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In recent years, wearable technology is interwoven with our everyday lives because of its commoditi-
zation and comfort. Security and privacy become a big concern as many user-sensitive data have been 
stored in such devices, such as personal emails and bank accounts. Traditional user authentication 
techniques like PIN entry are unfriendly and vulnerable to shoulder surfing attacks. To address these 
problems, a number of new authentication methods have been proposed. In this survey, we review 
and categorize recent advances in user authentication for wearable devices. We classify existing studies 
into physiological biometrics based and behavioral biometrics based methods. For each category, we 
review how signal processing techniques have been used to extract features in various wearable devices. 
Leveraging these extracted features, specifically designed classification methods can be used to realize 
user authentication. Finally, we review evaluation metrics for user authentication in wearable devices. 
Overall, in this survey, we systematically study assorted state-of-the-art user authentication methods for 
wearable devices, aiming to provide guidance and directions for future research in this area.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Wearable devices are becoming increasingly popular in recent 
years. Commercial wearable products such as smartwatches and 
smart wristbands are penetrating everyone’s daily life. Through 
these easy-to-wear devices, people can easily access social me-
dia and enjoy e-pay services. According to a recent report [1], the 
wearable market is expected to reach $57,653 million by 2022, 
which is three times larger than that in 2016 ($19,633 million). Al-
though wearable applications show significant potential in terms of 
features - such as accuracy, usability, and comfort - new protection, 
authentication and privacy concerns are also raised. This is because 
much of the appeal of wearable device services is focused on the 
sensitive and personal nature of the data they collect, store, ma-
nipulate and transmit. Attackers will steal confidential data from 
the computer to snoop, resulting in dreadful consequences. There-
fore, a robust, rapid and friendly user authentication is of great 
significance.

For those reasons, user authentication in wearables has at-
tracted much attention in the literature [2–4] and deserves a thor-
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ough survey. In this survey, we review recent advances in user 
authentication for wearable devices, especially how to combine 
recent signal processing and machine learning approaches with 
wearable applications. There are two categories of authentication 
systems in the computer security field that can enable the link 
to a person and his/her identity: user identification and user ver-
ification. User identification refers to the process of establishing 
the identity of a user, while user verification means the system 
accepts or declines his/her claim when the user claims an iden-
tity. In any security system, the identification or verification can 
be done with the following three factors [3,5]: a knowledge factor 
(“something the user knows”) such as password and Personal Iden-
tification Number (PIN) code, a possession factor (“something the 
user owns”) such as card and key, and an inherence factor (“some-
thing the user is”) such as face and fingerprint. While the former 
two factors are widely used in our life, there are several disadvan-
tages. For example, the password can be forgotten and the card 
can be stolen or duplicated.

This survey will focus on inherence-factor-based user authen-
tication systems, namely, something the user is. These inherence 
factors obey the rule of uniqueness, so each individual has their 
own signal pattern that can be distinguished from other users. 
“Something the user is” represents the unique biometric signals 
produced by a human. The uniqueness could either be determined 
by human DNA like fingerprint or determined by an individual’s 
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long-standing habits that are hard to be imitated. Therefore, the 
research in this area can be further divided into two subfields: 
physiological biometrics and behavioral biometrics. Physiological 
biometrics refers to the internal signal produced by the human 
body that varies among different people. In comparison, behav-
ioral biometrics refers to a period of continuous human behav-
ior, which relates to an individual’s unique behavior pattern de-
termined by long-term habits. Physiological biometrics-based au-
thentication systems could identify different users by their phys-
iological signals. Fingerprint and FaceID are commonly used in 
smartphones to unlock the system, but these signals are vulner-
able since they are easy to be replicated [6–8]. The fingerprint can 
be collected from the object surface that the user has touched, 
and the replicated fingerprint model could unlock the system as 
well [9,10]. The 2D-FaceID authentication system can be attacked 
by user face images. 3D-FaceID authentication system is hard to be 
attacked but has higher price [11,12].

There are several survey works focusing on biometric user au-
thentication that introduce which biometrics could be used in user 
authentication, how these biometrics are utilized and their perfor-
mance. In detail, Kataria et al. [13] list a series of biometrics for 
user authentication in their work. Yusuf et al. [14] give a classi-
fication for some biometrics and thoroughly describe fingerprint 
biometric authentication and password biometric authentication. 
Mahfouz et al. [15] make a comprehensive survey on biometric 
user authentication on the smartphone. Zhang et al. [16] introduce 
the advances of biometric user authentication from a perspective 
of secure and privacy and provide detailed performance compar-
ison between biometrics based on different criteria. Also, some 
works [17,18] only focus on a kind of biometric for user authen-
tication, like keystroke. These works are more or less insufficient 
in the comprehensiveness of biometrics, content organization, the 
depth of analysis, and the comparison of the effects of characteris-
tic methods.

Different from these previous works, our work concentrates 
on the user authentication for wearable devices. Because wear-
able devices can collect physiological signals and some signals are 
unique for each user, these unique physiological signals could be 
utilized in user authentication. In this case, some unique physio-
logical signals-based user authentication methods are grouped. In 
detail, the difference between our work and previous related works 
could be described as the following:

1) Features: In this survey, we put an emphasis on the bio-
metrics-based user authentication methods that are hard to 
be attacked. Besides the including of regular biometrics, like 
fingerprints and faces, our work pays more attention to Physio-
logical signals inside the human body, like a heartbeat, breath-
ing, and muscle signals. At the same time, we take the human 
body’s behavior and movement trajectory as a unique physio-
logical signal, including gait, signature, keystroke, and mouse 
dynamics. However, other works only contain the former part.

2) Structure: In the structure of the content, a five-level logical 
structure is used to summarize these surveys instead of sim-
ply listing the methods for each task. In this logical structure, 
we reformulate the user authentication as a classification task 
and cut this task to several sequential modules. These modules 
usually have a higher level than parts of other works, which 
could help us understand the relationships among mentioned 
works in our paper easily.

Instead of just listing or grouping these biometrics, we indicate 
the usage situation of these metrics and related methods and how 
they are combined together. Furthermore, we present the best per-
formance of each kind of method on different evaluation metrics 
and datasets.
2

Studies on biometrics-based user authentication systems have 
gone through several stages, from using fiducial features detected 
from raw signals to machine learning methods using extracted fea-
tures and deep learning methods without feature engineering. We 
depict Fig. 1 to illustrate the leading architecture and commonly 
used techniques of a biometrics-based authentication system. The 
authentication pipeline mainly contains five parts: data acquisition, 
data preprocessing, feature extraction, classification, and evalua-
tion.

1) Data acquisition module aims to obtain raw biometric signals, 
either obtained from wearable devices or directly acquired 
from available public datasets. Wearable devices are typically 
placed on the human body to capture signals through various 
kinds of sensors continuously. Popular wearable devices have 
been verified to be promising approaches for user authentica-
tion, such as brain-computer interfaces to capture brain waves, 
tight clothes embedded with sensors or smart watches to cap-
ture heart or breath waves, and accelerometers to capture gait 
or keystroke dynamics. Moreover, researchers could also utilize 
open-access datasets to focus on model design and verifica-
tion.

2) Data pre-processing module is applied to filter high-frequency 
noise and segment signals into periodic cycles. Wearable 
device-based biometric signals are generally time-series wave-
form signals, so we mainly introduce the commonly used 
waveform signal pre-processing methods. The first step in 
data pre-processing is signal filtering, which filters the high-
frequency noise caused by unstable measurement circum-
stances in the signal capturing stage. Then, filtered signals are 
segmented into cycles with the same time interval. Since Bio-
metric or behavioral signals are roughly periodic, we usually 
regard a signal circle as a sample. Next, the key points and key 
intervals are detected in the signal as fiducial features.

3) Feature extraction module aims to extract useful features for 
classification. The features could be divided into three cat-
egories, statistical features, transform domain features, and 
distance-based features. Statistical features like variance and 
skewness are calculated through commonly used statistical 
methods to analyze the data distribution. Shannon energy 
and spectral slope mainly focus on the signal power infor-
mation to reflect signal attributes. Other features like Zero 
Cross Rate (ZCR), Short Time Energy (STE) are considered to 
be key features to identify a particular voice in the speech 
signal. Signal processing features focus on the frequency in-
formation of time-domain waveform, obtained through various 
transformation methods in the signal processing domain. Fast 
Fourier Transform (FFT) and Discrete Cosine Transform (DCT) 
are the basic transformation techniques to transfer the time-
domain signal into a frequency domain signal with individual 
spectral components. Discrete Wavelet Transform (DWT) de-
composes a signal into a set of the orthogonal waveform in 
both time and frequency domain. Mel-frequency Cepstral Coef-
ficient (MFCC) is considered the most evident and mainstream 
feature extraction technique constructed using the speech fre-
quency information. Power Spectral Density (PSD) measures 
the relationship between signal power and frequency. Fidu-
cial features occasionally are insufficient to form a signal 
template. Therefore distance-based features are obtained by 
calculating the distance between the pairs of raw training 
data. The commonly used distance measurement methods in-
clude discrete-time warping, Manhattan distance, Euclidean 
distance.

