hostile actions, but it must not adapt to
illegitimate users. This means that in biometrics, data stream changes
should be detected while simultaneously recognizing the reason for
the observed changes. This additionally complicates a problem that
does not occur in classical concept drift theory. In classical concept
theory, only the phenomenon should be detected and the classifiers’
appropriate reaction predicted.

Today, much concept drift research has been presented with both
its theoretical and practical ideas being well known (Gonçalves et al.,
2014; de Barros and de Carvalho Santos, 2019; Lu et al., 2014; Brzezin-
ski and Stefanowski, 2014). The interested reader is encouraged to
review this work. Here we briefly discuss concept drift with specific
reference to some biometric tasks.

2. Concept drift vs behavioral biometrics

Concept drift detection strategies employ base classifiers to classify
incoming instances as they endeavor to predict the true class of each
given instance. Taking into account previous classification results, drift
detection algorithms attempt to recognize whether data drift has oc-
curred (Gonçalves et al., 2014; Pesaranghader et al., 2018). This allows
classification error to be minimized during class prediction. We assume
that all data streams are timestamped.

In some cases, human behavior can be analyzed as a data stream
changing over time. Human behavior is frequently modified by disease,
temporary contusions, fever, fatigue and other passing symptoms. From
a biometric domain point of view, data fluctuations while not desir-
able are inevitable. Additionally, such phenomena can exhibit either
ttps://doi.org/10.1016/j.engappai.2020.104135
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a gently or rapidly changing character over time. While changes may
originate from the person being studied, they may in addition be caused
by an intruder. Legitimate users and intruders are detected on the basis
of their biometric data, and these users should be treated separately.

There are two basic drift categories: ‘‘virtual drift’’ (drift in data
distribution with decision boundaries remaining unaltered) and ‘‘real
drift’’ (drift in the decision’s concepts, with decision boundaries al-
tered) (Lu et al., 2014; Hoens et al., 2012). In practice, both types
occur. Patterns of drift are generally categorized into ‘‘sudden’’, ‘‘in-
cremental’’, ‘‘gradual’’, and ‘‘reoccurring’’ (Gonçalves et al., 2014; Pe-
saranghader et al., 2018; Bonab and Can, 2018), but only some drift
types should be recognized in the biometric domain. Demonstrations
of these patterns are presented in Fig. 1.

In our previous investigation in which analysis of keystroke dynam-
ics was presented, we assumed that the collected data were stable (We-
sołowski et al., 2016) in time. In this study, we provide a solution
for the recognition of legitimate (illegitimate) individuals based on the
presence and characteristics of the observed data drift, an approach
more realistic for the real world. We clearly demonstrate that our pro-
posed modification raises biometric systems’ classification quality. The
concept drift scenarios presented in Fig. 1 can be related to biometrics:

• Drift appears incrementally (Fig. 1b) when many moderately slow
concept developments occur between the first and last concept.
In biometrics, this represents an individual’s slowly (mildly)
changing behavioral characteristic, but they are still a legitimate
user. For such a person, classifiers should be learned again, taking
into account the user’s new behavioral data.

• Drift may occurs suddenly (abruptly) by replacing one concept
with another as presented in Fig. 1c.
In biometrics, this indicates that instead of a legitimate user,
a counterfeiter has presented biometric characteristics (Banerjee
and Woodard, 2012). A profiled user only very occasionally in-
stantaneously displays biometric qualities of low similarity with
their own past behavior. An appropriate alert should be generated
and the system should halt without any classifiers being rebuilt.
In contrast to the original concept drift strategy, the model of
a classifier trained on a data set incorporating drift can main-
tain classification quality. In biometrics, sudden drift occurrence
should always be alarmed.

In biometrics, if changes are short in time, these changes can be
recognized as behavioral fluctuations (similar as in incremental drift).
Otherwise, such drift is recognized as an intruder’s data and the system
should stop after a warning alert.

3. A statistical method for biometric drift data detection

As previously stated, unsupervised drift detection is very convenient
from a practical point of view, because only the data’s distribution
needs to be checked. For behavioral-based biometrics, data flows as
a stream. Consecutive data must be checked as to whether each data
chunk (data window) comes from the same distribution as the reference
data. In biometrics, reference data are the behavioral characteristics
of a given user. In our approach, we will use the non-parametric uni-
variate two-sample Kolmogorov–Smirnov statistical test for biometric
drift detection (Massey, 1951; Sharipov, 2011; Andress, 2014). Some
modification of this test will be used for outlier detection which will
assist in the detection of incremental drift. Additionally, this test has
the advantage of making no assumptions about the data distribution,
so it can be employed on any data.

3.1. Detection of drift in the data distribution

Let {𝑥1,… , 𝑥𝑛}, be independent, identically distributed (i.i.d) or-
ered real random observations. For such assumption we can define
2

function 𝐹𝑛(𝑡) as empirical cumulative distribution function (ECDF) of
amples:

𝑛(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 ≤ 𝑡

𝑛
= 1

𝑛

𝑛
∑

𝑖=1
1(𝑥𝑖 ≤ 𝑡). (1)

The Kolmogorov–Smirnov test may be applied to test whether two
one-dimensional distributions of samples belongs or not to the same
distribution. The Kolmogorov–Smirnov test statistic can be expressed
as:

𝐷𝑛,𝑚 = sup
𝑡
|𝐹𝑛(𝑡) − 𝐹𝑚(𝑡)|, (2)

here 𝐹𝑛 and 𝐹𝑚 are the empirical distribution functions of the first
nd the second sample, respectively.

