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A B S T R A C T

Identity management systems with biometric key binding make digital transactions secure and reliable. A novel
methodology is proposed to develop an intelligent key management system using facial emotions. Key binding
with facial emotions makes use of an intrinsic user specific trait facilitating a more natural computer to human
interaction. The proposed system utilizes metaheuristic swarm intelligence based optimization techniques to
extract optimal features. The work demonstrates key binding by encrypting an image with a secret key bound
to optimal features extracted from facial emotions. Efficiency and correctness of proposed key management is
validated by successful decryption at receiving end with any one of the enrolled emotions given as input. Deer
Hunting Optimization Algorithm and Chicken Swarm Optimization are merged to select optimal features from
facial emotions. The derived algorithm is called Fitness Sorted Deer Hunting Optimization Algorithm with
Rooster Update. Seven facial emotions — anger, disgust, fear, happiness, sadness, surprise and neutral are
used to extract optimal features from Japanese Female Facial Expressions and Yale Facial datasets to train the
neural network. Proposed work achieved better performance results over state-of-art optimization algorithms
such as whale optimization algorithm, grey wolf optimization, chicken swarm optimization and deer hunting
optimization algorithm. Accuracy of proposed model is 2.2% better than deer hunting optimization algorithm
and 12.3% better than chicken swarm optimization for a key length 80.
1. Introduction

An identity management system (IMS) ensures security and re-
liability of digital transactions over a network. Digital services are
provided to authenticated users who have valid credentials. Autho-
rized levels of interaction amongst users, identity provider and service
providers are to be regulated. Central administration, user self-service,
role based access control and integrated user management are es-
sential requirements for identity management systems [1]. Identity
management increases efficiency and security of access control while
decreasing complexity, cost and repetitive tasks. Integration of biomet-
ric traits with identity management systems brings in several advan-
tages over username/password or token based authentication systems.
Researchers have evinced a lot of interest in identifying novel phys-
iological and behavioural traits for improving efficiency and security
of identity management. Multi-modal biometrics is an area of active
research to achieve increased efficiency. A significant challenge faced
by researchers is in making biometric credential systems reliable and
reproducible without sacrificing efficiency and efficacy of detection.

✩ This paper has been recommended for acceptance by Zicheng Liu.
∗ Corresponding author.

Biometrics has been used in broad range of applications such as
e-commerce, physical and electronic access control, background verifi-
cation and digital rights management [2]. Fusion of crytpographic keys
with user specific traits addresses concerns of template security [3].
User specific traits are stored in smart card and utilized for matching
features taken as input during validation [4]. Smart cards enable au-
thentication with matching score within defined threshold value and
are preferred over Session Initiation Protocol (SIP) servers [5]. The
servers ignore user specific traits and depend on smart card for user
verification [6,7].

Conventional user name password or token based authentication
systems have limitations. The major issue is that users are required
to memorize usernames, passwords or maintain them securely making
them susceptible to multiple attacks including dictionary attacks [8].
The solution to ensure secure storage of data involves substitution with
cryptographic key [9–11]. Cryptographic models with smaller keys
are easily broken while larger and complicated keys are difficult to
remember. Larger keys are required to be stored securely and that
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in turn leads to threat vulnerability. Distribution of secret key is a
challenging proposition in symmetric key cryptography [12–14].

Combination of biometrics and cryptography is a major area of
research interest. Cryptographic keys are required to be precise to the
last bit while user traits inherently show fuzzy nature due to intra-user
variations. Biometric key release, key generation and key binding are
approaches for combining cryptographic keys with user features [15].
Researchers are exploring newer traits with intelligent deep learning
algorithms to perform user authentication. Keystroke dynamics and pat-
tern of typing on mobile phones have been analysed with convolutional
neural network to identify the user [16]. Deep learning techniques are
employed for face recognition on mobile devices and for recognition
systems based on finger veins [17,18].

The major contribution of this work is:This work aims to develop a
novel biometric key management system by considering facial emotions
and key binding techniques. An environment with enhanced security
is built by considering both facial and key features during encryption
and decryption. Facial emotion features acquired by extracting Scale In-
variant Feature Transform(SIFT) features are computationally complex
for machine learning. A novel metaheuristic algorithm, namely, Fitness
Sorted Deer Hunting Optimization Algorithm with Rooster Update
(FDHOA-RU) has been developed for selecting optimal features from
SIFT keypoints. The proposed FDHOA-RU ensures selection of optimal
features, thereby, providing improved fitness resulting in higher effi-
ciency during training. FDHOA-RU algorithm has been developed by
integrating properties of Deer Hunting Optimization Algorithm (DHOA)
and Chicken Swarm Optimization (CSO) algorithms. The FDHOA-RU
algorithm circumvents problem of premature convergence by including
updates from CSO algorithm. Key extraction from an input image is car-
ried out by Double Random Phase Encoding (DRPE), Bose–Chaudhuri–
Hocquenghem (BCH) encoding, shuffling and RSA encryption. The
proposed approach has made key generation more specific and re-
duced the probability of information stealing. Facial emotions have
been considered for neural network based training during encryption
and decryption process along with the key, thus providing additional
support to the biometric recognition system.

The paper is structured in following manner: An overview of recog-
nition of facial emotions and challenges in binding cryptographic keys
with user traits is provided in Section 2 with state-of-the-art works in
key agreement protocol. Section 3 describes proposed key management
for IMS with novel key binding procedure. Key encryption process is ex-
plained in Section 4. Selection of optimal features from facial emotions
and training of neural network is described in Section 5. The process
of image encryption and decryption with binding of user specific key
is covered in Section 6. Section 7 evaluates the approach adopted
and compares results obtained with other state of art metaheuristics
algorithms. Finally, conclusions are drawn in Section 8.

2. Literature review

2.1. Facial emotions

Facial emotions introduce natural aspects to conventional face
recognition algorithms. Emotion feature set add additional dimension
for enhanced versatility to detection accuracy [27]. Local Binary Pat-
tern (LBP), Gabor filter, LBP with Three Orthogonal Planes, Graphics-
processing based Active Shape Model (GASM) and Scale Invariant
Feature Transform (SIFT) are some feature extraction methods explored
to extract emotion feature set [28–30]. Research has been carried out in
recent past including exploring deep learning algorithms for identifying
and analysing facial expressions [31–33]. Approach adopted in current
research uses optimal features extracted from facial emotions to achieve
2

key binding.
2.2. Metaheuristic algorithms

Metaheuristic techniques have been researched and provide solu-
tions to optimization problems. Given an optimization problem, there
exist several ways to solve the problem. Metaheuristic algorithms
solve complex problems by obtaining optimal solutions in reduced
time [34]. A metaheuristic approach aims to strike balance between
exploration and exploitation. Exploration identifies and narrows down
search space while exploitation intensifies search in narrowed down
search space. Teaching learning based optimization, particle swarm
optimization, differential evolution, genetic algorithms and artificial
bee colony optimization techniques are much researched metaheuristic
approaches [35]. The algorithms are classified as population based and
single-point search. A new variant is hybrid metaheuristic algorithms
that combine techniques from different metaheuristic including exact
algorithms to generate optimal solutions. Chicken Swarm Optimiza-
tion [36], Deer Hunting Optimization Algorithm [37,38], Grey Wolf
Optimizer [39] and Whale Optimization Algorithm [40] are some
state-of-art metaheuristic techniques.