4) Classification module utilizes template matching method, ma-
chine learning algorithm, or deep neural network to classify 
the given biometrics signals and returns the authentication re-
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Fig. 1. The architecture of a biometrics-based user authentication method.
sult. The template matching method compares the distance 
between the signal representation and the template. The user 
is authenticated when the calculated distance is lower than 
the threshold. Machine learning methods utilize the extracted 
features as input and learn a parameterized classification 
model to obtain the authentication result. Because machine 
learning methods require heavy task-oriented feature engi-
neering work, further research starts to extracted features by 
utilizing neural networks that directly transfer a signal sample 
into a feature vector. Besides, the recurrent neural network is 
adopted to deal with sequential data.

5) Evaluation module is an essential part of evaluating the pro-
posed classification models through various metrics such as 
accuracy, confusion matrix, precision, recall, F1 score, etc. Us-
ing only one metric is insufficient to judge the model. Thus 
several performance evaluation results should be analyzed si-
multaneously.

The rest part of the paper is organized as follows. Section 2
summarizes the recent developments of physiological biometrics 
and behavioral biometrics, involving the signal description, signal 
acquisition methods, signal fiducial features, and current authenti-
cation methods. Then, Section 3 summarizes the common methods 
of signal preprocessing and feature extraction. Signal preprocess-
ing involves the methods of signal filtering, signal segment, and 
key points detection. Feature extraction contains features in the 
time and frequency domain, involving both statistical features and 
transform domain features. Next, Section 4 illustrates the common 
classification methods of template matching methods, machine 
learning methods, and deep learning methods. Section 5 reviews 
the evaluation metrics to test model performance. Finally, Section 6
concludes the paper.

2. Wearable devices-based biometrics

In this section, we focus on the data acquisition module in 
the user authentication system and summarize various kinds of 
data collection equipment and methods. Biometrics collected from 
wearable devices can be categorized as physiological biometrics 
and behavioral biometrics. Physiological biometrics refers to the 
internal signal produced by the human body that varies among 
different people. In comparison, behavioral biometrics refers to 
a period of continuous human behavior, which relates to an 
3

individual’s unique behavior pattern determined by long-term 
habits.

2.1. Physiological biometrics

In this subsection, we introduce the data acquisition methods 
of various human internal biometrics, including heartbeat signal, 
breath signal, and muscle signal. Unlike traditional biometric sig-
nals like fingerprint or face ID, which are easy to be reproduced. 
Finger-print could be collected from object surfaces, and faces 
could be obtained from photos. Physiological Biometric signals 
demonstrate a specific electrical trace, making the authentication 
system hard to be attacked. Additionally, Physiological Biometrics 
could be easily collected through wearable devices without any 
discomfort and burden.

2.1.1. Heartbeat
Electrocardiogram (ECG) signals are the most widely used 

heartbeat signals in the user authentication system. ECG signals 
reflect an individual’s unique heartbeat pattern based on physio-
logical characteristics, which measure a periodic waveform record-
ing certain heart events in a cardiac cycle. Due to its uniqueness, 
easy accessibility, and hard reproducibility, ECG signals become a 
promising biometric ID for robust authentication system [19].

ECG signals have been widely used in heart disease diagno-
sis [20,21] and heart rate variability assessment [22,23]. ECG sig-
nals provide the most accurate heartbeat measurement, detect-
ing the timing and strength of heart electrical activity, usually 
recorded by the electrodes attached to the body surface. ECG 
signals depict heartbeat pattern through several fiducial features 
involving three fundamental waves (P-wave, T-wave, and QRS-
complex) and five major intervals (PR-interval, PR-segment, QT-
interval, ST-interval, and ST-segment). During each heartbeat, atria 
and ventricle depolarize cause the emergence of P-wave and QRS-
complex. In contrast, T-Wave occurred as the ventricle starts to 
repolarize. Five core intervals, also known as ECG fiducial features, 
demonstrates the peaks, boundaries, and intervals among three 
waves.

Standard ECG acquisition device is generally used in medical 
institutions. The wearable instrument includes 12 leads placed on 
the user’s skin from chest to wrist and ankle. These electrodes 
could detect the small electrical changes caused by cardiac muscle 
depolarization and repolarization throughout each cardiac cycle. 
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For the convenience of daily use, multiple methods have been pro-
posed to overcome this issue. [24] reduced the number of required 
electrodes by using a single electrode placed on each side of the 
heart to measure ECG signals. Sun et al. [25] further proposed a 
wearable T-shirt embedded with a conductive fabric electrode. The 
electrode collects ECG signals by pressing against the chest inside 
of the T-shirt. Then motivated by the healthy monitoring applica-
tion based on wearable devices, Beach et al. [26] presented an ECG 
smart wrist embedded with an IoT platform to monitor the heart 
condition. Nowadays, the Apple watch, the best-selling wearable 
device designed for a healthy life, is embedded with 1-lead ECG, 
which is sufficient for user authentication without wearing an ex-
tra device [19].

2.1.2. Breath
Breath is another physiological biometric for user authenti-

cation since each individual displays a unique breath pattern 
of breath rate and amplitude according to the individual’s age, 
weight, height, or gender. Breath is a physiological process that 
is periodically moving airflow into (inhalation) and out of (ex-
halation) the lungs, controlled by the body parts of the trachea, 
lung, and diaphragm. Breathing occurs continuously and naturally 
in every living life without extra corporeal or cognitive efforts. A 
healthy adult breathes approximately 12–20 times per minute, ac-
companied by the easy-measurable breath sounds. Therefore, the 
uniqueness, constituency, accessibility of breath sound makes it a 
convincing signal for individual identification.

Generally, breath sounds could be divided into two categories 
according to the detection positions. Vesicular breath sounds are 
frequently detected from the chest wall, and bronchial breath 
sounds are measured upon the large airways near each side of the 
neck. The chest wall is far away from large airways and can be 
regarded as a low-pass filter to remove high-frequency elements 
in sound. Therefore, Vesicular breath sounds mainly contain low-
frequency components while bronchial breath sound includes both 
low and high-frequency components [27]. Breath sounds could 
also be detected under the nose or identified through a period of 
speech with breath intervals.

BreathPrint designed a breathing acoustics-based user authen-
tication system based on breathing gestures [28]. Breathing audio 
is collected through three distinct breath gestures of sniff breath, 
normal breath, and deep breath measured by a microphone placed 
1–2 cm under the user’s nose. The combination of three dif-
ferent types of breath signals provided sufficient information to 
distinguish individuals. According to both statistical features and 
extracted features through algorithms, the signal pattern among 
different users may similar under one breath gesture but hard 
to be alike in three-dimensional breath gestures. However, system 
performance is largely affected by the measurement distance and 
environmental noise.

Besides, to avoid additional breath sounds collection process, 
other studies shift to focus on identifying breath sounds in a 
speech signal period. These studies’ main challenge is how to au-
tomatically detect the breath sounds in an audio clip, referring to 
the correct breath demarcation procedure.

We depict Fig. 2 to illustrate the accurate breath demarcation 
algorithm, which generally involves three steps. A general breath 
template is first constructed from a small number of breath ex-
amples, and the Mel frequency cepstral coefficients is commonly 
used as features to construct a template. For each consecutive 
overlapping frame, a parameter matrix is calculated and compared 
with the template. The frame is determined as breath when the 
similarity between template and signal frame exceeds the prede-
fined threshold. After the breath is initially detected, a refinement 
procedure is executed for accurate breath boundaries detection, in-
volving the features of zero-cross rate, short-time energy (STE), B 
4

Fig. 2. Accurate breath demarcation process.

index, etc. [29]. Finally, the accurate breath signal is segmented 
through edge detection, spectral scope, and time duration [30].