The null hypothesis 𝐻0 assumes that the samples were taken from
he same distribution. The null hypothesis is rejected at the level 𝛼 upon
he condition:

𝑛,𝑚 > 𝑐(𝛼)
√

𝑛 + 𝑚
𝑛 ⋅ 𝑚

, (3)

where 𝑛 and 𝑚 are the sizes of first and second sample respectively, and
(𝛼) can be taken from a table or from the formula:

(𝛼) =
√

ln
(𝛼
2

)

⋅
1
2
. (4)

For 𝛼 = 0.05, we have 𝑐(𝛼) ≈ 1.36. These parameters were applied in
the experiments performed.

3.2. Counting outliers in the data

By means of the Kolmogorov–Smirnov test, outliers in the data can
be also identified. We modified a basic method for outlier counting. Let
a given set 𝑃 consists of 𝑛 points. If we want to check whether the point
∉ 𝑃 belongs to outliers, then we should determine the cumulative

istribution functions, defined as follows:

𝐹𝑛(𝑡) =
1
𝑛

𝑛
∑

𝑗=1
1(𝑑𝐸 (𝑝, 𝑝𝑗 ) ≤ 𝑡),

𝐹
𝑛2
(𝑡) = 1

𝑛2

𝑛
∑

𝑘=1

𝑛
∑

𝑗=1
1(𝑑𝐸 (𝑝𝑘, 𝑝𝑗 ) ≤ 𝑡),

(5)

where 1() is an indicator function, such that:

1(𝑑𝐸 (𝑝𝑘, 𝑝𝑗 ) ≤ 𝑡) =
{

1 𝑖𝑓 𝑑𝐸 (𝑝𝑘, 𝑝𝑗 ) ≤ 𝑡
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (6)

and 𝑑𝐸 (𝑝𝑘, 𝑝𝑗 ) is the Euclidean distance between 𝑝𝑘 ∈ 𝑃 and 𝑝𝑗 ∈ 𝑃 .
Next, we define the value 𝐷 ∈ [0, 1] as the maximum distance

between 𝐹𝑛(𝑡) and 𝐹𝑛2 (𝑡), respectively, so:

= max
𝑡

|

|

𝐹𝑛(𝑡) − 𝐹𝑛2 (𝑡)|| , (7)

From the Glivenko–Cantelli theorem, it follows that points located
lose to each other have a smaller 𝐷 value compared to those points
urther apart (Sharipov, 2011). Based on the 𝐷 value, the set 𝑂 of
utliers can be created:

= {𝑝 ∉ 𝑃 ∶ 𝐷 > 𝑆}, (8)

here 𝑆 is a threshold value set to 0.4.
The proposed strategy has been empirically confirmed using the

ame biometric data as in our previous work (Wesołowski et al., 2016),
n which keystroke dynamic analysis was also analyzed. Data drift
etection algorithms fall into two basic categories:

• supervised methods, in which both the class’ true labels as well
as the classifier’s prediction labels are available for concept drift
detection. In this case, drift detection is assessed on the basis of
changes in the classifier’s accuracy values. However this approach
is impractical in real-world scenarios (Gama et al., 2014),
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• unsupervised methods, in which access to the true class labels is
not provided, similar to other classification approaches. In this
case, drift is recognized based on the properties of the underlying
data distribution.

In this paper we propose an unsupervised data drift detection
trategy. This article’s main contribution is the detection of drift phe-
omenon based on prior knowledge of the underlying data distribution,
tilizing ensemble-based classification. Statistical tests will be used to
valuate this strategy.

We have assumed that knowledge about the behavioral charac-
eristics of each user is represented in the data samples. Initially,
he user’s original behavioral characteristics are determined on the
ssumption that the data is impostor-free data and that the profiled
ata is available. Over time, the comparison of successive collections
f incoming data with the stored user profile allows the determination
f the similarity of the observed user to their earlier profiled data. A
ypical drift detection procedure in biometrics aims to check whether
he data comes from the same distribution as the reference data:

• if the number of outliers (𝜆) in a set of incoming data is small
(say 𝜆 < 𝑎), and if these data appear to come from the same
distribution as the given user’s reference data, then we assume
that the original user’s profile should not be changed. The user is
recognized as legitimate,

• if the number of outliers (𝜆) is large (say 𝜆 > 𝑎) but the incoming
data are seen to still originate from the same distribution as the
reference data, then the primary behavioral characteristics of that
user should be updated. An incremental data drift in the same,
legitimate, user’s data has been identified. The overall accuracy
of the classification system has been improved.

• if the incoming data appears to come from a different distribution
in comparison to the reference data for this given user, then
we assume that an impostor of some type has taken over the
originating computer. In this case, a warning alert is sent and the
system stopped. This is a sudden data drift occurrence.
3

The events mentioned above can be analyzed by means of statistical
ests. The empirical tests confirmed the effectiveness of the proposed
pproach.

. Data dimensionality reduction

The classical Kolmogorov–Smirnov test was developed to evaluate
ctivities undertaken within a one-dimensional space. Unfortunately,
n biometrics, most tasks exist within a multidimensional domain.
he reduction of dimensions can be performed by t-SNE (t-distributed
tochastic Neighbor Embedding) (van der Maaten and Hinton, 2008).
his is a nonlinear, unsupervised dimensionality reduction technique
esulting in a low-dimensional space of two or three dimensions. The
lgorithm starts by calculating the probability of the similarity of
oints in high-dimensional space and then determines the probability
f similarity of the same points in the corresponding low-dimensional
pace. Points’ similarities are calculated as the conditional probabilities
hat each point A would choose a specific point B as its neighbor, if
eighbors were picked in proportion to their probability density under
Gaussian distribution centered at A. In the next step, the algorithm

ries to minimize the difference between these conditional probabilities
n higher-dimensional and lower-dimensional space in order to repre-
ent the data points in the lower-dimensional space. Fig. 2a shows a
-SNE visualization of the original biometric feature vectors 𝐯 ∈ 𝑅113

of a legitimate user, whereas Fig. 2b depicts the case when, after
some time, the input computer was taken over by an intruder. These
examples come from realistic experiments undertaken specifically for
this paper.