2.3. Key agreement protocols

Saini et al. introduced an optical security model associating key
of dual random phase encoding technique with fingerprint and face
biometrics of user, to make shared key user specific [19]. An encoding
key with help of BCH code corrected intra-user biometric variation.
A shuffling key particular to a user increased hamming distance be-
tween real and fake users. RSA encryption enhanced protection of
shuffling key for improved system security. XOR operation of fea-
ture vector acquired from user traits with encoded key achieved key
binding. Storage of data acquired from XOR operation along with
Ravist–Shamir–Adleman (RSA) encoded shuffling key in a token en-
sured efficiency of implemented approach in retrieving keys utilizing
user biometrics.

Panchal et al. used Reed–Solomon encoding to extract statisti-
cal characteristics from fingerprints to create codeword specific to
user [20]. Support Vector Machine (SVM) based ranking verified iden-
tity of user. The work resulted in creation of single and robust biocrypto
keys from fingerprint biometrics of users.

Sarkar et al. recommended a session key agreement protocol based
on cancellable fingerprint for reliable and secure communication be-
tween two users [21]. The proposed protocol improved performance
with elliptic curve cryptography. The suggested protocol prevented
unauthorized third parties from accessing selected key of the commu-
nicating parties. Computational experiments performed on fingerprint
features showed developed protocol to be privacy-preserving and well
suited for different real world biometric based applications.

Wu et al. suggested an approach for generating bio-key that merged
benefits of user key and biometrics verification. Robust bio-keys gener-
ated from finger veins in a convenient and flexible framework offered
acceptable levels of protection for authentication in a cloud computing
scenario [22]. The approach merged technologies such as biometrics,
cryptography, and machine learning to get a special feature vector from
biometrics space. Experimental and theoretical validation resulted in
extraction of firm bio-keys from high quality finger vein images.

Nguyen et al. recommended SIP authenticated key agreement proto-
col for user–user, user–server and group communications [23]. A short-
term token is by the end user used to communicate with other users
or multimedia servers, without linking to a trusted server. Experiments
revealed that proposed security mechanism opposed known attacks and
produced a model with multiple characteristics including protection
of biometric template privacy, user access control, long-term secret
updates, smart card revocation and end-to-end communications. The
verified key agreement stage achieved minimal latency with suitability

for broad range of applications.
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Table 1
Features and challenges of conventional biometrics key agreement protocols.

Authors
[Citations]

Methodology Features Challenges

Saini and Sinha
[19]

Gabor Filter for feature
extraction

- Secure transmission of key -
Parallel processing of data for
higher speed

- Frequency and time resolution
leading to intra-user key
variations

Panchal and
Samanta [20]

- Reed–Solomon encoding for
key generation
- SVM ranking mechanism

- Resilience to security attacks
- Generation of multiple
bio-crypto keys

- Secrecy of encoding
parameters - Sensitive to
outliers

Sarkar and
Singh [21]

-Session key agreement protocol

- Elliptic curve cryptography

- Privacy preserving - Suited for
real-time applications

- Explore multiple user traits

Wu et al. [22] High dimension space
self-stabilization machine
learning

- Flexible user authentication -
128–256 bit key extraction

- Feature accuracy improvement
- Slower separation function

Nguyen and
Chang [23]

SIP authenticated key agreement - Direct end-to-end
communication - Biometric
template privacy

- Higher execution time - Key
renewal process

Zhang et al. [24] SIP authentication with ECC - Protection of user privacy -
Reduced time for setup.

- Heavy load on gateways for
processing data.

Feng et al. [25] ECC - Anonymity and unlinkability
- User impersonation attack
resilience

- Computation complexity

Jin et al. [26] - ECC free key binding
mechanism
- Fingerprint minutia vicinity
decomposition and Graph-based-
Hamming Embedding

- Satisfies cancellable criterion
for template protection.
- Applicable to multiple
biometric feature
representations

- Accuracy and Privacy
preservation
Zhang et al. presented a secure authenticated key agreement proto-
ol for SIP with passwords, smart cards, and biometrics [24]. The major
dvantages of suggested strategy were: (a) SIP server does not require
o maintain a password table to manage data (b) User identity preser-
ation (c) Privacy of user biometric information while matching bio-
etric on SIP server. Security and performance evaluation confirmed

fficiency of suggested methodology over conventional methodologies.
Feng et al. suggested biometric based authentication scheme in a

ulti-server architecture [25] based on Elliptic Curve Cryptosystem
ECC) and smart card. The scheme satisfied security and functional
equirements in a mobile multi-server environment. The outcomes of
resented approach attained enhancement in levels of security with
inimal computational and communication overhead.

Jin et al. introduced an ECC-free key binding methodology with can-
ellable transforms for minutiae-based fingerprint biometrics [26]. The
uggested approach depicted potential to be applied to different types
f biometric features without being restricted to binary biometrics.
VC2002 and FVC2004 fingerprint datasets were used for experiment
nd results revealed strong performance in accuracy regardless of
ncrease in size of key with robustness against security and privacy
ttacks.

Bhagyashri et al. proposed a scheme for encrypting an image using
ombination of Random phase masks and Fractional Fourier trans-
orm [41]. Iterative chaos functions have been used to generate Ran-
om phase masks. Image encryption was achieved by applying two
ets of chaotic random phase mask and fractional Fourier transform.
everse operations resulted in decrypted image. The approach tackled
ulnerability to security attacks by shuffling pixel values of input
mage through a random sequence. Experimental results carried out
ith proposed algorithm showed the encrypted image to have uniform
istribution of grey scale values with low correlation among adjacent
ixels and high sensitivity to change in secret values of key. The model
ttained high value of number of pixels change rate (NPCR) and the
nified average changing intensity (UACI).

.4. Review

Merging of cryptographic keys with biometrics has been explored
3

sing different approaches for key binding. The reviewed state of art
work reveal that fingerprint, iris and facial features have been used for
key binding. Many challenges still exist for improving biometric-based
key management. Table 1 describes the merits and demerits of the
reviewed biometric-based key agreement protocols. Fourier Transform
enhances signal to noise ratio while ensuring reduced data loss from
signal during transfer [19]. The method has a disadvantage in natural
concession that is present among the frequency and time resolution.
SVM is efficient in high dimensional spaces and will hold any kind
of data by altering the kernel [20]. Conflicts for SVM include require-
ment of increased time to train and sensitivity to outliers. Session key
agreement protocol is suitable for real time applications with provision
for privacy preservation [21]. Manifold learning requires no human
intervention and is suitable for wide range of applications [22]. The
challenge with manifold learning is increased time and computation
resources. SIP messages are plain text which make troubleshooting
easy and is a scalable open standard with ease of implementation at
reduced setup time [23,24]. Hacking the registration and heavy load
on gateways while processing data are potential conflicts in registering
as SIP user. ECC uses lesser power, Central Processing Unit (CPU)
resources and memory and is faster [25]. Graph-based Hamming Em-
bedding (GHE) generates a cancellable fingerprint to secure geometric
invariant characteristics and Minutiae Vicinity Decomposition (MVD)
while reducing the hamming distance [26]. The methodology has a
disadvantage of being computationally expensive. Review carried out
suggests scope for improvement in biometric based key management
systems.

3. Key management for IMS with novel key binding procedure

3.1. Proposed architecture

Multiple research have been carried out for binding cryptographic
key with biometrics. Drawbacks of implemented methodologies of ear-
lier studies include failure in secure transfer of encryption key and
difficulty for user to store key in a secure manner. Diagrammatic rep-
resentation of proposed key management is shown in Fig. 1, depicting
both encryption and decryption process. The methodology introduces
facial emotions based key binding system to encrypt an image with
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Fig. 1. Proposed key binding architecture.
seven different emotions including normal, smile, sad, surprise, anger,
fear, and disgust.