However, the datasets used are basically of high quality col-
lected from professional speakers in a controlled recording envi-
ronment, making the methods too sensitive to handle spontaneous 
speech directly. Therefore, Dumpala et al. [31] proposed a rule-
based algorithm to detect breath sounds in spontaneous speech 
using both excitation source and vocal tract system-based charac-
teristics. However, it still needs to manually distinguish breathing 
sounds in noise like breath, laughter, cough, etc., from the Buckeye 
corpus.

2.1.3. Muscle
As an important physiological biometric, muscle-related fea-

tures are frequently applied for user authentication. In detail, these 
features include finger muscle isometric contraction password 
(FMICP) [32], high-density surface electromyogram (HD-sEMG), 
and electrical muscle stimulation (EMS) [33]. In FMICP mode, peo-
ple can enter their password by isometric contraction of different 
finger muscles in a prescribed order, without actual finger move-
ments. For HD-sEMG, it could be acquired from the dorsum of 
the user’s; the subject performed isometric contraction of differ-
ent finger muscles to enter the FMICP. With the help of HD-sEMG, 
the isometric contraction patterns of different finger muscles can 
be recognized between individuals. These two features are usually 
combined as a whole neuromuscular password, which can real-
ize double security. EMS is a challenge-response as a form of active 
biometric authentication method. Many biometrics, such as the 
fingerprint, have a common shortcoming: when they are stolen, 
people can not reuse the same data. EMS can overcome this draw-
back by replacing the breached challenge-response pairs with new 
responses to a series of challenges.

For the collecting of HD-sEMG, a SAGA 64+ system of Twente 
Medical Systems International BV at a sampling rate of 4000 Hz 
is utilized to collect the 64-channel monopolar HD-sEMG signals. 
In this process, the 8 × eight flexible high-density electrode array 
with 8-mm interelectrode distance was placed in the center of the 
dorsal aspect of a subject’s right hand. During isometric contrac-
tion of different finger muscles, sEMG signals can be recorded on 
the forearm, palm, and dorsal hands.

For the acquisition of EMS data, the Hasomed Rehastim, a med-
ical compliant device with eight individually controllable channels, 
is applied in the delivery of EMS impulses. Before collecting EMS 
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Fig. 3. The architecture of gait recognition methods.
data with this tool, it is necessary to calibrate the electrode place-
ment for each user. After sending EMS challenges to the user, a 
motion sensor, such as IMU, can capture the limb’s movements. In 
this case, challenge-response pairs could be sampled.

After obtaining HD-sEMG signals, macroscopic features and mi-
croscopic features can be extracted based on these signals. Usually, 
independent component analysis (ICA) can extract microscopic fea-
tures. Macroscopic feature extraction methods include sample en-
tropy, spectral entropy, frequency median (FMD), waveform length 
(WL), and root mean square (RMS).

2.2. Behavioral biometrics

In this subsection, we summarize the behavioral biometrics in 
the user authentication system. Behavioral biometrics reflects user 
identity by their unique behavior patterns. We mainly focus on 
biometrics such as gait, gesture, keystroke, and mouse dynamics.

2.2.1. Gait
Gait recognition stands for authenticating individuals by the 

manner of their walking style. Gait is a behavioral biometric that 
is convenient to detect through simple instrumentation like a cam-
era or accelerometer. It remains unique among different individ-
uals due to the specific arm swing amplitude, step frequency, 
and length. Gait recognition especially plays an essential role in 
criminal investigation to determine the identity of the suspect. 
Generally, walking pattern captured through cameras is analyzed 
through a period of gait signal, either regarding gait as an image 
including all gait silhouettes or the original gait silhouettes video 
sequence.

We depict Fig. 3 to demonstrate the architecture of gait recog-
nition methods involving data acquisition sensors and three kinds 
of mainstream gait recognition methods. Gait could be collected 
from both wearable devices like accelerometers and remote sen-
sors like cameras and radars. Apart from the general approach that 
follows the pipeline of feature extraction and classification, a high-
performance gait recognition system utilizes template-matching 
methods, unordered set-based methods, and sequential deep learn-
ing models. The details of these classification methods will be 
illustrated in Section 4.

The commonly used wearable devices in gait recognition are 
described below:

Accelerometer. Accelerometer sensors are usually placed on an in-
dividual’s body to record three-dimensional accelerations in a gait 
5

recognition system. Early studies developed goal-oriented wearable 
devices placed on the user’s waist or user’s lower leg to col-
lect gait samples from various directions, including vertical, side-
ways, and forward-backward accelerations. Later studies start to 
use the accelerometers embedded in commercial mobile phones 
and execute real-time gait recognition based on mobile computa-
tion resources [34,35]. Further studies commit to optimize the gait 
identification system by building a speed-adaptive algorithm [36]
and adapting to a more challenging wild environment where in-
dividuals do not need to walk along a specific road at an av-
erage speed [37]. Recently, Xu et al. also designed several user 
and device authentication systems for wearable devices such as 
smart glass and smart watch [38–40]. Moreover, because con-
tinuously sampling accelerometer quickly drains the battery of 
wearable devices, researchers also started to use wearable en-
ergy harvesting to authenticate users based on their walking pat-
terns [41,42].

Wearable Ground Reaction Force Sensing Device. A wearable
Ground Reaction Force (GRF) sensor is a force plate attached to 
the bottom of the shoe constructed by several small triaxial force 
sensors. The sensing system constructs a global coordinate system 
to evaluate gait through the relationship between triaxial position 
and force. The X axis is in line with the moving direction while 
the Z axis the vertical, and Y forms a right-handed coordinate 
system together with the other two axes [43]. Therefore, all the 
local coordinate systems defined for each triaxial sensor could be 
accurately aligned [44].

2.2.2. Signature
Various gestures have been applied to user authentication sys-

tems, including hand gestures, touch gestures, finger gestures, and 
gaze gestures. These signals are usually captured by cameras, touch 
screens, or wearable devices. In this part, we mainly focus on the 
gesture of an individual’s signature, corresponding to the wrist mo-
tion when people are signing. Current smart wrist devices like fit-
ness trackers and smartwatches are generally embedded with ac-
celerometers and gyroscopes, making it convenient to record user’s 
wrist motions. Early work like MotionAuth [45] authenticates users 
through four simple gestures, raising the hand, lowering hand, ro-
tation, and circle, making it easy to be imitated and attacked. On 
the contrary, signatures are continuous signals that obey individual 
patterns among users, hard to replicate, and more robust against 
attacks.
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Fig. 4. The architecture of signature authentication methods.

A signature is viewed as a sequence of spatial coordinates of a 
motion trajectory. Template-based approaches measure the differ-
ence between the original signature template and the compared 
signature in the space of pre-defined gestures. The first funda-
mental work to address the signature verification problem is the 
Siamese neural network, which contains two or more subnets with 
shared parameters, and the dissimilarity between two vectors is 
calculated by the cosine distance [46,47]. Nassi et al. [48] collected 
data from accelerometers and gyroscopes and trained the classifier 
through a set of genuine and forged signatures to verify the sig-
nature. However, one user’s forgery signatures are hard to acquire 
in practice. Therefore, Lyu et al. [49] turned to utilize interaction 
behavior data between users and wrist-worn devices and depict 
user’s unique writing pattern through the proposed fine-grained 
writing metrics, based on more effective Savitzky-Golay filter and 
Dynamic Time Warping (DWT) method.

Current signature verification methods on wearable devices 
are generally based on the template-matching pipeline. We de-
pict Fig. 4 to illustrate the architecture of signature authentication 
methods. The motion data is first collected through wrist-worn 
or finger-worn devices equipped with motion sensors (accelerom-
eters or gyroscopes). A significant difference between the signa-
ture authentication system and other authentication systems lies 
in the trajectory construction module, which maps the motion data 
into signing traits. There are two methods for signature verifica-
tion based on the type of training data. One is signature pairs 
of genuine and forgery signatures, commonly used for Siamese 
network-based methods, aiming at calculating the similarity be-
tween input pairs (genuine and genuine signature pairs or genuine 
and forgery signature pairs); the other is only the single signatures 
considering the forgery signatures are rare. The pre-trained tem-
plate is usually constructed with fiducial features like shape and 
velocity.

In-air handwriting authentication is another potential applica-
tion scenario needs on wearables, which excludes the extra touch 
screen to record handwritten images [50]. Kinematic theory char-
acterizes rapid human movement by strokes and virtual points, 
corresponding to the motion trajectory in signing, which provides 
the fundamental model for signature verification. By observing the 
fact the authentication accuracy is not stable due to the inaccuracy 
in gravity accelerations, Huang et al. [51] proposed only to use the 
gyroscope sensor to capture the signing motions, avoiding the im-
pact of gravity. They developed an accurate trajectory construction 
method that maps wrist motion to the signing traits.
6

Fig. 5. Illustration of continuous keystroke sequence authentication.