5. Ensemble based classification method

An ensemble of classifiers is a set of individual classifiers whose
decisions are combined in order to produce a final decision. Most
ensemble-based approaches use homogeneous structures of classifiers,
though other methods do use heterogeneous classifiers. Each single
classifier in an ensemble should deliver high accuracy and handle any
possible high diversity (Kuncheva, 2004; Tronci et al., 2009).
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Fig. 2. Examples of legitimated (left) and intruder’s injection data (right) in the reduced space.
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In our previous research (Wesołowski et al., 2016) keystroke dy-
amics analysis was based on an ensemble of classifiers. This approach
llowed us to achieve a good level of user recognition, thus the assumed
evel of computer security can also be accepted as relatively high.
n our new strategy, we constructed an ensemble of classifiers each
upported by the appropriate competences. It is demonstrated that the
pproach proposed here expands our previous investigations resulting
n the achievement of better recognition of users when compared to our
revious work (Wesołowski et al., 2016) and compared to other state-
f-the-art approaches (Zhong and Deng, 2015; Teh et al., 2013; Tappert
t al., 2010; Shimshon et al., 2010; Pilsung and Sungzoon, 2015).
dditionally, we also introduce the Kolmogorov–Smirnov statistic to

ncrease classification efficiency. Under the classical approach, the
ulti-classifier system consisted of a set of 𝐾 base classifiers 𝛶 =
𝛶1,… , 𝛶𝐾}. Each base classifier realizes the function 𝛶𝑑 (𝐱) ∶ 𝑋𝑛 → 𝐶,
= {1,… , 𝐾} which maps from the feature space 𝐱 ∈ 𝑋𝑛 to a set of

lass labels 𝐶 = {𝑐1,… , 𝑐𝑀}. For a given object 𝐱 ∈ 𝑋𝑛, a base classifier
ses the function 𝛶𝑑 (𝐱) to calculate support coefficients for each class in
he form of the vector 𝜆𝑑 (𝐱) = [ℎ𝑑𝑐1 (𝐱),… , ℎ𝑑𝑐𝑀 (𝐱)] (Kuncheva, 2004).
n other words, the ℎ𝑑𝑐𝑘 (𝐱) ∶ 𝑅𝑛 ↦ 𝑅 denotes a classifier’s 𝛶𝑑 support
actor for the hypothesis that the object 𝐱 ∈ 𝑋𝑛 belongs to the class 𝑐𝑘 ∈
. Additionally, for a given classifier 𝛶𝑑 some simple conditions should
e fulfilled: ℎ𝑑𝑐𝑘 (𝐱) ∈ [0, 1] and ℎ𝑑𝑐1 (𝐱) +⋯+ ℎ𝑑𝑐𝑘 (𝐱) +⋯+ ℎ𝑑𝑐𝑀 (𝐱) = 1.

For the above assumptions, a single classifier produces a decision
n the basis of the following formula:

𝑑 (𝐱) → 𝑐𝑘 ⇔ ℎ𝑑𝑐𝑘 (𝐱) = max
𝑐𝑖∈𝐶

ℎ𝑑𝑐𝑖 (𝐱), 𝑐𝑘 ∈ 𝐶. (9)

In the multi-classifier system we manage a set of classifiers. If we
nalyze a two-class problem, the classification process for the ensemble

can be expressed in a compact form as follows:

(𝐱) =
⎧

⎪

⎨

⎪

⎩

𝑐1 if
𝐾
∑

𝑑=1
1(𝜆𝑑 (𝐱, 𝑐1) ≥ 𝜆𝑑 (𝐱, 𝑐2)) ≥ ⌈

𝐾
2 ⌉

𝑐2 otherwise

, (10)

here 𝜆𝑑 (𝐱, 𝑐) stands for the support function value of the 𝑑th classifier
𝑑 in the ensemble 𝛶 for a given subject 𝐱 belonging to the class 𝑐1,

or to 𝑐2, respectively. 1(𝑐𝑜𝑛) is an indicator function that produces
values from the set {0, 1}. The function 1(𝑐𝑜𝑛) returns the value 1 if
the condition 𝑐𝑜𝑛 is fulfilled, and 0 otherwise. The advantage of the
formula (10) is its ability to be used for any type of classifier.

The ensemble of classifiers supplies advantages unavailable when
a single classifier is used for classification. Additionally, the use of
an ensemble has gained wide acceptance in the machine learning and
statistics communities due to the significant improvement in accuracy
an ensemble delivers (Kuncheva, 2004). Multiple classifier systems
(often known as an ensemble or as a committee of classifiers) are
convenient tools that help to decompose complex problems into sub-
problems that are more easily to solve. This approach brings promising
results in many domains and is widely described in the literature (Cruz
et al., 2018; Souza et al., 2019).

Suppose that the available input dataset 𝛺 will be divided into a
training set 𝑇 ∈ 𝛺 and a validation set 𝑉 ∈ 𝛺, with each datum having
 c

4

a known class label. In machine learning, separating data into training
and validating sets is an important part of evaluating a classifier model,
so 𝑇 ∩𝑉 = ∅ (Souza et al., 2019; Cruz et al., 2018). Let the set of some
ource data consist of {𝐱1,… , 𝐱𝑛} ∈ 𝑉 ⊂ 𝑋𝑛 multidimensional data

points. The competence of the classifier will be performed on the set 𝑉
such that the source competences of each classifier at each point 𝐱𝑒 ∈ 𝑉 ,
𝑒 = 1,… , 𝑛 are determined.