The proposed model comprises of two phases: training and testing
phase. Encryption is carried out during training phase while testing
phase performs decryption. A neural network creates a database during
image encryption to store extracted optimal features which is used
for detection of authorized and unauthorized users during decryp-
tion. Image encryption involves subjecting input image to DRPE using
Chaotic Random Phase Masks (CRPM) and Extended Fractional Fourier
Transform (EFRT). DRPE is a symmetric cryptosystem that develops
two random phase masks, one each at input plane and Fourier plane
to convert input image into stationary white noise. The encryption key
is generated from CRPM and EFRT of image. The key generated through
DRPE is further subjected to binary conversion, BCH Encoding, shuffled
with user specific key and finally encrypted by RSA encryption.

Keys encoded by BCH encoder are shuffled to remove overlap
between genuine and imposter population. RSA encryption is used to
encode shuffled key to provide additional security. Features pertaining
to facial biometrics of various users are extracted using Scale Invariant
Feature Transform (SIFT). The number of extracted SIFT features of
each image is high and to rationalize number of features, an optimal
feature selection process is adopted. Optimal features are selected by
combining DHOA and CSO. The combined metaheuristics algorithm
is termed as FDHOA-RU. The extracted optimal features of facial im-
ages are trained with neural network using hybrid FDHOA-RU during
encryption phase. The secret key and extracted optimal features are
XORed to obtain an encrypted bit stream bound to a user.

Decryption phase considers facial emotions of the authorized as
input, from which optimal SIFT features are extracted using FDHOA-
RU. Extracted optimal features are evaluated in FDHOA-RU neural
network for categorizing authorized and unauthorized users. Decryp-
tion is carried out for only the authorized users. XOR operation is
carried out between optimally selected features and encrypted bit
stream. Resultant values are subjected to RSA decryption, BCH decoder,
de-shuffling, and decimal conversion to decrypt the key. De-shuffling
4

is required to be carried out by the same shuffling key that was
used during encryption. DRPE is performed to decrypt the original
image with various lengths of decrypted key. The process ensures
efficient extraction of optimal features from facial emotions for key
management.

3.2. Key generation process

Input image is encrypted using DRPE. The proposed model uses
CRPM and EFRT for DRPE. C𝑅 is the Chaotic Random Phase Mask with
which the input image represented by 𝐼𝑀 is multiplied by, to obtain
resultant image represented as 𝐼𝑀𝑀 based on Eq. (1).

𝐼𝑀𝑀 = 𝐼𝑀 × 𝐶𝑅 (1)

EFRT is performed on 𝐼𝑀𝑀 . CRPM and EFRT are again applied
to convert input image into stationary white noise. The mathematical
equation for EFRT of input function 𝑓 (𝑝) is given in Eq. (2), where
coordinates of input and output plane of EFRT are given by 𝑝 and 𝑞
respectively and parameters of EFRT are 𝑢, 𝑣 and 𝜙. The input function
f(p) is in the coordinate ‘p’ of the input plane. Eq. (2) transforms this
input function from coordinate ‘p’ to the coordinate ‘q’, which is the
coordinate of output plane of extended fractional Fourier Transform
(EFRT).

𝑓 (𝑞) = 𝑤∫ 𝑓 (𝑝) × exp

[

𝑧𝜋

(

𝑢2𝑝2 + 𝑣2𝑞2
)

tan𝜙
− 𝑧2𝜋 𝑢𝑣

sin𝜙
𝑝𝑞

]

𝑑𝑝 (2)

Parameters 𝑢2, 𝑣2 and 𝜙 are defined in Eq. (3), Eq. (4), and Eq. (5),
respectively.

𝑢2 = 1
𝜆

√

𝑓𝑙 − 𝑑𝑙2
√

𝑓𝑙 − 𝑑𝑙1

1
√

{

𝑓𝑙2 −
(

𝑓𝑙 − 𝑑𝑙1
) (

𝑓𝑙 − 𝑑𝑙2
)}

(3)

𝑣2 = 1
𝜆

√

𝑓𝑙 − 𝑑𝑙1
√

𝑓𝑙 − 𝑑𝑙2

1
√

{

2
( ) ( )}

(4)

𝑓𝑙 − 𝑓𝑙 − 𝑑𝑙1 𝑓𝑙 − 𝑑𝑙2



Journal of Visual Communication and Image Representation 74 (2021) 103002S. Padmanabhan and Radhika K.R.
𝜙 = arccos

(
√

𝑓𝑙 − 𝑑𝑙1
√

𝑓𝑙 − 𝑑𝑙2
𝑓𝑙

)

(5)

The parameters of EFRT are distances 𝑑𝑙1 and 𝑑𝑙1, focal length 𝑓𝑙
and wavelength 𝜆. 𝑑𝑙1 and 𝑑𝑙2 are object and image distances from the
lens.

The order of EFRT and seed values of CRPM form key of developed
security system. Seed values of first and second CRPM i.e., 𝐶𝑅1, and
𝐶𝑅2 and parameters of first and second EFRT i.e, (𝑢1, 𝑣1, 𝜙1) and
(𝑢2, 𝑣2, 𝜙2) determine encryption key as given in Eq. (6).

𝐸𝐾 =
[

𝐶𝑅1, 𝑢1, 𝑣1, 𝜙1, 𝐶𝑅2, 𝑢2, 𝑣2, 𝜙2
]

(6)

DRPE is tested on a 256 × 256 image to generate the encrypted
image with seed values as key. The acquired binary key is encoded with
help of BCH encoder and denoted as (𝐵𝐶𝐻_𝐸𝐾). BCH key is further
shuffled by a user specific shuffling key 𝑆ℎ𝑢𝑓 _𝐸𝐾.

4. Key encryption process

4.1. BCH encoding and key shuffling

BCH coder encodes the encryption key. There exists a 𝑡-error cor-
recting code with parameters 𝑡 < 2𝑟−1, 𝑠 = 2𝑟−1, 𝑠 − 𝑤 ≤ 𝑟𝑡, 𝑡𝑟 ≥
2𝑡 + 1 for any positive integer 𝑟. The linear cyclic code has ability to
correct upto 𝑡 random across (2𝑟−1 − 1) bit positions. BCH encoded
key is split into blocks to perform shuffling operation. Each block of
encryption key (𝐵𝐶𝐻_𝐸𝐾) is designated by a number and the blocks
are shuffled by user specific shuffling key 𝑆ℎ𝑢𝑓 _𝐸𝐾. The shuffled key is
indicated by 𝐵𝐶𝐻_𝑆ℎ𝑢𝑓 _𝐸𝐾. Shuffling key is presented by authentic
user during key retrieval process. Security of shuffled key is ensured
by RSA public key encryption represented as (𝑅𝑆𝐴_𝑆ℎ𝑢𝑓 _𝐸𝐾). The
key (𝑅𝑆𝐴_𝑆ℎ𝑢𝑓 _𝐸𝐾) is associated with user by XORing with optimal
features extracted from facial emotions of user.

4.2. RSA encryption

RSA encrypts message 𝑀𝑆𝐺 with public key (𝑒𝑛, 𝑠). Encoded cipher
text 𝐶𝑃 is decrypted by secret key (𝑑𝑒, 𝑠). 𝑒𝑛, 𝑑𝑒, and 𝑠 are positive
integers obtained from prime numbers 𝑚 and 𝑛 such that 𝑠 = 𝑚× 𝑛 and
𝜙(𝑠) = (𝑚−1)(𝑛−1). 𝑚, 𝑛 are secret while 𝑠 is public. A positive integer
1 < 𝑒𝑛 < 𝜙(𝑠) is chosen randomly such that maximum common divisor
of 𝑒𝑛 and 𝜙(𝑠) is 1. 𝑑𝑒 is calculated as shown in Eq. (7). Mathematical
equations defining RSA encryption and decryption are given in Eq. (8),
and Eq. (9).