Raw signature data collected from accelerometers and gyro-
scopes are first smoothed through a lowpass filter to reduce 
the noise. Magnitude features of three-dimensional components 
from the accelerometer and orientation data from the gyroscope 
are gathered. Besides, basic statistics, gradients, and eigenvec-
tors of each measured component are also calculated as fea-
tures [52].

2.2.3. Keystroke
Keystroke behavior records an individual’s unique keyboard typ-

ing style, which is an emerging trend in the user authentication 
system. The main advantage of key-stroke-based authentication is 
low cost. Since other biometric signals like fingerprints or face IDs 
need to be collected through expensive biosensors, keystroke data 
could be acquired through only a keyboard without any special 
equipment. Besides, each individual has a unique typing pattern 
that will not change over time; typing pattern could be reflected 
on the typing speed, typing time intervals among each letter, com-
monly used typing keys, etc.

From previous literature, keystroke authentication technologies 
could be broadly identified as two stages, from Keystroke Static Au-
thentication (KSA) to Keystroke Continuous Authentication (KCA). 
Static in KSA suggests that the text being typed is fixed and pre-
defined, mostly the passwords and PINs used in the user login 
process. However, fixed texts contain too little information to rep-
resent the user’s typing pattern and suffer low scalability. KSA em-
ploys template-matching architectures, which compares the cur-
rent keystroke sample to a recorded typing template expressed as 
feature vectors [53,54].

Later, researchers started to focus on continuous user authenti-
cation based on free text. As depicted in Fig. 5, continuous authen-
tication processes a keystroke sequence through a sliding window 
at the time scope. As the sliding window moves forward, the au-
thentication system could continuously check the new inputs in 
the keystroke sequence, achieving the goal of continuous identity-
checking as the user typing in a period of time. Besides, the system 
records the keystroke timing information as keystroke identifica-
tion features. Hi indicates the holding time of K eyi , from key 
pressing timestamp to key releasing timestamp; P Pi,i+1 represents 
the time interval of nearby key pressing times and R Pi,i+1 is the 
time interval of former key releasing time and later key pressing 
time.

Several public benchmark databases and algorithms are listed 
as follows. Sun et al. [55] released the Buffalo keystroke dataset, 
a large publicly accessible dataset for long text, and tested the 
dataset with existing Gaussian mixture model, which assumes the 
digraph patterns in keystroke data are multiple distributions via 
Gaussian Mixture Model (GMM) rather than a single Gaussian dis-
tribution [56]. Vural et al. [57] obtained a new keystroke dataset 
including short pass-phrases, free text, and fixed text (transcrip-
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Fig. 6. Illustration of keystroke vector generation process from a text sequence.

tion of long proses), and provided the baseline results of current 
state-of-the-art method in free text keystroke, Gunetti & Picardi’s 
algorithm [58], as a testbed for future improvements. Murphy et 
al. [59] provided a large keystroke dataset including keyboard op-
erations, mouse dynamics, and activate programs, captured in com-
pletely natural and uncontrolled settings.

Huang et al. [60] proposed a larger dataset of users’ normal 
computing interaction behavior with the personal laptops and in-
troduced a Kernel Density Estimation (KDE) algorithm which esti-
mates the probability density of a digraph in the reference profile 
and test samples. We depict Fig. 6 to illustrate the keystroke gen-
eration process from a text sequence. The keystroke sequence and 
the keystroke timestamps (pressing timestamp Pi and releasing 
timestamp Ri ) of a corresponding text sequence is recorded to 
generate keystroke vector ki for each keystroke.

Accurate feature extraction from the keystroke of long free text 
is an essential part of the keystroke authentication system. Some 
statistical features utilized text sub-word frequency. For instance, 
one selected typical keystroke feature is the average PP-intervals, 
calculated based on the most frequently occurred digraphs and 
trigraphs. R-measure and A-measure are also used as standard fea-
tures in previous studies. R-measure is the consistency of relative 
typing speed order for common syllables between two users, while 
A-measure is the absolute typing speed similarity for common syl-
lables.

Another type of keystroke feature is generated from the key-
board layout, where keys are divided into three groups L group 
(keys typed by the left hand), R group (keys typed by the right 
hand), and S group (only the space key). Thus each digraph in 
keystroke data could be considered as an action pair selected from 
eight categories of L-L, L-R, L-S, R-L, R-R, R-S, S-L, S-R, and the 
keystroke data transforms into an eight-dimensional vector with 
the P-P interval value of the action pair.

Compared with the keyboard layout, typing speed of a digraph 
could be a more robust feature of typing behavior. Thus the typing-
speed rank is obtained as a keystroke feature, ordered from the 
fastest-typed digraph to the slowest-typed digraph [61].

2.2.4. Mouse dynamics
Similar to keystroke dynamics, mouse dynamics is another be-

havioral biometric for continuous user authentication, which au-
tomatically and passively monitors user mouse behaviors without 
extra expensive sensor devices. We depict Fig. 7 to illustrate the 
mouse dynamics feature vector generation process. Mouse dynam-
ics is acquired by a mouse movement detector, which records var-
ious movement characteristics, including movement type, move-
ment speed, movement direction, traveled distance, etc. Movement 
7

Fig. 7. Mouse dynamics feature vector generation process.

type could be classified by the conception described in [62], which 
includes Mouse-Movement (MM) action, Drag-and-Drop (DD) ac-
tion, and Point-and-Click (PC) action. As for movement direction, it 
could be specified by a continuous variable of movement angle or 
a simpler discrete definition of eight angles averagely divided from 
0-degree to 360-degree. Each 45-degree angle interval is sequen-
tially numbered from one to eight [63].

Shen et al. [64] mapped the combination of traditional holistic 
features and user procedural features into distance-based features 
and then identify user identity through a support vector machine 
classifier. Shen et al. [65] conveyed comprehensive performance 
evaluation methods on an equal basis. Monda et al. [63] intro-
duced several techniques to improve performance on the same 
dataset, including Multi Classifier Fusion (MCF) to combine mul-
tiple classifiers, score boosting algorithm, weighted fusion scheme, 
and static/dynamic trust model.

Apart from traditional machine learning-based approaches, re-
cent studies incorporated more novel technologies, such as deep 
neural networks, multi-biometric fusion techniques, and different 
training methods. Kasprowski et al. [66] employed a fused fea-
ture analysis on mouse dynamics and eye movement biometrics 
for the first time, which defined a robust authentication model 
with the comparable result by using shorter mouse recordings. 
While Monda et al. [67] proposed Pairwise User Coupling (PUC) 
of the combination of keystroke and mouse dynamics. Other stud-
ies focus on eliminating manual feature design by automatically 
extracting features through neural networks, such as convolutional 
neural network [68], recurrent neural network [69], and the com-
bination of this two networks [70].

Mouse dynamics record the mouse operations in each times-
tamp. The fiducial features could be generally divided into holistic 
features and procedural features. Holistic features depict the over-
all static properties of mouse dynamics, such as single-click stat-
ics, double-click statics, mouse movement offset, mouse movement 
elapsed time, etc. Procedural features are the property at the op-
eration moment, including movement direction, movement type, 
movement speed, etc. Since holistic features and procedural fea-
tures do not contain enough information to reveal an individual’s 
typing pattern, distance measurement methods are applied to gen-
erate a distance-based feature vector. The distance feature vector 
is obtained by calculating the distance between all pairs of raw 
training features.
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3. Signal processing for feature extraction

In this section, we summarize the signal processing methods, 
which contain signal preprocessing methods and feature extraction 
methods. Signal preprocessing methods provide a clear base sig-
nal for the feature extraction module. Data preprocessing module 
first filters high-frequency noise and segments signals into peri-
odic cycles. Next, the key points and key intervals are detected 
in the signal as fiducial features. The feature extraction module 
aims to extract useful features to represent the signal. The features 
could be divided into two categories, statistical features, and sig-
nal transform domain features. Statistical features are calculated 
to analyze data distribution in both time and frequency domain. 
Transform domain features are extracted from various kinds of 
widespread feature extraction approaches in the signal-processing 
field.