There are many techniques which provide a measure of classifier
source competence: logarithmic functions, exponential as well as piece-
wise linear functions (Cruz et al., 2018; Souza et al., 2019; Woloszynski
and Kurzynski, 2009). In our method, we have binary classification
only, so the source competence (𝐶𝑠) of a given classifier 𝛶𝑑 can be
efined as follows:
𝛶𝑑
𝑠 (𝐱𝑘, 𝑐𝑗 ) = (2 ⋅1(𝛶𝑑 (𝐱𝑘, 𝑐𝑗 ) = 𝑐𝑗 )−1)⋅ ∣ (𝜆𝑑 (𝐱𝑘, 𝑐𝑗 )−𝜆𝑑 (𝐱𝑘, 𝑐 ≠ 𝑐𝑗 ) ∣, (11)

hat can be simplified. Because 𝜆𝑑 (𝐱𝑘, 𝑐 ≠ 𝑐𝑗 ) = 1 − 𝜆𝑑 (𝐱𝑘, 𝑐𝑗 ) it means
hat source competence can be formulated as follows:
𝛶𝑑
𝑠 (𝐱𝑘, 𝑐𝑗 ) = 2𝜆𝑑 (𝐱𝑘, 𝑐𝑗 ) − 1. (12)

𝜆𝑑 (𝐱𝑘, 𝑐𝑗 ) represents the support function value for the 𝑑th classifier
𝑑 for a given instance 𝐱𝑘 that belongs to the class 𝑐𝑗 ∈ 𝐶. In other
ords the instance 𝐱𝑘 ∈ 𝑉 has label 𝑐𝑗 ∈ 𝐶.

Next, the global competence 𝐶𝑔 of a given classifier 𝛶𝑑 , 𝑑 = 1,… , 𝐾
t the new unknown instance 𝐱𝑛 ∈ 𝑋 and 𝐱𝑛 ∉ 𝑉 and 𝐱𝑛 ∉ 𝑇 is
etermined:

𝑔(𝛶𝑑 , 𝐱𝑛) =
∑

𝐱𝑘∈𝑉
𝐶𝛶𝑑
𝑠 (𝐱𝑘, 𝑐𝑗 ) ⋅ exp (−𝑑𝑖𝑠𝑡(𝐱𝑛, 𝐱𝑘))𝜀, (13)

here 𝑑𝑖𝑠𝑡 is the Euclidean distance between 𝐱𝑛 and 𝐱𝑘.
Classifier 𝛶𝑑 is competent if for a given space point 𝐱𝑛, 𝐶𝑔(𝛶𝑑 , 𝐱𝑛) >

, otherwise the classifier is incompetent for the decision.
Finally, for the classifier 𝛶𝑑 with the greatest competence in ensem-

le 𝛶 its support function is calculated for the new, unknown point
𝑛 ∈ 𝑋 for authorized user:

𝑑 → 𝜆𝑏𝑒𝑠𝑡1𝑑 (𝐱𝑛, 𝑐1) = 𝑚𝑎𝑥{𝐶𝑔(𝛶𝑑 ∈ 𝛶 , 𝐱𝑛)}, 𝑑 = 1,… , 𝐾, (14)

here 𝑐1 ∈ 𝐶 stands for a label for an authorized person. Hence,
2 ∈ 𝐶 means a label for an unauthorized user. For this case the
upport function for the class 𝑐2 is formulated as follows: 𝜆𝑏𝑒𝑠𝑡2𝑑 (𝐱𝑛, 𝑐2) =
− 𝜆𝑏𝑒𝑠𝑡1𝑑 (𝐱𝑛, 𝑐1).

The Gaussian potential function in (13) strongly promotes the 𝐱𝑛
lements lying close to 𝐱𝑘, while penalizing other elements. In the re-
earch, the parameter 𝜀 was set to 3.0 because, for this value, there is a
alance between ACC, FAR and FRR. It should be noted that in practice,
hanges in the parameter 𝜀 affect the biometric system (Porwik et al.,
019). The FAR (False Acceptance Rate) and FRR (False Rejection Rate)
actors will be defined later.

The ensemble of classifiers is dynamically formed. It means that a
ifferent, unknown new instance 𝐱 will be always classified by the best

lassifier from a given classifiers pool 𝛶 .
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Fig. 3. Example of vectors with user’s activity.

. Biometric profile of the user

A user’s behavioral profile is built on the basis of keystroke analysis.
ur strategy consists of three consecutive stages. In the first step, we
onstruct a user profile from the volunteers who participated in our ex-
eriment in which real-life keystroke dynamics features were recorded.
ach volunteer generated their own personal biometric profile based on
series of input data.

In the second step, by utilizing drift detection analysis, a pool of
lassifiers, and a classifier competence strategy, the best classifiers in
he pool were selected based on their quality recognition of a given
ser’s biometric profile.

In the third phase, the biometric model was evaluated using a
0-fold cross-validation strategy (Gareth et al., 2014).

.1. User’s profile parameters

As stated, for each new user with access to a computer, an individual
ehavioral keystrokes profile was formed. This profile’s parameters
ave been broadly discussed in previous work (Wesołowski et al., 2016;
lsultan et al., 2018). The activity of each user’s uid was separately

monitored by an analysis of keystroke time dependencies. This is
undertaken similarly to other classical measurements as described in,
amongst others, Wesołowski et al. (2016) and Alsultan et al. (2018).
The measurements are relatively simple. In this paper they will only be
briefly discussed.