𝑑𝑒 = 1{mod(𝜙(𝑠))} (7)

𝐶𝑃 = 𝑀𝑆𝐺𝑒𝑛 mod (𝑠) (8)

𝑀𝑆𝐺 = 𝐶𝑃 𝑑𝑒 mod (𝑠) (9)

The encrypted key (𝑅𝑆𝐴_𝑆ℎ𝑢𝑓 _𝐸𝐾) is merged with biometric fea-
ture for secure image encryption with key binding.

5. Extraction of optimal features from facial emotions and train-
ing of neural network

5.1. SIFT-based feature extraction from facial emotions

SIFT identifies salient and stable feature points used for proposed
key management. SIFT is image scaling and rotation invariant and
moderately invariant to alterations in illumination allowing for alter-
ation in occurrence of occlusion, noise, or clutter. SIFT algorithm is
classified into four phases: Scale Space Extrema Detection, Key point
Localization, Orientation Assignment and Key point Descriptor. The
four phases are described briefly.
5

(a) Scale Space Extrema Detection: SIFT framework identifies key
points in scale space by determining image locations with max-
ima or minima difference-of Gaussian (DoG), 𝐷(𝑥, 𝑦, 𝜎). Key-
points are maxima or minima in scale space. Location and scale
of each keypoint is determined. Scale space of an image, denoted
as 𝐿(𝑥, 𝑦, 𝜎), is generated by convolving variable-scale Gaussian
𝐺(𝑥, 𝑦, 𝜎) with input image 𝐼𝑓𝑎𝑐𝑒(𝑥, 𝑦).

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼𝑓𝑎𝑐𝑒(𝑥, 𝑦) (10)

with

𝐺(𝑥, 𝑦, 𝜎) = 1
2𝜋𝜎2

𝑒−
(

𝑥2+𝑦2
)

∕2𝜎2 (11)

where 𝜎 denotes standard deviation of Gaussian
𝐺(𝑥, 𝑦, 𝜎). DoG 𝐷(𝑥, 𝑦, 𝜎) is computed from difference of Gaus-
sians of two scales separated by a factor 𝑘:

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼𝑓𝑎𝑐𝑒(𝑥, 𝑦) (12)

Local maxima and minima of 𝐷(𝑥, 𝑦, 𝜎) are computed by com-
paring the sample point with eight neighbours in same scale as
well as nine neighbours in one up and down scale space.

(b) Key point Localization: Final set of key points are selected based
on measure of stability. Points with lower contrast and poor
localization are discarded as less stable points. A key point with
value of ∣ 𝐷(x, y, 𝜎) ∣ lower than threshold is removed.

(c) Orientation Assignment: Orientations are allocated to identified
key points by constructing a histogram of orientation of gradi-
ents 𝜃(𝑥, 𝑦) weighted by magnitude 𝑚(𝑥, 𝑦). 𝑚 and 𝜃 are given
as:

𝑚(𝑥, 𝑦) =
√

{𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)}2 + {𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)}2

(13)

𝜃(𝑥, 𝑦) = tan−1{[𝐿(𝑥, 𝑦+ 1) −𝐿(𝑥, 𝑦− 1)]∕[𝐿(𝑥+ 1, 𝑦) −𝐿(𝑥− 1, 𝑦)]}

(14)

L is Gaussian smoothed image with scale closest to a key point.
(d) Key point Descriptor: Descriptor vector defining gradient magni-

tude and orientation is calculated for each key point. Gener-
ated descriptor has three parameters — magnification factor 𝑚,
number of spatial bins and number of orientation bins. Orien-
tation and magnitude are computed for a region size 16 × 16.
Neighbourhood is then weighted by a Gaussian window and
accumulated into orientation histograms over neighbourhood
4 × 4 regions. Uniqueness of SIFT descriptors is experimented
and equivalent accuracy is computed by differentiating number
of key points present in testing database. SIFT features extracted
from the biometric face image are represented as Fea𝑆𝐼𝐹𝑇

𝑛𝑒 , where
𝑛𝑒 = 1, 2,… ........., 𝑁𝑓𝑒. 𝑁𝑓𝑒 indicates number of extracted SIFT
features. Keypoint descriptors are 128 bit feature vectors. The
number of SIFT features, 𝑁𝑓𝑒, extracted from an image depends
upon image characteristics [42].

5.2. Optimal feature selection

Metaheuristic techniques are adopted to identify unique repro-
ducible features for detecting authorized users. Selection of optimal
features is similar to an optimization problem wherein best solution
subset is identified from a given set of solutions. Optimal feature
selection in proposed biometric-based key management is achieved by
FDHOA-RU, a hybrid mix of CSO and DHOA. CSO is a swarm based

optimization technique while DHOA is a hunting optimization problem.
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(a) Chicken Swarm Optimization: CSO is a nature inspired meta-
heuristics algorithm for optimization, inspired by behaviour of
chicken swarms comprising of roosters, hens and chicks. Chicken
swarms are split into multiple clusters based on behaviour with
each cluster consisting rooster 𝑅𝑂, hens 𝐻𝐸 and chicks 𝐶𝐻 .
Splitting of swarm entities is done based on fitness values. Chick-
ens with worst fitness values are denoted as 𝐶𝐻 , chickens with
best fitness values are indicated as 𝑅𝑂 and named as dominant
rooster while remaining are termed as 𝐻𝐸. Hens select a group
on their own to live in. Mother–child relationship between hen
and chick is determined and mother hens are represented as
𝑀𝐻 . Mother–child and dominance relationship is constant and
status of each is updated for multiple time steps 𝑡𝑠. Chickens
follow rooster of cluster in search of food while chicks follow
mother hen while searching for food.
Location of chickens at time step 𝑡𝑠 is represented by 𝑃 𝑡𝑠

𝑎,𝑏(𝑎 ∈
[1,… ,𝑀], 𝑏 ∈ [1,… , 𝑑𝑠]) in dimensional space 𝑑𝑠, where 𝑀 is
number of chickens. The number, 𝑀 , of roosters are the possible
solutions. Roosters with better fitness values search for food in
regions broader than roosters with worse fitness values. Better
solutions, implying roosters with better fitness value, span over
search space with normal distribution with higher standard devi-
ation 𝜎2. Equation for movement of roosters based on respective
fitness value is given in Eq. (15).

𝑃 𝑡𝑠+1
𝑎,𝑏 = 𝑃 𝑡𝑠

𝑎,𝑏 ∗
(

1 + 𝑅𝑛𝑑
(

0, 𝜎2
))

(15)

where, 𝑅𝑛𝑑(0, 𝜎2) is a Gaussian distribution function with mean
zero and standard deviation 𝜎2 as given in Eq. (16). 𝑐 is index
of rooster from total population 𝑀 and 𝜖 is utilized to prevent
zero-division error.

𝜎2 =

{

1, if 𝑓𝑡𝑎 ≤ 𝑓𝑡𝑐
exp

( (𝑓𝑡𝑐−𝑓𝑡𝑎)
|𝑓𝑡𝑎|+𝜀

)

, Otherwise , 𝑐 ∈ [1,𝑀], 𝑐 ≠ 𝑎
(16)

Hens with better fitness value refer to more optimal solution
values and have more benefits than less fit hens, while searching
for food. Hens in a group follow the rooster of group. Positional
migration pattern of hens dependent on rooster of group is
represented mathematically in Eq. (17).