3.1. Signal preprocessing

The raw biometric signal consists of various inevitable high-
frequency noise during the measurement process, including fre-
quency interference, baseline drift, muscle noise, and motor arti-
facts [71]. Preprocessing step is essential for feature engineering 
since it could suppress noise and observe signal pick clearly, pro-
viding stable and usable signals to commit accurate features. The 
biometric signal preprocessing process mainly includes signal fil-
tering, peak point detection, signal segmentation, and feature se-
lection. The first step in data preprocessing is data filtering to 
remove the noise. Based on related studies, many methods have 
been proposed to filter noise in biometric signals. One way uses a 
band-pass Butterworth filter to remove a given band of frequency 
from the signal without degrading signal quality. For ECG signals, 
a Band-pass Butterworth filter between 40 Hz–100 Hz can be ap-
plied to eliminate motion artifacts. Baseline wanders and a 50Hz 
notch filter can be used to eliminate line noise [72].

Another method for biometric signal preprocessing is wavelet 
denoising. Features with large wavelet coefficients are reserved, 
while others are considered as noise to be removed. Moreover, the 
adaptive filter is another method for biometric noise removal. The 
least mean squares (LMS)-based adaptive filter is mostly adopted 
due to its computational simplicity [73]. LMS filter algorithm aims 
to learn a target filter by minimizing the least mean square of 
the error signal. Some LMS algorithm variants like Normalized LMS 
(NLMS) and Delayed Error Normalized LMS (DENLMS) adaptive fil-
ter are further adopted for low latency and less computational 
consumption.

The filtered biometric signal is then segmented and aligned 
into cardiac cycles. Key points and intervals are detected as fidu-
cial features. As for the ECG signal illustrated in Fig. 8, five typical 
peak points (P, Q, R, S, and T point), boundaries, and intervals be-
tween them are detected in each cycle. Every R-R interval, duration 
between two peak points in ECG signal, is usually considered a 
heartbeat. Major fiducial features such as QRS interval, QRS ampli-
tude, R-R interval, and ECG wave slope are utilized as classification 
features. After signal filter and segmentation, the signal is finally 
normalized for further process.

3.2. Signal processing for feature extraction

Features for biometric signals could be obtained through both 
statistical methods and various signal processing algorithms. Sta-
tistical methods are the first techniques to be executed to form 
a comprehensive insight into the structure and distribution of the 
signals. Then more specific signal processing methods would be 
applied to extract more profound features.
8

Fig. 8. ECG signal preprocessing.

3.2.1. Direct-domain signal processing for feature extraction
Statistical features such as mean, maximum, minimum, vari-

ance, skewness, and Shannon Energy are first analyzed [74]. When 
the time-domain signal is transformed into the frequency domain, 
other basic statistical features in the frequency domain for wave-
form signal are also calculated. Raw biometric signals are analyzed 
based on time, frequency, and energy. Some useful statistical fea-
tures are described as follows:

Variance. Variance measures the average squared differences of 
a random variable from its average value, indicating how far the 
numbers are distributed from the average. A higher variance rep-
resents a larger amplitude variation in the given ECG signal, which 
could serve as a distribution feature to distinguish signals. The 
mathematical equation of variation is defined as

σ 2 = 1

N

N∑
i=1

[xi − x̄]2 (1)

Where N is the sample number of the signal and X̄ is the mean 
value.

Skewness. Another distribution feature, Skewness, measures the 
asymmetry of the probability distribution of a random variable 
about its mean value. It indicates how symmetric the samples are 
spread out around the peak point. Consider the input signal with 
N samples. Skewness is mathematically expressed as the average 
cubed deviation from the mean X̄ divided by the cubed standard 
deviation S ,

Skewness =
∑N

i=1(xi − x̄)3/N

S3
(2)

Shannon Energy. Shannon energy measures the energy of the lo-
cal spectrum for each sampled biometric signal, indicating how 
much the information content is conveyed within a trial. Besides, 
Shannon energy transfers the high elements into lower elements, 
leading to the advantage of retaining the capacity to emphasize 
medium compared with other classic energy. Shannon energy is 
the product of the preprocessed biometric signal value xi and its 
logarithm value, where i is the index of the sampled signal.

S E = −|xi | log(|xi |) (3)

Zero Crossing Rate (ZCR). ZCR corresponds to the times that bio-
metric waveform changes its sign (cross zero), normalized by 
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the window length N in samples. This feature is considered in 
breath signal, since it contains both inhalation and exhalation pro-
cess [30].

Z C R = 1

N

N∑
i=1

I(xi xi−1) < 0 (4)

Short Time Energy (STE). STE specifies the signal amplitude of a 
certain signal point over a period of time, which is commonly used 
in audio processing to distinct voiced and unvoiced sounds from 
silence [75]. STE can be calculated as:

ST E = 1

N

N∑
i=1

x2[i] (5)

Power Spectral Density (PSD). PSD is a measure of signal power 
versus frequency, which is the magnitude squared of the Fourier 
Transform. Consider the collected data X(t) with autocorrelation 
function of Fourier transform R X (τ ), PSD written in S X ( f ) is de-
fined as

S X ( f ) = FR X (τ ) =
∞∫

−∞
R X (τ )e−2 jπ f τ dτ (6)

where j = √−1.

Other features. Some other features are also utilized to discrimi-
nate a group of different subjects. Occupied bandwidth is a band-
width scope that contains 99% the integrated power of the signal. 
Median frequency represents the midpoint (lines 50% of the total 
power) of the power distribution. Spectral edge frequency is simi-
lar to occupied bandwidth, which contains 95% of the total power 
and serves as an upper bound of the power spectrum. Spectral 
slope reflects the intensity of the harmonics, which is computed 
through Discrete Fourier Transformation at frequencies of π

2 and 
π .

3.2.2. Transform-domain signal processing for feature extraction
Since the continuously collected waveform signal is in the time 

domain, various signal processing methods are applied to obtain 
more frequency domain features. Signal processing methods are 
widely used as feature extraction algorithms in speech recogni-
tion, so the signal processing-based methods are utilized as pivotal 
features for biometric signals such as ECG signal [71], breath sig-
nal [76], gait signal [77], keystroke signal [78], gesture signal [79], 
etc.

Fast Fourier Transform (FFT). FFT transfers the time-domain signal 
into a frequency-domain signal with individual spectral compo-
nents; it is an optimized version of Discrete Fourier Transformation 
with less computation complexity, which is defined as

Xk =
N∑

i=1

xie
−i2πki

N , k = 0,1, .., N − 1 (7)

Discrete Cosine Transform (DCT). DCT could be regarded as a spe-
cial case related to Fourier transform on real number space. DCT is 
widely applied in lossy compression due to the energy compaction 
property of the cosine function, where signal information is mainly 
concentrated in low-frequency. As illustrated in Equation (8), DCT 
transforms real numbers xi ∈ (x1, x2, ..., xN ) into corresponding real 
9

numbers fm ∈ ( f1, f2, ..., f N), the mth transformed discrete num-
ber is calculated as:

fm =
N∑

i=1

xi cos

[
π

N
m

(
i + 1

2

)]
(8)

Discrete Wavelet Transform (DWT). DWT is a commonly used 
mathematical tool in signal processing, which decomposes a sig-
nal into a set of the orthogonal waveform in time and frequency 
domain through a Low Pass Filter (LPF) g[·] and a High Pass Fil-
ter h[·]. Each level of decomposition follows the following two 
equations, which separate signals into sub-bands of different fre-
quencies and resolutions.

ylow [k] =
∑

n

x[n]h[2k − n] → ylow = (x ∗ h) ↓ 2 (9)

yhigh[k] =
∑

n

x[n]g[2k − n] → yhigh = (x ∗ g) ↓ 2 (10)

Mother wavelet function and decomposition level would primarily 
affect signal analysis, which varies among different tasks and sig-
nals. As for ECG signals, Haar and Symlet order 7 function at level 
6 decomposition are frequently applied to extract subbands infor-
mation [71].

Mel-Frequency Cepstral Coefficient (MFCC). MFCC is a linear rep-
resentation of a cosine transform of a period of the logarith-
mic power spectrum of the speech signal on a nonlinear scale 
Mel frequency [80], containing a pipeline of framing, windowing, 
Fast Fourier Transform (FFT), Mel Filter Bank, and Discrete Cosine 
Transform (DCT).