The parameters of each 𝑗th keyboard event for a given user uid are
stored in the vector 𝐯𝑢𝑖𝑑𝑗 :

𝐯𝑢𝑖𝑑𝑗 = [𝑡𝑦𝑝𝑒𝑗 , 𝑡𝑗 , 𝜔𝑗 ], (15)

where: 𝑡𝑦𝑝𝑒𝑗 ∈ {𝑘𝑒𝑦𝐷𝑜𝑤𝑛, 𝑘𝑒𝑦𝑈𝑝} details the type of an event; 𝑡𝑗 is
he timestamp of a given event; 𝜔𝑗 is an encoded identifier for a key
sed. For simplification, in this example key are not coded for a better
nderstanding of the method. All vectors 𝐯𝑢𝑖𝑑𝑗 constitute a user’s activity
ataset (see Fig. 3).

Based on vectors stored in containers 𝐺𝑘(𝑑𝑒), 𝑘 = 1,… , 113, 𝑑𝑒 ∈
𝑑𝑒𝑠𝑐, 𝑑𝑒𝑠𝑐∗}, a feature vector 𝐅𝑢𝑖𝑑 = [𝑓1, 𝑓2,… , 𝑓113] is constructed
s follows. Let 𝑘 denote that the 𝐺𝑘 container is full. Then the 𝑘th
lement 𝑓𝑘 of the vector 𝐅𝑢𝑖𝑑 is calculated from those vectors stored
n the container 𝐺𝑘(𝑑𝑒) =

{

𝐝1,𝐝2,… ,𝐝𝑔𝑢𝑖𝑑
}

.
In the other 112 containers 𝐺𝑗 (𝑑𝑒), 𝑗 ∈ {1, 2,… , 𝑖, 𝑖 + 1,… , 112}

and 𝑖 ≠ 𝑘, the number of vectors 𝐝 can be different, depending on
the activity of the user controlling the computer keyboard. Let 𝑛𝑘 be
the number of vectors 𝐝 in the container 𝐺𝑘. Features are calculated
according to the formula:

𝑓𝑘 =

⎧

⎪

⎨

⎪

0 when 𝑛𝑘 = 0
√

√

√

√

1
𝑛

𝑛𝑘
∑

((

𝑡𝑗+1 − 𝑡𝑗
)

− 𝑡
)2 when 𝑛𝑘 > 0

(16)
⎩
𝑘 𝑐=1 d

5

Fig. 4. The principle of storing vectors 𝐯𝑢𝑖𝑑𝑖 in containers 𝐺 in steps (a), (b) (c) and
(d). The asterisk (∗) on the figure (d) informs us that the container is full and feature
creation can be undertaken.

and 𝑡𝑗 , 𝑡𝑗+1 ∈ 𝐝𝑐 = [𝑡𝑗 , 𝑡𝑗+1, 𝜔𝑗 , 𝜔𝑗+1], 𝑡 = 1
𝑛𝑘

∑𝑛𝑘
𝑐=1

(

𝑡𝑗+1 − 𝑡𝑗
)

.
It should be noted that the formula (16) is applied only in those

cases where a given container 𝐺𝑘 is full (𝑛𝑘 == 𝑔𝑢𝑖𝑑). The principles of
the containers’ population are presented in Fig. 4.

If any container is populated, the vector 𝐅𝑢𝑖𝑑 of the user’s features
is created. The container that has a number of elements equal to 𝑔𝑢𝑖𝑑

is cleared and the process is continued until the required number of
feature vectors 𝐅𝑢𝑖𝑑 is reached.

This process is presented in Algorithm 1. An analysis of this algo-
ithm shows that, for small values of the parameter 𝑔, many containers
re empty. So it is important to find a compromise between the optimal
alue of the #𝐅 parameter, the 𝑔 parameter, and the accuracy (ACC) of
he system. Based on the experiments described in Wesołowski et al.
2016), the number of vectors 𝐅 may empirically be set to 100 and the
apacity 𝑔 of each container 𝐺 set to 10.

. Classification process

Changes in a given user’s behavioral characteristics are evaluated
sing the Kolmogorov–Smirnov statistical test. In the learning, super-
ised phase, the profile of a given user is developed. This profile
epresents a person’s behavioral characteristic. For the statistical pur-
oses, multidimensional data are converted into one-dimensional data
y application of the t-SNE algorithm (van der Maaten and Hinton,
008). If the incoming data belong to the same distribution as a user’s
rimary profile and any drift in the data is not radical, then the user’s
rofile is modified and the classifier 𝛶 is learned again. A given user is
ecognized by their profile and by an outliers analysis. This ensures that
lassifier accuracy is maintained. Algorithm 2 presents the main steps of

rift detection using a statistical method and an ensemble of classifiers.
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Algorithm 1: Feature vectors’ creation of each user’s 𝑢𝑖𝑑 based on
he containers’ 𝐺 content
/* #𝐺 - The current number of elements (vectors 𝐯)

in a given container 𝐺. */
Input: vectors 𝐯 stored inside of the containers 𝐺
𝑟 - the number of vectors 𝐅 required for a user’s 𝑢𝑖𝑑 profile
preparation.
𝑔𝑢𝑖𝑑 - the common max. number of elements over all containers 𝐺.
Output: a set of a user’s feature vectors 𝐅

1 𝑖 ∶= 0;
2 while 𝑖 < 𝑟 do
3 populate containers 𝐺 with the vectors 𝐯 as long as condition

#𝐺 == 𝑔𝑢𝑖𝑑 is fulfilled by any container 𝐺;
4 if any #𝐺 == 𝑔𝑢𝑖𝑑 then
5 form the vector 𝐅𝑖 from all vectors 𝐯 stored in all

containers 𝐺;
6 clear only this container for which an event #𝐺 == 𝑔𝑢𝑖𝑑

has occurred.
7 i:=i+1;
8 end
9 end

These strategies enable high classification accuracy whenever the input
data change. If only an authorized individual uses the computer, then
the security system achieves its best performance. When unauthorized
users utilize the device, the system is halted. In contrast to the original
idea of concept drift in which drift detection classifiers are to be trained
again while the system remains working, in a biometric system such
phases have to be detected and an illegitimate user’s operations halted.
These steps have been shown in Algorithm 2. Authorized and soft
behavioral changes do not raise an alarm. By combining statistical
data distribution analysis and statistical-based outlier counting, we can
effect a change in the quality of the biometric system.