𝑃 𝑡𝑠+1
𝑎,𝑏 = 𝑃 𝑡𝑠

𝑎,𝑏 +𝐴1 ∗ 𝑅𝑑 ∗
(

𝑃 𝑡𝑠
𝑟𝑠1,𝑏 − 𝑃 𝑡𝑠

𝑎,𝑏

)

+𝐴2 ∗ 𝑅𝑑 ∗
(

𝑃 𝑡𝑠
𝑟𝑠2,𝑏 − 𝑃 𝑡𝑠

𝑎,𝑏

)

(17)

𝐴1 = exp

(
(

𝑓𝑡𝑎 − 𝑓𝑡𝑟𝑠1
)

(

𝑎𝑏𝑠
(

𝑓𝑡𝑎
)

+ 𝜀
)

)

(18)

𝐴2 = exp
(

𝑓𝑡𝑟𝑠2 − 𝑓𝑡𝑎
)

(19)

𝑅𝑑 is a random number in [0, 1], 𝑟𝑠1 is index of rooster belonging
to 𝑎th hen group and 𝑟𝑠2 is index of rooster selected randomly
from swarm such that 𝑟𝑠1 ≠ 𝑟𝑠2. Evidently, 𝑓𝑡𝑎 > 𝑓𝑡𝑟𝑠1 and
𝑓𝑡𝑎 > 𝑓𝑡𝑟𝑠2, therefore 𝐴2 < 1 < 𝐴1. Chicks search their food
by moving around their mother as represented in mathematical
equation Eq. (20).

𝑃 𝑡𝑠+1
𝑎,𝑏 = 𝑃 𝑡𝑠

𝑎,𝑏 + 𝐹𝑀 ∗
(

𝑃 𝑡𝑠
𝑐𝑚,𝑏 − 𝑃 𝑡𝑠

𝑎,𝑏

)

(20)

𝑃 𝑡𝑠
𝑐𝑚,𝑏 is position of 𝑎th chick’s mother (𝑐𝑚 ∈ [1,𝑀]). Parameter

𝐹𝑀(𝐹𝑀 ∈ (0, 2)) denotes the speed at which a chick follows
around mother while searching food. 𝐹𝑀 of every chick is
chosen selected randomly in the range [0,2] to denote speed
specific to motion of a chick around mother hen.

(b) Deer Hunting Optimization Algorithm: DHOA is a bio-inspired
metaheuristics algorithm based on hunting behaviour of humans
depicted while hunting a deer. Hunting mechanism is based
on movement of two hunters denoted as leader and successor.
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Search space is an operating parameter while motion dynamics
of hunters and deer along with capabilities form constraints of
optimization problem. The hunting algorithm factors in dynam-
ics of both hunter as well as prey. A hunter whose position
with respect to prey is best is considered as optimal solution at
step. Other hunters move towards lead hunter and update their
position. If any hunter finds updated position to be better than
that of leader then that particular hunter takes over as leader at
end of iteration. Positional update of hunters, deer along with
additional parameters like wind angle are used to formulate
parametric equations. Population of hunters is initialized by
Eq. (21), in which 𝑀 is total number of hunters and 𝑃𝑎 is overall
population.

𝑃𝑎 =
{

𝑃1, 𝑃2,… , 𝑃𝑀
}

1 < 𝑎 < 𝑀 (21)

Position and wide angle of deer are significant parameters for
defining best locations of hunters. Search space is assumed as a
circle and wind angle follows circumference of circle represented
in Eq. (22), where 𝑡𝑠 denotes current iteration, 𝑅𝑑 is a random
number ranging from 0 to 1 and 𝜃 is wind angle. Position angle
of deer for a wind angle 𝜃 is shown in Eq. (23).

𝜃𝑡𝑠 = 2𝜋𝑅𝑑 (22)

𝜙 = 𝜃 + 𝜋 (23)

Position of leader
(

𝑃 𝑙𝑒) and successor (𝑃 𝑠𝑢) are considered as
best two solutions. Each hunter strives to acquire best position.
Encircling behaviour of hunters with respect to position of lead-
hunter is given by Eq. (24), where 𝐶 and 𝐷 are coefficient
vectors are determined as per Eqs. (25) and (26) respectively. A
random number denoting wind speed is generated and denoted
by 𝑔, ranging from 0 to 2. ℎ lies in the range [−1, 1] and 𝑑 is a
random number ranging from 0 to 1. 𝑡𝑠𝑚𝑎𝑥 is the pre-determined
number of iterations for optimization algorithm.

𝑃𝑡𝑠+1 = 𝑃 𝑙𝑒 − 𝐶 ⋅ 𝑔 ⋅ |𝐷 × 𝑃 𝑙𝑒 − 𝑃 𝑡𝑠
| (24)

𝐶 = 1
4
log

(

𝑡𝑠 + 𝑖
𝑡𝑠max

)

ℎ (25)

𝐷 = 2 ⋅ 𝑑 (26)

Position angle in update rule is taken into consideration to
improve search space. Computation of position angle of prey is
necessary to define position of hunter. The angle of visualization
of prey at iteration 𝑡𝑠 is defined by Eq. (27).

𝑣𝑎𝑡𝑠 =
∏

8
× 𝑅𝑑 (27)

Parameter 𝑑𝑓𝑡𝑠 is calculated for updating position of deer based
on difference between angles of wind and visualization, as
given in Eq. (28). The position angle of prey is updated using
Eq. (29).

𝑑𝑓𝑛𝑡𝑠 = 𝜃𝑡𝑠 − 𝑣𝑎𝑡𝑠 (28)

𝜙𝑡𝑠+1 = 𝜙𝑡𝑠 + 𝑑𝑓𝑛𝑡𝑠 (29)

The encircling behaviour is taken by altering the vector 𝐷 in
exploration phase. Position update during exploration phase
occurs based on successor rather than position of leader. The
mathematical representation of update based on position of
successor is given in Eq. (30). Update of position is performed
in every iteration till best position is defined, based on objective
function.

𝑃𝑡𝑠+1 = 𝑃 𝑠𝑢 − 𝐶 ⋅ 𝑔 ⋅ |𝐷 × 𝑃 𝑠𝑢 − 𝑃𝑡𝑠
| (30)
| |
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(c) Proposed FDHOA-RU: FDHOA-RU is implemented to select op-
timal features from extracted SIFT features of facial emotions
like normal, smile, sad, surprise, anger, fear, and disgust. Con-
ventional DHOA is inspired by behaviour of humans exhibited
while hunting deer. Proposed algorithm combines principles of
swarm and hunting optimization to effect a more optimal and
efficient solution. FDHOA-RU takes cue from CSO for defining
fitness level for each solution in the solution space. All solutions
are initially sorted as per fitness value denoted as sort index
𝑆𝐼 . A random number 𝑟𝑛 between 1 and 7 is used to tag one
of the seven selected facial emotion. Prior to starting general
update of DHOA, FDHOA-RU updates solution based on length
the population 𝑙 and fitness sort index 𝑆𝐼 . For the condition
𝑙 < 𝑆𝐼 , solution is updated by the rooster update Eq. (15) of
CSO. Algorithm 1 shows pseudo code of proposed FDHOA-RU
for biometric-based key management for image encryption.
FDHOA-RU selects optimal features from extracted SIFT features
Fea𝑆𝐼𝐹𝑇

ne and selected optimal features are termed as Fea∗SIFTne∗ .
The selected features are used to update weight function of
neural network and train the network.