MFCC is positively related to the window size; a larger time 
window could enhance the frequency domain’s frequency reso-
lution. Therefore, the rectangle window for ECG data is centered 
at the R peak point. According to the data validation result, the 
window size is selected, demonstrating that this window could 
capture whole essential markers in a cardiac cycle. Unlike the QRS 
complex feature, MFCC window size is usually set larger than the 
QRS complex, involving the P and T waves. The framing step di-
vides the signal into equal length frames of 10–30 ms. Then Ham-
ming window is usually applied to maintain signal continuity as 
equation below, where each frame contains N samples and W [n]
is the nth Hamming window coefficient:

W [n] = 0.54 − 0.4 cos

[
2πn

N − 1

]
(11)

Y [n] = X[n] × W [n] (12)

Later FFT transfers each frame in the time-domain signal into 
a frequency-domain signal as equation below, and Mel scaling the 
signal through Mel Filter Bank H[m] with Q filters.

Y [m] = 1

N

N−1∑
n=0

Y [n]e −2πnm
N (13)

Finally, MFCC coefficient C[k] is calculated through Discrete Cosine 
Transform (DCT) as follows:

C[k] =
Q −1∑

ln(

Q −1∑
|Y [m]|2 Hi[m]) cos(

πk(i − 0.5)

Q
) (14)
i=0 m=0
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Fig. 9. The architecture of template matching method.
4. Classification

After feature extraction, the system performs feature selection 
algorithms to reduce feature dimension. Features that have a high 
correlation with other features are removed through dimensional-
ity reduction algorithms like Principal Component Analysis (PCA), 
Linear Discriminant Analysis (LDA), and Independent Component 
Analysis (ICA).

The selected features are then fed into classifiers to obtain out-
put probability. The user authentication system is mostly a binary 
classification problem to output whether the obtained signal be-
longs to the current user. It is a multi-classification problem for 
user identification to identify the obtained signal belongs to which 
user. There are three major classification methods, namely tem-
plate matching methods, traditional machine learning methods, 
and deep learning methods. Template matching methods first con-
struct a signal template using the extracted features and return 
an authentication result based on a threshold. However, template 
matching methods require careful distance measurement selection 
and threshold setting. Therefore, classification models utilize ma-
chine learning algorithms or deep neural networks to classify the 
given biometric signals are widely utilized. blue Machine learn-
ing methods and deep learning methods both can learn a model 
for classification. However, machine learning methods usually take 
some certain features as input, while deep learning methods just 
take the original data as the input and extract useful features auto-
matically. Also, generally, deep learning methods require more data 
than machine learning methods.

4.1. Template matching methods

The main idea of the template matching method is illustrated 
in Fig. 9. The template matching method compares the distance 
between a signal template constructed from the acquired database 
and a signal representation constructed by features in the collected 
signal. The signal template is regarded as the average value of de-
tected signal cycles. Signal representation is extracted through Lin-
ear Discriminant Analysis (LDA) [81], Canonical Correlation Anal-
ysis (CCA) [82,83], Independent Component Analysis (ICA) [84,85]
or Deep Neural Networks (DNN) [86,87]. The similarity between 
the signal template and the signal representation is calculated 
through Euclidean distance or some other metrics [88]. Finally, 
the authentication result is then determined by the compari-
son result between the calculated distance value and the thresh-
old.

We take the gait template construction as an example, which 
contains step length estimation and gait cycle extraction [81]. 
Accelerometers detect three-dimensional accelerations (x, y, z) re-
spectively from the x-axis, y-axis, and z-axis. Thus the raw data 
could be represented as

data =
√

x2 + y2 + z2 (15)

Then, step length is approximately estimated as the quotient 
of acceleration sampled frequency f sample and the step frequency 
f step as in Equation (16). The step frequency is represented as 
the maximum point of the spectral density, which is obtained by 
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transforming signal into frequency domain through Fast Fourier 
Transform:

Lstep = f sample

fstep
(16)

The gait cycle is a periodic segment measuring the time inter-
val of the same foot repeatedly touches the ground again. It is an 
essential component for gait data segmentation. However, gait cy-
cle extraction is harrowing due to an individual’s changing walking 
speed or irregular body movement, leading to the accelerometer 
readings turn distorted [36].

Considering a gait cycle, its start point sp is the first minima 
point in gait raw data sequence d and the endpoint ep can be set 
by Equation (17), where Lstep is the estimated step length and d is 
a parameter to measure the floating range between estimated step 
length and actual step length considering the changing gait speed, 
controlled by the deviation coefficient β:

sp + Lstep − d < ep < sp + Lstep + d (17)

where d = βLstep .
Finally, an individual’s gait template could be represented as 

the mean value of N gait cycles as the estimation above. The gait 
template is represented as the normalized gait cycle. Since each 
gait cycle has a different step length, so a linear interpolation is 
performed to map inconsistent gait cycle into a normalized cycle 
with step length m; thus each gait template could be defined as:

Tn = {Xspn , Xspn+1, ..., Xspn+m−1},n = 1,2, ..., N (18)

After the construction of the signal template and signal repre-
sentation, the distance measurement method is executed to com-
pare similarities.

Manhattan distance. Considering two vectors X = (x1, x2, ..., xn), 
X ′ = (x′

1, x
′
2, ..., x

′
n), Each element of the vector corresponds to 

a point in high-dimensional space. Manhattan distance computes 
the summation of absolute differences between two vectors, it is 
widely used for low computation demands:

dManhattan(xi, x′
i) =

n∑
i=1

|xi − x′
i | (19)

Euclidean Distance. Euclidean distance measure the length of a 
line segment between two vectors in Euclidean space:

dEuclidean(xi, x′
i) =

√√√√ n∑
i=1

(xi − x′
i)

2 (20)

Discrete Time Warping (DTW). DTW measures the similarity of 
two temporal sequences of different lengths and rhythms through 
dynamic programming. DTW aims to calculate an optimal match 
from the first sequence to the second sequence under a series of 
restrictions and rules. For each matched point in two sequences, 
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the optimal match corresponds to the minimal loss of the sum of 
absolute differences between paired values.

Considering two sequences with different length X = (x1, x2,

..., xn), X ′ = (x′
1, x

′
2, ..., x

′
m). To align two sequences using DTW, a 

distance matrix M ∈ Rm×n is first constructed, where each element 
corresponds to the Euclidean distance between the values of two 
sequences d(xi, x′

j):

Mi, j = d(xi, x′
j) = (xi − x′

j)
2 (21)

Combined with the continuity and monotonic constraints in 
warping path, directions of next step in warping path could be 
(i +1, j), (i, j +1) or (i +1, j +1) when the current step passes the 
point (i, j). Therefore, the accumulated distance of two sequences 
is calculated using a recursive formula:

dDT W (i, j) = min[dDT W (i − 1, j − 1),dDT W (i − 1, j),

dDT W (i, j − 1)] + d(xi, x′
j)

(22)

Zhang et al. [89] utilized DTW distance-based dynamic tem-
plate-matching approach for gait modeling and identifying, ob-
taining about 92% in recognition accuracy. De Marsico et al. [90]
enhanced the DTW distance-based dynamic template matching ap-
proach by applying a new segmentation algorithm for the gait 
signal. It reaches about 93% of Recognition Rate (RR) on the ZJU-
gaitacc dataset and an Equal Error Rate (EER) of 0.09 in the verifi-
cation result.

As for ECG signal-related user authentication, Shdefat et al. [91]
used a template matching technique for the authentication process 
and achieved the accuracy rate 97.2% with a false acceptance rate 
of 1.21%. Will et al. [92] proposed an advanced template matching 
(ATM) algorithm containing multiple heterogeneous templates to 
enhance the performance regarding instantaneous heartbeat detec-
tion. It reduced the root mean square error (RMSE) of the interbeat 
intervals in ECG signals from 68.2 ms to 18.0 ms compared to a 
standard template matching algorithm.

4.2. Traditional machine learning methods

Various kinds of machine learning methods-based classifiers are 
widely employed for user authentication systems, involving Deci-
sion Tree [64,65], Support Vector Machine, Hidden Markov Model, 
etc.

Decision Tree. Decision tree is a common machine learning algo-
rithm based on a tree structure, an iterative algorithm following 
the “divide and conquer” strategy. At each step, the optimal at-
tribute a∗ is selected for more information gain Gain(D, a) based 
on information entropy Ent(D):

a∗ = arg max
a∈A

Gain(D,a) (23)

Each discrete attribute a has V values a1,a2, ...,aV , thus V branch 
nodes would be generated given attribute a. Due to each branch 
node contains a different sample number D V , a sample-number 
related weight is attached to the information gain:

Gain(D,a) = Ent(D) −
V∑

v=1

|D V |
|D| Ent(D V ) (24)

Considering dataset D contains |y| classes, and the sample pro-
portion of class k is pk , thus the information entropy Ent(D) is 
defined as:

Ent(D) = −
|y|∑

pk log2 pk (25)

k=1
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Additionally, pre-pruning and post-pruning techniques are usu-
ally applied to a decision tree to prevent over-fitting, and an 
advanced oblique decision tree is used in complex classification 
boundary situations by employing the linear combination of at-
tributes.