8. Experiments performed

The evaluation of competence-based classifiers supported by the
two-sample Kolmogorov–Smirnov test has been successfully empirically
confirmed. A range of classifier models was compared. Unfortunately,
a number of issues related to the keystroke dynamics data sets used
for research into user profiling, authorization, and into verification
make for a difficult comparison between the different approaches:
datasets are unavailable, datasets vary widely in size, and the datasets
are often private. In our comparative studies, our comparison of vari-
ous keystroke dynamics strategies generated both critical and positive
commentary.

8.1. Performance measures

Evaluation of the proposed method was checked in hybrid form
using different methods:

• Accuracy (ACC). Accuracy is a classical and frequently used mea-
sure for classifier performance:

𝐴𝐶𝐶 = 𝑇𝑁 + 𝑇𝑃
𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (17)

where 𝑇𝑁 represents the number of negative instances classified
correctly. If positive instances are classified as negative, this is
taken to be a false negative (𝐹𝑁). 𝐹𝑃 represents the number
of negative instances that are misclassified as positive. 𝑇𝑃 is the
number of correctly classified positive instances.
 b

6

• Three of the most commonly used measures in biometrics are the
false acceptance rate (𝐹𝐴𝑅), false rejection rate (𝐹𝑅𝑅) and equal
error rate (𝐸𝐸𝑅).

𝐹𝐴𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(18)

𝐹𝑅𝑅 = 𝐹𝑁
𝑇𝑃 + 𝐹𝑁

(19)

𝐹𝐴𝑅 represents the percentage of identification instances in
which unauthorized persons are incorrectly accepted, whereas
𝐹𝑅𝑅 is the percentage of identification instances in which au-
thorized persons are incorrectly rejected. 𝐸𝐸𝑅 indicates that the
proportion of false acceptances is equal to the proportion of false
rejections.

• The Bayesian signed-rank test. In this test two classifiers are
compared and the probability is computed that: (a) one method
is better than the other, (b) vice versa, (c) that the methods are
equivalent (Benavoli et al., 2017).

8.2. Datatsets

We conducted the experiments on our own database consisting
of 150 various biometric profiles. These profiles were recorded dur-
ing normal work by computer users. These profiles are imposter-free
datasets. Each profile consists of the 100 vectors 𝐅 (see previous
sections of the paper). The preparation of these data sets was necessary
because there are no other benchmark data sets devoted to the problem
being analyzed. The data set created to conduct all the experiments
here is openly accessible at the address http://dx.doi.org/10.17632/
vfgn7dd2z4.1. This allows experimental reproduction and for others
to conduct their own experiments and to compare the results they
obtain. The experiments were carried out utilizing a stratified 10-fold
cross-validation technique (Gareth et al., 2014).

8.3. Experiments

Set up (1): The aim of the first experiment was to investigate the
ehavior of various user recognition classifiers on the basis of keystroke
nalysis. Our results are presented in Table 2. It is difficult to anticipate
hich classifier is more or less useful for a given dataset analysis (Bur-
uk and Baczyńska, 2016; Cruz et al., 2018; Souza et al., 2019). For
his reason, we suggest using various tested algorithms to create a pool
f classifiers. On the basis of this pool of classifiers, the accuracy of
he biometric system can be estimated. The quality of classification
as measured by various coefficients including Accuracy (ACC), Equal
rror Rate (ERR), False Acceptance Rate (FAR) and False Rejection Rate
FRR).

In order to ensure the correctness of the observed results in dif-
erent learning methodologies, we assessed the considered algorithms
n different classification algorithms. In the comparative study, we
valuated canonical classifiers as demonstrated in the previous litera-
ure while our classifiers were implemented using many mathematical
ackages including Matlab, R and WEKA systems: Random Forests
RF) (Breiman, 2001), Bayes Net (BN) (Muramatsu et al., 2006), J48
C4.5 decision trees (J48) (Quinlan, 1993), Support Vector Machine

SVM) (Ma and Guo, 2014), Random Tree (RT) (Breiman, 2001), RI-
OR RIpple-DOwn Rule learner (Ridor) (Quinlan, 1993), Naive Bayes

NB) (Johnson and Bhattacharyya, 2019; Muramatsu et al., 2006).
Some classifiers, while attractive from the classification quality

oint of view, cannot be used in the proposed approach. For example,
earning deep networks like CNN (Convolutional Neural Networks)
ecause of the many internal layers and convolution operations always
equires large datasets. Valueva et al. (2020). The main assumption of
ur method was to limit the necessary data for classifier training.

In our investigations different classifier configurations were
hecked: classifiers in which a classification rule was calculated on the

asis of a majority voting scheme, and classifiers in which, for each

http://dx.doi.org/10.17632/vfgn7dd2z4.1
http://dx.doi.org/10.17632/vfgn7dd2z4.1
http://dx.doi.org/10.17632/vfgn7dd2z4.1
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Algorithm 2: Classifier preparation and control of a user’s behavior
Notation: 𝐷𝑊 - data window (20 vectors 𝐅) of incoming data.