Algorithm 1 Pseudo code of proposed FDHOA-RU
Input Initialize population of Hunters (𝑃𝑎)
𝑃𝑎 =

{

𝑃1, 𝑃2,⋯ , 𝑃𝑀
}

1 < 𝑎 < 𝑀
Parameter Initialization:
for each solution in population, calculate fitness function and assign
motion as per CSO
Sort fitness index;

𝑆𝐼 = 𝑆𝑜𝑟𝑡(𝐹 𝑖𝑡𝑛𝑒𝑠𝑠) (31)

Motion characteristics of hunter at step 𝑡𝑠, based on fitness value is;

𝑃 𝑡𝑠+1
𝑎,𝑏 = 𝑃 𝑡𝑠

𝑎,𝑏 ∗
(

1 + 𝑅𝑛𝑑
(

0, 𝜎2
))

(32)

for iteration 𝑖 = 1 to 𝑡𝑠𝑚𝑎𝑥
compute:

- angle of visualization - 𝑣𝑎
- position update - 𝑑𝑓𝑛
- wind speed - 𝑔
- Coefficient vectors - 𝐶 and 𝐷
- parameter ℎ

𝑓𝑜𝑟 𝑙 = 1 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃𝑎)
𝐼𝑓 𝑙 < 𝑆𝐼(1 ∶ 𝑟𝑛)
Explore with respect to Successor 𝑃 𝑠𝑢

𝑃𝑡𝑠+1 = 𝑃 𝑠𝑢 − 𝐶 ⋅ 𝑔 ⋅ |
|

𝐷 × 𝑃 𝑠𝑢 − 𝑃𝑡𝑠
|

|

(33)

Compute fitness of each solution
Recompute best solution for hunter and identify 𝑃 𝑙𝑒

Update position of hunters with respect to 𝑃 𝑙𝑒

𝑃𝑡𝑠+1 = 𝑃 𝑙𝑒 − 𝐶 ⋅ 𝑔⋅ ∣ 𝐷 × 𝑃 𝑙𝑒 − 𝑃 𝑡𝑠
| (34)

Update 𝑃 𝑙𝑒 and 𝑃 𝑠𝑢

𝑡𝑠 = 𝑡𝑠 + 1
return 𝑃 𝑙𝑒

5.3. Template generation by neural network

The neural network trains optimal features of emotions associated
with face input dataset and generated template forms basis for user
authentication. Optimal features of each user extracted from test set
is given as training input to neural network. The developed neural
network developed is flexible and includes three layers: input, output,
7

Fig. 2. Solution encoding for optimal feature selection and classification.

and hidden layers [43]. The optimally selected features by proposed
FDHOA-RU termed as 𝐹𝑒𝑎∗𝑆𝐼𝐹𝑇

𝑛𝑒∗ is the input to neural network. Input
and output neurons are denoted by 𝑖𝑝 and 𝑜𝑝 respectively. Hidden
neuron is indicated by ℎ𝑑. Outcome of the hidden layer is computed
by Eq. (35).

�̄�(𝐵) = Acf

(

𝐸(𝐵)
(éhd ) +

Co(𝐼𝑁)
∑

𝑖𝑝=1
𝐸(𝐵)
(iphd )𝐹𝑒𝑎∗𝑆𝐼𝐹𝑇

𝑛𝑒∗

)

(35)

Bias weight of hidden neuron is given by 𝐸(𝐵)
(ephd), weight from input

neuron to hidden neuron is indicated by 𝐸(𝐵)
(iphd), count of input neurons

is defined by Co(𝐼𝑁) and activation function is shown as 𝐴𝑐𝑓 . The
overall outcome of the network is measured by Eq. (36). Bias weight
of output neuron is given by 𝐸(𝐺)

(eop) and weight from hidden neuron to
output neuron is denoted by 𝐸(𝐺)

(hdop).

�̂�𝑜𝑝 = Acf

(

𝐸(𝐺)
(𝑒𝑜𝑝) +

𝐶𝑜(𝑂𝑃 )
∑

ℎ𝑑=1
𝐸(𝐺)
(ℎ𝑑𝑜𝑝)�̄�

(𝐵)

)

(36)

To provide better training to neural network, weight function

𝐸𝑁𝑁
𝑙 =

{

𝐸(𝐵)
(ehd), 𝐸

(𝐺)
(eop), 𝐸

(𝐵)
(iphd), 𝐸

(𝐺)
(hdop)

}

is selected optimally. Corresponding measured error is given in Eq. (37).

𝐸𝑀1 =

{

argmin
�̄�(𝐵)
(𝑒ℎ𝑑), 𝐸

(𝐺)
(𝑒𝑜𝑝), 𝐸

(𝐵)
(𝑖𝑝ℎ𝑑), 𝐸

(𝐺)
(ℎ𝑑𝑜𝑝)

}

∑𝐺(𝐶𝑜)
𝑜𝑝=1

|

|

|

𝐺𝑜𝑝 − �̂�𝑜𝑝
|

|

|

(37)

Actual and predicted outputs are indicated as 𝐺𝑜𝑝 and �̂�𝑜𝑝 respec-
tively. The error difference between the actual and predicted result
given in Eq. (33) is optimized using FDHOA-RU algorithm.

6. Encryption and decryption of image

6.1. Solution encoding and objective model

The proposed FDHOA-RU algorithm is used for both feature selec-
tion as well as training of neural network. Once SIFT features Fea𝑆𝐼𝐹𝑇

𝑛𝑒
are given, optimal SIFT features 𝐹𝑒𝑎∗𝑆𝐼𝐹𝑇

𝑛𝑒 are extracted. The weight
function 𝐸𝑁𝑁

𝑙 of neural network is optimized by FDHOA-RU for more
accurate detection of authorized user. Encoding solution for optimal
feature selection and classification is shown in Fig. 2.

Optimally generated features are represented as Fea∗𝑆𝐼𝐹𝑇
𝑛𝑒∗ , in which

𝑛𝑒∗ = 1, 2,… , 𝑁∗𝑓𝑒 and 𝑁∗𝑓𝑒 are total number of features selected
by FDHOA-RU algorithm. 𝐸𝑁𝑁

𝑙∗ are the optimal weights. The solution
element bound varies from a minimum of 1 to a maximum of number
of SIFT features in an image for optimal feature selection. Total length
of solution corresponding to optimal feature selection is 𝑀𝐷𝐸 × 𝑁𝑈 ,
where 𝑀𝐷𝐸 refers to common number of features from all images and
𝑁𝑈 refers to number of users.

The main objective function considered for optimal feature selection
and classification for biometric key management-based image encryp-
tion is minimization of error difference between predicted and actual
as shown in Eq. (38).

𝑂𝑏𝐹𝑢𝑛 = Min(𝐸𝑀1) (38)
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Fig. 3. Encryption process.

6.2. Encryption

The encryption process utilized to encrypt image is shown in Fig. 3.
Various emotions of users are given as input and the encryption process
stores the encoded key corresponding to various emotions like normal,
smile, sad, surprise, anger, fear, and disgust as target on the template.
Encryption of input image leads to an encoded stream of bits which
form an input to decryption system.

6.3. Decryption

The encoded stream of bits obtained after DRPE, RSA and user
key binding form input to decryption stage. The proposed decryption
process detects users for various types of emotions. Fig. 4 depicts de-
cryption process used in developed model. A user feeds facial emotions
at decryption stage after which optimal features are extracted using
FDHOA technique. The extracted optimal user provided for decryption
are validated with neural network trained template. The user bound
biometric key is XORed with input encrypted stream only after positive
authentication to obtained RSA encrypted key.