Alex Santos et al. [93] use a decision tree based on random for-
est to process the ECG signal for continuous authentication. Based 
on the QRS complex features of the ECG signal, the decision tree 
can achieve a true positive rate of 95.8% for five users identifica-
tion on a dataset from the Physionet Database.

Support Vector Machine (SVM). SVM aims to find a hyperplane to 
divide the dataset with maximum margin. Consider the hyperplane 
is defined as w T x + b = 0, and the support vectors are the closest 
points to the hyperplane to classify the dataset. Thus the objective 
function could be written as:

min
w,b

1

2
‖w‖2,

s.t. yi(w T xi + n) ≥ 1, i = 1,2, ...,m

(26)

This is the fundamental SVM version used for the linearly sepa-
rable dataset, while for the dataset that a hyperplane could not 
separate, the kernel function is applied to map samples to a higher 
dimensional feature space.

Sugondo et al. [94] use a series of support vector machine 
methods based on the ECG signal and related features obtained 
by processing the original signals with Hjorth Descriptor and 
Sample Entropy for user authentication. The result shows that 
the Gaussian SVM achieves the highest accuracy value of 93.8% 
and 86.2% on Hjorth Descriptor features and Sample Entropy fea-
tures.

Besides the ECG signal and the metric of accuracy, SVM [95] is 
also used in biometric user authentication based on the keystroke 
with the metric of an average equal error rate of 8.6% with a stan-
dard deviation of 0.0627.

Hidden Markov Model (HMM). HMM is a primary dynamic Bayes-
ian network, a probabilistic graphical model that depicts proba-
bility relationships through graph structure, which is commonly 
used for formulating time series data. A Markov chain describes 
the dependency relationship between states yi and observations xi , 
following the assumption that current state yt is only determined 
by the previous state yt−1, thus the joint probability distribution 
can be written as:

P (x1, y1, ..., xn, yn)

= P (y1)P (x1|y1)

n∏
i=2

P (yi|yi−1)P (xi |yi)
(27)

Thus the complex computation could be solved by calculating 
P (y1), P (yi |yi−1) and P (xi |yi), which are respectively determined 
by initial probability distribution π , state transition probability 
matrix A and output observation likelihood B .

Feriel et al. [96] use the Hidden Markov Model-Universal Back-
ground Model (HMM-UBM) model for continuous authentication 
based on the position, the accelerometer, and the gravity of the 
device. This method can achieve the Equal Error Rate (EER) value 
of 14.8% on HMOG, a public dataset.

4.3. Deep learning methods

Since traditional authentication models generally employ ex-
tracted features, which are insufficient to represent complicated 
typing patterns, deep learning methods are automatically applied 
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to learn time serials. Machine learning methods depend largely on 
extracted features, which need plenty of engineering work. Deep 
learning methods, on the contrary, could automatically extract fea-
tures through Neural Network (NN).

The basic neural network structure is Multi-Layer Perceptron 
(MLP). Initial attempts at data through deep learning methods 
are usually based on MLP. Sequence-processing approaches com-
monly take a sequence of timing signals as input, which is suit-
able to address through Recurrent Neural Network (RNN) or Long 
Short Term Memory (LSTM). RNN/LSTM can preserve history in-
formation and maintain the dependency relationship in sequential 
data by calculating current output based on both current input 
and previous information [97]. Besides, data forms like gait im-
ages use the variation of LSTM, Convolutional LSTM (Conv-LSTM) 
to first extract image features through Convolutional Neural Net-
work (CNN) [98]. Xiaofeng et al. [99] proposed a novel algorithm 
that extracted individual keystroke features of keystroke vector 
through CNN and RNN. Therefore, We will first briefly introduce 
the principle of neural networks and then introduce some recur-
rent neural networks that are intuitive choices for tackling sequen-
tial data.

MLP. MLP is a hierarchical structure containing multiple layers of 
an input layer, hidden layers, and output layer. Each layer con-
sists of multiple inter-connected neurons controlled by connection 
weight. Consider input vector xi combined with the correspond-
ing connection weight wi are passed to the neuron, the weighted 
sum is calculated and compared with threshold θ and then pro-
cessed by an activation function f (·). Thus the neuron output can 
be represented as:

y = f (
n∑

i=1

wi xi − θ) (28)

After obtaining the model output through model forward, model 
parameters are learned through error back propagation based on 
the gradient descent strategy.

Adam et al. [100] utilize the deep neural network in an em-
bedded ECG pattern recognition system for biometric authentica-
tion. Just taking the original ECG signals as input, this deep neural 
network-based system achieves 99.93% accuracy, 99.85% sensitivity, 
99.96% specificity, an Equal Error Rate (EER) of 0.0582% on ECG-ID, 
a public database.

Chu-Hsing Lin et al. [101] use the deep neural network for 
biometric authentication based on keystroke dynamics. The result 
shows that the deep neural network can achieve 90% accuracy and 
100% the false rejection rate (FRR) on their self-collected data.

CNN. Since MLP ignores the spatial relationship between elements 
in the raw data, CNN uses a local feature extractor in the signal to 
construct local spatial features. CNN is a hierarchical neural net-
work with a series of convolutional layers, sub-sampling layers, 
and MLP classifier. The Convolutional layer utilizes several kernels 
to literately pass a sliding window over the data to get a fea-
ture map. As for sequential signals collected by wearable devices, 
the 1D version of CNN is commonly used for automatic classifica-
tion.

Joao et al. [102] use CNN for ECG-based biometric authentica-
tion and achieves the 7.86% and 15.37% equal error rate (EER) on 
UofTDB and CYBHi datasets, respectively, and attained 9.06% EER 
on the PTB on-the-person database. Another work [103] using CNN 
combines ECG and fingerprint and achieves the 99.68% and 99.74% 
accuracy, 0.3% and 0.3% false acceptance rate, and 0.4% and 0.2% 
false rejection rate on MDB1 and MDB2 datasets, respectively.
12
Fig. 10. Architecture of an end-to-end LSTM-based breath signal authentication 
method.

RNN. RNN is able to model sequential data through its internal 
state. Thus current input is considered to be related to the previ-
ous input and the history input information is preserved, making it 
suitable for processing continuous biometric signals. RNN performs 
same function for each input data and the current state ht consid-
ers both current input xt and the hidden state at last timestamp 
ht−1:

ht = f (ht−1, xt) (29)

Ka-Wing Tse et al. [104] use RNN based the fusion of keystroke 
and swipe dynamics for biometric user authentication. By combin-
ing temporal features, spatial features, and swipe features together, 
RNN achieves the highest accuracy and F1 score value of 94.26% 
and 93.19%.

LSTM. LSTM is a modified version of RNN to solve the gradient 
vanishing and exploding problems in RNN. LSTM could better re-
member past information through the introduced gates. Input gate 
decides which input value should be taken to modify the mem-
ory, forget gate decides what information needs to be discarded, 
and the output gate decides the output given the input and the 
memory information in this block.

Farnaz et al. [105] use LSTM for biometric authentication for 
dementia patients. Two features based on PPG and ECG signals 
are provided to the LSTM network for training. Finally, this model 
achieves the accuracy of the PPG, and ECG-based identifications 
reached 100% and 88.9%, and F1 scores reached 1.00 and 0.86 re-
spectively on a ten-users dataset.

We take an end-to-end LSTM-based breath signal authentica-
tion method as an example [106]. It aims to recognize whether a 
breath sample belongs to the user in the collected database. We 
depict Fig. 10 to illustrate the model architecture. The prediction 
model takes the segmented breath frame as input and outputs the 
prediction result of user identity. The MFCC features are first ex-
tracted from the data frame, and then a Fully Connected (FC) layer 
is performed to embed the initial features. The major part of the 
module is a two-layer LSTM. Each LSTm cell takes the input fea-
ture at the current time step and the previous hidden state at the 
last time step as input. The LSTM output is further embedded to 
a user authentication score through a FC layer, whose output size 
is the number of users. Finally, the authentication score is trans-
formed into a probability through the SoftMax layer and output 
the final prediction result.