𝜆 - number of outliers in a dataset 𝐷𝑊 .
𝑃𝑢𝑖𝑑 - profile of a user 𝑢𝑖𝑑 consists of 100 vectors 𝐅.
K–S - the Kolmogorov–Smirnov test on the two sets
𝑃𝑢𝑖𝑑 and 𝐷𝑊 : K-S(𝑃𝑢𝑖𝑑 , 𝐷𝑊 ):

𝐻0: samples are drawn from the same distribution K-S()=True
otherwise K-S()=False
Input: Legitimate user’s 𝑢𝑖𝑑 keystroke profile 𝑃𝑢𝑖𝑑 consisting of an imposter-free 100 vectors 𝐅
Output: alert if an unauthorized user is detected
/* Preparation for protection of the computer */

1 On the basis of the profile 𝑃𝑢𝑖𝑑 , an ensemble 𝛶 of single classifiers is trained, tested and validated to determine the selection of classifiers
having the greatest competences.
/* Control of user’s 𝑢𝑖𝑑 behavior via anomaly scores */

2 while user’s uid data stream is available do
3 The collect new data window 𝐷𝑊
4 if K-S(𝑃𝑢𝑖𝑑 , 𝐷𝑊 )=False then
5 ALERT "An unauthorized user has been detected" generated. Computer is blocked.
6 else
7 if 𝜆 > 5 then
8 update the user’s profile 𝑃𝑢𝑖𝑑 : replace the 20 oldest vectors 𝐅 in the behavioral profile. Train the classifier again.
9 end
10 end
11 end
Table 1
Parameters of the classification and the algorithms used in experiments.

Algorithm Parameters

RF Number of trees: 10. Kernel = linear
BN –
C4.5 Pruned, Decision trees, Number of trees: 100;

Minimum number of instances per leaf: 2
SVM 𝐶 ∈ (0.01, 0.05,… , 1.0). Training procedure = SMO,

Kernel = RBF
Random Tree The number of randomly chosen attributes:

𝑙𝑜𝑔2(number of attributes)
Ridor Number of folds: 3; Number of shuffles: 1; The

minimal weights of instances within a split: 2
Naive Bayes –
single classifier in the pool, the classifier’s competence had already
been earlier computed and data drift monitored.

Throughout the conducted experiments, the proposed method was
compared with selected, mentioned above, modern machine learn-
ing algorithms. The parameters of the reference methods used in the
experimental studies are presented in Table 1.

Table 2 shows that a classification strategy with competent classi-
fiers results higher ACC, EER, FAR and FRR values in comparison to a
classifier ensemble based on majority voting. Using the same classifiers
in ‘‘single-mode’’ we always obtained the worst results.

In Table 3 the same classifiers were employed, but now, we intro-
duced a strategy of alerts based on the Kolmogorov–Smirnov statistic
and outlier detection. The proposed modification for dynamic keystroke
analysis worked better when classifiers having ‘‘competency’’ were
used. This results forms the data presented in Table 2 and in Table 3.
The analysis of Table 3 confirms that the best Accuracy (ACC) was
achieved by a classification strategy supplemented by statistic-based
alerts which ensure that the system can be also employed by users who
do not have stable biometric behavior. This here is a core advantage
of the proposed solution: Soft behavioral changes are automatically
corrected due to data drift detection.

Set up (2): Different ensemble structures can be evaluated in more
detail by taking into consideration the statistical characteristic of the
various classification strategies using a Bayesian Signed-Rank Test (Be-

navoli et al., 2017). This test is the Bayesian equivalent of the Wilcoxon

7

Table 2
Classification results for various types of classifier. Comparison of single classifiers as
well as classifiers with voting and with a competence-based strategy. The presented
results are the average values after twenty experiments.

Classifier ACC [%] EER [%] FAR [%] FRR [%]

Ensemblea 98.43 ± 0.25 1.57 ± 0.01 1.23 ± 0.00 1.66 ± 0.00
Ensembleb 97.91 ± 0.15 2.09 ± 0.00 1.81 ± 0.00 2.67 ± 0.01
RF 87.99 ± 0.23 12.01 ± 0.02 9.73 ± 0.02 15.07 ± 0.02
BN 83.43 ± 0.17 16.57 ± 0.07 14.15 ± 0.03 20.21 ± 0.03
C4.5 82.59 ± 0.29 17.41 ± 0.01 14.63 ± 0.01 20.76 ± 0.01
SVM 80.38 ± 0.14 19.62 ± 0.02 14.55 ± 0.03 20.21 ± 0.02
Random Tree 78.27 ± 0.24 21.73 ± 0.04 19.52 ± 0.04 29.63 ± 0.05
Ridor 74.63 ± 0.20 25.47 ± 0.02 23.11 ± 0.02 33.27 ± 0.02
Naive Bayes 80.58 ± 0.17 19.42 ± 0.02 17.03 ± 0.01 24.08 ± 0.02

aEnsemble of classifiers with competences.
bEnsemble of classifiers with majority voting without competences.
Rest of classifiers are single classifiers.

signed-rank test. In the reported Bayesian test, the Authors introduce
the rope concept, the ‘‘Region Of Practical Equivalence’’ for every two
classifiers. If this parameter was set to 0.01, then the two classifiers are
considered equivalent if the difference in their performance is smaller
than rope. The test results in three possible outcomes: (a) one method
is better than the other, (b) vice versa, (c) they are equivalent.
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Fig. 5. Posteriors for the Bayesian sign-rank tests for Accuracy measure for various ensemble-based classification strategies. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
able 3
lassification results for each type of classifier supported by each classifier’s compe-
ences and by Kolmogorov–Smirnov alerts. The presented results are average values
ollowing twenty experiments.
Classifier ACC [%] EER [%] FAR [%] FRR [%]