7. Results and discussions

7.1. Experimental setup

The optimal feature selection-based biometric key management for
IMS using facial emotions has been implemented in MATLAB 2018a
installed on a PC with Windows 10 OS, 8 GB RAM and 64-bit op-
erating system. Hardware platform for proposed work has not been
implemented and has been left as future work. Facial biometric related
to seven different emotions — normal, smile, sad, surprise, anger, fear,
and disgust has been used. Following datasets have been used for
experiments.

(a) Japanese Female Facial Expression (JAFFE) Database: Data
has been downloaded from URL https://zenodo.org/record/34
51524#.Xb_jq5ozbIU. The database contains 213 images with 7
facial expressions (6 basic facial expressions + 1 neutral) posed
by 10 Japanese female models. Images are 256 × 256 grey level,
in .tiff format, with no compression.
8

Fig. 4. Decryption process.

(b) Yale Face Database: Data has been downloaded from URL
http://vision.ucsd.edu/datasets/yale_face_dataset_original/. The
database contains 165 greyscale images in GIF format of 15
individuals. There are 11 images per subject, one per different
facial expression.

Key lengths are varied as 36, 43, 64, 78 and 99 for performance
analysis. A total of 25 iterations were performed for optimal feature
selection. User detection system using FDHOA-RU was compared over
models without optimization, Grey Wolf Optimization (GWO), Whale
Optimization Algorithm (WOA), DHOA and CSO-based models [39,40].
Performance metrics used for evaluation include accuracy, sensitivity,
specificity, and precision, False Positive Rate (FPR), False Negative Rate
(FNR), Negative Predictive Value (NPV), False Discovery Rate (FDR),
F1-score, and Matthews Correlation Coefficient (MCC).

7.2. Performance metrics

Ten performance measures are considered for image encryption
using facial biometrics.

(a) Accuracy: Accuracy is computed as ratio of observation of exactly
predicted to total observations. Expression for accuracy is shown
in Eq. (39), in which Tr 𝑃 is true positive, Tr𝑁 is true negative,
𝐹𝑎𝑃 is false positives and 𝐹𝑎𝑁 is false negatives.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐𝑐) = Tr 𝑃 + Tr𝑁
Tr 𝑃 + Tr𝑁 + 𝐹𝑎𝑃 + 𝐹𝑎𝑁

(39)

(b) Sensitivity: Measured as the number of true positives recognized.
Mathematically represented in Eq. (40)

Sen = Tr 𝑃
Tr 𝑃 + 𝐹𝑎𝑁

(40)
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Fig. 5. Accuracy, Sensitivity, Specificity, Precision.
(c) Specificity: Measured as number of true negatives determined
precisely. Specificity is formulated as in Eq. (41).

Spe = Tr𝑁
𝐹𝑎𝑃

(41)

(d) Precision: Computed as ratio of true positive observations pre-
dicted to total number of observations positively predicted. It is
depicted in Eq. (42).

Pr 𝑒 = Tr 𝑃
Tr 𝑃 + 𝐹𝑎𝑃

(42)

(e) FPR: Computed as ratio of count of false positive predictions to
total count of negative predictions. FPR is numerically repre-
sented in Eq. (43).

𝐹𝑃𝑅 = 𝐹𝑎𝑃
𝐹𝑎𝑃 + Tr𝑁

(43)

(f) FNR: Proportion of positives that yield negative test outcomes
with the test. Numerically denoted in Eq. (44).

𝐹𝑁𝑅 = 𝐹𝑎𝑁
𝐹𝑎𝑁 + 𝑇 𝑟𝑃

(44)

(g) NPV: Probability that subjects with a negative screening test are
truly negative. Represented in Eq. (45)

𝑁𝑃𝑉 = 𝐹𝑎𝑁
𝐹𝑎𝑁 + Tr𝑁

(45)

(h) FDR: Number of false positives in all rejected hypotheses. FDR
is shown in Eq. (46).

𝐹𝐷𝑅 = 𝐹𝑎𝑃
𝐹𝑎𝑃 + 𝑇 𝑟𝑃

(46)
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(i) F1 Score: Harmonic mean between precision and sensitivity.
Numerically shown in Eq. (47).

𝐹1 score = Sen× Pr 𝑒
Pr 𝑒 + Sen

(47)

(j) MCC: Correlation coefficient computed as denoted in Eq. (48).

𝑀𝐶𝐶 = Tr 𝑃 × Tr𝑁 − 𝐹𝑎𝑃 × 𝐹𝑎𝑁
√

(Tr 𝑃 + 𝐹𝑎𝑃 )(Tr 𝑃 + FaN)(Tr𝑁 + FaP)(Tr𝑁 + FaN)

(48)

7.3. Performance analysis on IMS

A detailed analysis of user detection with optimal features is car-
ried out. Performance of proposed FDHOA-RU-KM is compared over
conventional approaches based on different performance metrics for
different key lengths varying from 36 to 99. The results are plotted
in Fig. 5, Fig. 6, and Fig. 7. The plots shows that accuracy of the
implemented FDHOA-RU-KM model is 2.2% better than DHOA, 6.4%
better than GWO, 12.3% better than CSO, and 15.1% better than WOA-
based KM at key length 80. Sensitivity of developed FDHOA-RU-KM is
depicted. A key length of 99 implemented with FDHOA-RU-KM is 6.4%
superior to WOA, 9.6% superior to OL, 13.7% superior to CSO, and
18.1% superior to DHOA-KM.

Specificity of FDHOA-RU-KM is 7% improved over GWO and 13.7%
improved than CSO-KM for a key length of 80. Precision of modified
FDHOA-RU-KM for a key length of 35 is 3.4%, 5.2%, 10.3%, 8.3%, and
18.1% enhanced over WOA, CSO, DHOA, OL, and GWO-KM, respec-
tively. The plots depict that FPR of recommended FDHOA-RU-KM is
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Fig. 6. FPR,FNR,NPV, FDV.
Fig. 7. F1-Score, MCC.
39.5% better than GWO and 55% better than CSO-KM for a key length
of 80. For a key length of 80, NPV for FDHOA-RU-KM is 6.4% superior
to GWO, and 13.7% superior to CSO-KM. The proposed FDHOA-RU-KM
is superior to conventional algorithms for all performance metrics and
hence suitable for efficient employment in IMS.

7.4. Overall user detection

Overall performance in user detection of proposed FDHOA-RU-KM
model as against conventional models for IMS using facial emotion
10
biometrics is tabulated in Table 2. FDHOA-RU-KM records improved
performance characteristics over conventional optimization techniques
in detecting users for image encryption using face biometrics.

7.5. ROC curve analysis

Receiver Operating Curve (ROC) for the proposed system for a key
length of 64 is plotted in Fig. 8. Each point on the ROC plot indicates
a sensitivity (or) specificity pair related to specific decision threshold.
The plotted figure shows that proposed FDHOA-RU-KM outperforms
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Fig. 8. ROC analysis of the proposed and conventional models based on FAR with
respect to FRR.

Table 2
Overall performance of user detection in proposed biometric key management-based
IMS.