However, previously mentioned methods suffer inevitable short-
comings: template-matching methods could not retain temporal 
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Table 1
The evaluation result of the ECG signal authentication method.

Dataset Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1 Score
(%)

ECG Signal PTB [109] 98.8 99.7 98.8 99.2
CYBHi [109] 99.2 99.6 99.4 99.4

Table 2
The evaluation result of the gait signal authentication method.

Dataset Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1 Score
(%)

Gait Signal UPCV 95.3 94.4 94.0 93.3
GaitBiometry 98.1 98.0 98.3 97.8

information while sequence-processing methods require data to 
keep strict sequential order. Therefore, an unordered set-based 
gait recognition method, inspired by the promising method Point-
Net [107] in the field of computer vision, is then proposed. A se-
quential signal is considered as a set of independent frames [108], 
which is immune to the permutation of frames. It first trans-
forms the frame-level features into set-level features and then 
learns the discriminative representations of each user’s distribu-
tion.

5. Evaluation

Performance evaluation is an essential part of evaluating the 
proposed classification models through various kinds of metrics 
such as accuracy. Using only one metric is insufficient to judge a 
model. Thus several performance evaluation results should be an-
alyzed simultaneously.

Accuracy. Classification accuracy is the most commonly used met-
ric, it is the ratio of correct predictions number to the total sam-
ples number:

acc( f ; D) = 1

m

m∑
i=1

I( f (xi) = yi) (30)

While its opposite metric error rate is defined as:

E( f ; D) = 1 − acc( f ; D) (31)

Confusion Matrix. Confusion matrix indicates the model complete 
performance, involving four important terms:

• True Positives (TP): cases where prediction is the same as 
ground truth of positive.

• True Negatives (TN): cases where prediction is the same as 
ground truth of negative.

• False Positives (FP): cases where prediction is positive but the 
ground truth is negative.

• False Negatives (FN): cases where prediction is negative but 
the ground truth is positive.

Precision. Precision is the ratio of the number of correctly pre-
dicted points to the number of all positive prediction results by 
the classifier:

P = T P

T P + F P
(32)

Recall. Recall is the ratio of the number of correctly predicted 
points to the number of all related points with positive label:
13
R = T P

T P + F N
(33)

F1 Score. F1 score is the Harmonic Mean between precision and 
recall, seeking the balance between both precision and robustness. 
A higher F1 score indicates a better model performance:

F 1 = 2P R

P + R
(34)

Precision and recall is a pair of opposite metrics, high precision 
often corresponds to low recall. Since we may have different em-
phasis in different scenarios, a more general Fβ score is pro-
posed:

Fβ = (1 + β2) × P × R

(β2 × P ) + R
(35)

We respectively show the high-performance evaluation results 
of physiological biometric and behavioral biometrics based authen-
tication methods as below. Since not all related references paper 
compare the metrics of accuracy, precision, recall, and F1 score, we 
first only list two tables containing the evaluation results of above 
four metrics in ECG signal and gait signal authentication methods 
as an example.

As for ECG signal illustrated in Table 1, a ResNet-Attention 
model [109] achieves better performance than other existing meth-
ods. It first extracted ECG features through ResNet and weighted 
different signals through attention mechanism. The experiment is 
conducted on two ECG datasets Physikalisch-Technische Bunde-
sanstalt (PTB) and Check Your Bio-signals Here initiative (CYBHi), 
evaluating the metrics of accuracy, precision, recall, and F1 score.

As for the gait signal illustrated in Table 2, a deep neural net-
work model with new geometric features [110] performs better 
than previous methods. The experiment is conducted on two pub-
lic gait datasets recorded with the Microsoft Kinect sensor, UPCV 
gait dataset, and Kinect GaitBiometry dataset. The proposed model 
is evaluated through the metrics of accuracy, precision, recall, and 
F1 score.

Then we focus on the “Accuracy” metric and respectively 
demonstrate the state-of-the-art results of both physiological bio-
metrics and behavioral biometrics in past five years. See Tables 3
and 4.

6. Conclusion

Wearable technology represents a hastily growing set of prod-
uct categories and a dynamic and evolving field. From the security 
perspective, they offer a possibility to re-envision and adapt con-
ventional authentication schemes to the brand new contexts and 
interactive methods of wearable gadgets. A large number of user 
authentication systems have been proposed and designed in the 
past decade. In this paper, we have reviewed and summarized 
recent solutions. We provided representative examples of authen-
tication interfaces with a variety of wearable form factors such as 
a smartwatch, smart glass. While in this survey, we have reviewed 
more than 120 papers; the list of current structures is by no means 
comprehensive but includes much of the recent advancements and 
directions. We hope this survey can help researchers interested 
in this area identify research gaps and easily find research direc-
tions.
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Table 3
Accuracy result of Physiological Biometrics authentication methods.

Physiological 
Biometrics

No. Author and Year Methods Dataset Accuracy (%)

ECG (Heartbeat) 1 Tan et al., 2016 [111] Wavelet Analysis, Probabilistic 
Random Forest

ECG-ID 98.79

MIT-BIH 99.43
2 Zhang, 2017 [112] Multiresolution 1-D-CNN MIT-BIH 93.5
3 Salloum & Kuo, 2017 [113] LSTM ECG-ID 100

MIT-BIH 100
4 Bassiouoni et al., 2018 [114] MLP, SVM ECG-ID 99

MIT-BIH 100
5 Wang et al., 2019 [115] PCANet, SVM ECG-ID 97.75

MIT-BIH 100
6 Ihsanto et al., 2020 [116] Residual Depthwise Separable CNN ECG-ID 100

MIT-BIH 100

Breath Signal 1 Chauhan et al., 2017 [28] DCT Feature, Gaussian Mixtures 
Model

Off-the-shelf Hardware, 10 users, 7 
days

94

2 Lu et al., 2017 [29] MFCC Feature, Template Matching 50 Smartphone Users 99.6
3 Islam et al, 2019 [117] FFT Feature, SVM Doppler Rader System 100
4 Leem et al., 2020 [118] CNN, SVM Ultra-wideband Radio Receiver 96.7

Muscle Signal 1 Shang & Wu, 2019 [119] Local Outlier Factor model Smartwatches 96.31
2 Shin et al., 2021 [120] Fiducial Features, SVM Wearable Electromyogram System 87.1
3 Chen et al., 2021 [121] Variational Autoencoer, CNN Electrical Muscle Stimulation System 97.6

Table 4
Accuracy result of Behavioral Biometrics authentication methods.

Behavioral 
Biometrics

No. Author and Year Methods Dataset Accuracy (%)

Gait Signal 1 Zhang et al. [122], 2014 Signature Points Feature, Sparse-code 
Collection Classifier

ZJU-GaitAcc Public Dataset 95.8

2 Giorgi et al. [123], 2017 CNN ZJU-GaitAcc Public Dataset 92
3 Sun et al. [36], 2018 Adaptive Gait Cycle Extraction, 

Template Matching
ZJU-GaitAcc Public Dataset 91.75

4 Sun et al. [124], 2019 Template Matching, Decision Fusion OU_ISIR Public Dataset 96.7
5 Qin et al. [125], 2019 LSTM, Extreme value Analysis ZJU-GaitAcc Public Dataset 98.4

Signature Signal 1 Lai et al. [126], 2017 Length-Normalized Path Signature 
Feature, RNN

SVC2004 Task2 91

MCYT-100 97.63
2 Al-Hmouz et al. [127], 2019 Probabilistic Dynamic Time Warping SVC2004 Task2 98.2

MCYT-100 98.1
3 Okawa, M [128], 2020 Mean Template Matching, Weighted 

DTW Distances
SVC2004 Task1 95.74

SVC2004 Task2 98.2
MCYT-100 98.72

Keystroke Signal 1 Kim et al. [61], 2018 User-adaptive Keystroke Feature, SVM 150 users, 13000 keystrokes 95.6
2 Ali et al. [95], 2018 Partially Observable HMM, SVM CMU Keystroke Dataset 91.4
3 Tse & Hung [104], 2020 Mult-stream RNN, Feature Fusion 31 users, 50 times 94.26

Mouse Dynamics 1 Chong et al. [68], 2018 2D-CNN Balabit 90
TWOS 87

2 Almalki et al. [129], 2019 Decision Tree Point and Click Action Data 87.6
K-Nearest Neighbors 99.3
Random Forest 89.9

3 Fu et al. [70], 2020 CNN-RNN Combined Model 15 users, 300 trials each 96.84
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