Ensemblec 98.96 ± 0.22 1.04 ± 0.00 0.87 ± 0.00 1.65 ± 0.00
Ensembled 98.37 ± 0.19 1.63 ± 0.00 1.37 ± 0.00 2.21 ± 0.00
RF 92.31 ± 0.15 7.69 ± 0.02 5.94 ± 0.01 14.33 ± 0.03
BN 90.64 ± 0.15 9.36 ± 0.02 7.28 ± 0.07 13.67 ± 0.02
C4.5 89.88 ± 0.19 10.12 ± 0.00 8.78 ± 0.04 15.65 ± 0.01
SVM 86.59 ± 0.20 13.41 ± 0.02 11.21 ± 0.02 16.05 ± 0.01
Random Tree 83.84 ± 0.19 16.16 ± 0.00 14.92 ± 0.01 19.91 ± 0.02
Ridor 84.28 ± 0.16 15.72 ± 0.03 10.42 ± 0.03 19.10 ± 0.01
Naive Bayes 86.80 ± 0.24 13.20 ± 0.02 11.47 ± 0.02 14.84 ± 0.02

cEnsemble of classifiers with competences and alerts.
dEnsemble of classifiers with majority voting without competences and with alerts.
The remainder of the classifiers are single classifiers having an alert strategy.

Fig. 5 shows the posteriors for the Bayesian sign-rank tests. In these
triangles, the bottom-left and bottom-right regions correspond to the
cases where one classification method is better than the other, and
vice versa. The top region represents those cases where the equivalence
between the methods is more probable. If all the points (here blue) fall
inside one particular region, we conclude that the hypothesis (‘‘that
one method is better than the other’’) is true with a probability of
≈ 1 (Benavoli et al., 2017). Looking at Fig. 5, it is evident that the
majority of cases support Ensemble 3 and Ensemble 4 more than rope
nd definitively more than Ensemble 1 and Ensemble 2. So, the strategy
8

utilizing Kolmogorov–Smirnov statistical alerts results in more benefits
than the other approaches.

The results of the proposed classification models were also com-
pared with other methods. Comparative studies of this problem are
presented in Table 4. There are a number of issues related to the data
sets used in research into computer user profiling based on keystroke
analysis. First of all, there are no standards for data collection and
they are in different fields of biometrics. For this reason, it is difficult
to compare different researchers’ work. Further details on the issues
concerning such data sets can be found in the literature (Wesołowski
et al., 2016). The classification quality of the methods was represented
by two popular measures: Accuracy (ACC) and Equal Error Rate (EER).

Conclusions

The method proposed enhances classification accuracy, without
supervision, by providing additional information related to the possible
data distributions of various individuals. The knowledge of the data
distribution allows to use the Kolmogorov–Smirnov statistic and out-
liers counting. In this paper a novel biometric classification method
based on classifiers having competences and statistics is introduced.
Competences are computed separately for each classifier in a pool
of base classifiers. The proposed solution applied to the analysis of
keystroke dynamics helps to confirm the identity of an individual based
on that individual’s typing pattern and the speed of their typing on
an input computer’s keyboard. The advantages of the method can be
summarized as follows:
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Table 4
A comparison of intrusion detection methods.

Method Accuracy [%] EER [%] Data typea

Our method 98.96 1.04 Continuous activity
Wesołowski et al. (2016) 97.83 2.17 Continuous activity
Lopatka and Peetz (2009) 84.00 20.00 Long-text (free text, not

continuous)
Tappert et al. (2010),
identification, optimal
conditions

97.40 * Long-text (retyping, 650
characters, not continuous)

Tappert et al. (2010),
identification, optimal
conditions

95.60 * Long-text (free text, 650
characters, not continuous)

Tappert et al. (2010),
identification, non-optimal
conditions

60.75 * Long-text (free text, 650
characters, not continuous)

Tappert et al. (2010),
verification

90.20–95.6 * Long-text (free text, 650
characters, not continuous)

Zhong et al. (2012) * 8.40 Repeated short sequence
(password)

Pleva et al. (2015) 97.03 * Repeated short sequence
(password)

Monaco et al. (2013) 91.50 * Long-text (free text, not
continuous)

acontinuous activity - analysis of a user’s activity while performing everyday tasks, long text – users type a text freely or retype
a given text; acquisition is limited by the time taken to write or by the length of the input text, repeated short sequence – a
single word (password) repeated many times.
* results are not available.
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• Experimental results demonstrate that classifiers supported by
competences and by statistical evaluation of the data distribution
result in a better classification quality as compared to other
techniques (see results presented in Tables 2 and 3). This was
in addition confirmed by application of the statistical Bayesian
sign-rank test.

• We report that results deliver additional advantages. The Accu-
racy (ACC) coefficient is higher and the FAR/FRR coefficients
are lower. A system equipped with classifiers having compe-
tences supported by Kolmogorov–Smirnov tests ensures sufficient
effectiveness.

• Based on the modified Kolmogorov–Smirnov test, outliers in data
can also be discovered. This is a novel technique applicable also
in other domains.

• The proposed approach can be implemented in parallel mode so
that classifiers can work concurrently and separately. This can
significantly reduces computation time.

• Investigations were carried out using the databases made freely
available at http://dx.doi.org/10.17632/vfgn7dd2z4.1. These
source databases can be used in the future by any persons in-
terested in undertaking comparative studies.

he solution proposed employs only primary data. This new approach
llows us to detect impostors based on statistical tests and an ensemble
f classifiers. The method does not depend on any knowledge of the
yped text, which makes it very convenient for users. In competitive
ethods, the text must be processed in an open form. In our approach,

ach user’s data was encoded, making the technique appropriate for
ystems dealing with sensitive data. If the user works slowly (e.g. only
resses a few keys), the system cannot react, but the user will not
amage the system.
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