Measure OL-KM GWO-KM WOA-KM DHOA-KM CSO-KM FDHOA-RU-KM

Accuracy 0.7142 0.4285 0.8571 0.9 0.8714 0.9285
Sensitivity 0.6857 0.8571 0.8571 0.8857 0.8 0.9428
Specificity 0.7428 0 0.8571 0.9142 0.9428 0.9142
Precision 0.7272 0.4615 0.8571 0.9117 0.9333 0.9167
FPR 0.2571 1 0.1428 0.0857 0.0571 0.08571
FNR 0.3142 0.14286 0.1428 0.1142 0.2 0.05714
NPV 0.7428 0 0.8571 0.9142 0.9428 0.9142
FDR 0.2727 0.5384 0.1428 0.0882 0.0667 0.08333
F1-score 0.7058 0.6 0.85714 0.8985 0.8615 0.9295
MCC 0.4292 −0.27 0.7142 0.8003 0.7505 0.8574

conventional models at all FRRs. The implemented FDHOA-RU-KM is
suitable for biometric key management in IMS using facial biometrics.

7.6. Effect of key length on ROC

Effect of key length on ROC for implemented FDHOA-RU-KM model
and conventional models is shown in Fig. 9, which consists of varied
key lengths. In Fig. 9(a), with key length 36, FAR by GWO-KM in
terms of 0.2 FRR is minimum, followed by WOA-KM, DHOA-KM. The
proposed FDHOA-RU is occupying the next position in showing the
minimum result. Later, CSO and OL are having minimum value. At 0.4
FRR, FAR by developed FDHOA-RU is minimum. Next, CSO, DHOA,
WOA, and GWO are occupying rest of the positions, respectively in
providing the minimum values. On the basis of degree of improvement,
FAR by developed FDHOA-RU with respect to 0.8 FRR is 33.3% better
than CSO, 41.1% better than OL, 50% better than DHOA and WOA,
and 73.6% better than GWO-KM. At key length 43, from Fig. 9(b), FAR
by implemented FDHOA-RU-KM is showing minimum from 0.4 FRR.
Initially, GWO is showing minimum output but finally it is exhibiting
maximum FAR. By considering the FRR as 0.6, FAR by developed
FDHOA-RU-KM is 2.4% enhanced than CSO, 4.7% enhanced than OL,
11.1% enhanced than WOA, 13% enhanced than DHOA, and 20%
enhanced than GWO. From Fig. 9(c), for a key length of 64, FAR with
presented FDHOA-RU-KM is minimum at 0 FRR. Later, the proposed
model is increasing the FAR with respect to FRR. After a certain
period, from 0.4 FRR, again the FAR by offered FDHOA-RU-KM is
minimum. Based on the degree of improvement, FAR with improved
FDHOA-RU-KM regarding 0.4 FRR is 20% improved than CSO, 23%
improved than OL, 24.5% improved than DHOA, and 27.2% improved
than WOA-KM. Fig. 9(d), depicts that FAR by proffered FDHOA-RU-
KM is minimum at 0 FRR, later it increases slowly with respect to FRR
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Table 3
Computation complexity.
Feature selection (s)

GWO WOA DHOA CSO FDHOA-RU-KM

413.41 419.03 433.50 461.62 397.16

Encryption and decryption for IMS (s))

OL-KM GWO-KM WOA-KM DHOA-KM CSO-KM FDHOA-RU-KM

10.2474 6.5061 6.6014 6.5229 6.4602 6.3484

Table 4
Performance comparison over state-of-art-methods.

Performance
metrics

Panchal and
Samanta [20]

Wu et al.
[22]

Jin et al.
[26]

Proposed
FDHOA-RU-
KM

TPR 91.27 93.6 89 94.28
FPR 0.14 0.1502 0.16 0.08571

until 0.4. From 0.4 FRR, the proposed model started decreasing and
providing minimum FAR. FAR by implemented FDHOA-RU KM with
respect to 1 FRR is 90% better than GWO, and 97% better than OL-KM.
In addition, from Fig. 10(a), FAR by modified FDHOA-RU-KM started
providing minimum values from 0.4 FRR. At 0.8 FRR, FAR by improved
FDHOA-RU-KM is 50% superior to WOA, 58.3% superior to OL, 75%
superior to CSO, 77.2% superior to DHOA, and 80% superior to GWO-
KM. It is confirmed that proposed FDHOARU-KM model outperforms
conventional models in IMS using facial emotion biometrics.

7.7. Computational complexity

The computational complexity of feature selection in proposed fa-
cial emotion biometric-based IMS is shown in Table 3. The compu-
tational speed of the proposed FDHOA-RU-based feature selection is
3.93%, 5.21%, 8.38%, and 13.96% better than GWO, WOA, DHOA,
and CSO, respectively. The computational time of encryption and de-
cryption is given in Table 3, in which, the speed of the proposed
FDHOA-RU-KM is 38.04%, 2.42%, 3.83%, 2.67%, and 1.73% superior
to OL-KM, GWO-KM, WOA-KM, DHOA-KM, and CSO-KM, respectively.

7.8. Performance comparison over state-of-art-methods

Performance of proposed FDHOA-RU model against other state-
of-art methods is tabulated in Table 4, in terms of TPR and FPR.
The tabulated values show that FDHOA-RU approach has higher TPR
and lower FPR values as compared to surveyed state-of-art meth-
ods. TPR and FPR give a measure of acceptance and the rejection
rate respectively of the biometric system. Higher TPR and lower FPR
values obtained from proposed FDHOA-RU model indicate better per-
formance. The proposed FDHOA-RU has TPR higher than Panchal and
Samanta [20] by 3.3%, Wu et al. [22] by 0.72%, Jin et al. [26] by 5.9%.
The proposed scheme has lower FPR than Panchal and Samanta [20]
by 38.7%, Wu et al. [22] by 42.8%, Jin et al. [26] by 46.3%.

7.9. Practical applications

Proposed biometric-based key management system ensures secure
authentication in online transactions. The work identifies an approach
to generate biometric enabled encryption and decryption across multi-
ple sessions. The methodology enables sharing of symmetric keys across
communication channels thereby enhancing security of IMS. Use of
biometrics ensures security of key while additionally ensuring that au-
thentication occurs only when authorized user is present. The emotion
based facial biometric ensures ease of use and ease of integration with
multitude of mobile devices used to access digital services.
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Fig. 9. Effect of Key Length on ROC for proposed and existing facial biometric-based key management models based on FAR with respect to FRR for varied key lengths (a) 36,
(b) 43, (c) 64 and (d) 78.
Fig. 10. Effect of Key Length on ROC for proposed and existing facial biometric-based
key management models based on FAR with respect to FRR for varied key length 99.

8. Conclusion

A new IMS protocol has been demonstrated involving key extrac-
tion for encryption, feature extraction of different emotions, optimal
feature selection, bit stream generation, and decryption process. The
image is initially subjected to DRPE, wherein the key is created using
CRPM and EFRT. Binary conversion, BCH encoding, shuffling and RSA
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encryption are performed on generated key, followed by extraction of
features with different emotions of user facial biometric and optimal
feature selection. Optimal feature selection has been achieved done
by combining CSO and DHOA, thereby defining a new model named
FDHOA-RU. User detection was done by an optimized neural network.
Experiments and results have revealed that accuracy of implemented
FDHOA-RU-KM model is 2.2% better than DHOA, 6.4% better than
GWO, 12.3% better than CSO, and 15.1% better than WOA-based KM
at key length 80. Precision of FDHOA-RU-KM has been found to be
better than conventional algorithms. The implemented FDHOA-RU-KM
methodology is found to be proficient for IMS using facial biometrics.
The future scope of work would encompass further experiments with
additional optimal features extracted from stable biometric traits such
as iris. A multi-modal approach combining facial emotions and iris is
an ideal candidate for further research.
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