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a b s t r a c t

Engineering drawings are commonly used in different industries such as Oil and Gas, construction, and
other types of engineering. Digitising these drawings is becoming increasingly important. This is mainly
due to the need to improve business practices such as inventory, assets management, risk analysis,
and other types of applications. However, processing and analysing these drawings is a challenging
task. A typical diagram often contains a large number of different types of symbols belonging to
various classes and with very little variation among them. Another key challenge is the class-imbalance
problem, where some types of symbols largely dominate the data while others are hardly represented
in the dataset. In this paper, we propose methods to handle these two challenges. First, we propose
an advanced bounding-box detection method for localising and recognising symbols in engineering
diagrams. Our method is end-to-end with no user interaction. Thorough experiments on a large
collection of diagrams from an industrial partner proved that our methods accurately recognise more
than 94% of the symbols. Secondly, we present a method based on Deep Generative Adversarial Neural
Network for handling class-imbalance. The proposed GAN model proved to be capable of learning from
a small number of training examples. Experiment results showed that the proposed method greatly
improved the classification of symbols in engineering drawings.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Large volumes of un-digitised and paper-based documents are
still very common across different domains. Amongst this legacy,
engineering drawings are known to be one of the most complex
types of documents to process and analyse. They are widely
used in different industries such as construction and city plan-
ning (i.e. Floor Plan diagrams (Ahmed, Liwicki, Weber, & Dengel,
2012)), Oil and Gas (i.e. P&IDs (Elyan, Garcia, & Jayne, 2018)),
Mechanical Engineering (Vaxiviere & Tombre, 1992), AutoCAD
Drawing Exchange Format (DXF) (Goh, Mohd. Shukri, & Manao,
2013) and others. Interpreting these drawings requires highly
skilled people, and in some cases long hours of work.

In recent years, the digitisation of these drawings is becoming
increasingly important. This is partly due to the urgent need to
improve business practices such as inventory, assets manage-
ment, risk analysis, safety checks and other types of applications,
and also due to the recent advancements in the domain of
machine vision and image understanding. Deep Learning (DL)
(Goodfellow, Bengio, & Courville, 2016), in particular, had sig-
nificantly improved the performance by orders of magnitude in
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many domains such as Gaming and AI (Holcomb, Porter, Ault,
Mao, & Wang, 2018), Natural Language Processing (Yang et al.,
2016), Health (Esteva et al., 2019), and others. One particular
domain that has benefited hugely from DL is machine vision
(Girshick, 2015). Convolutional Neural Networks (CNNs) (Gu et al.,
2018) have made significant progress in recent years in many
image-related tasks (Ali-Gombe, Elyan, & Jayne, 2017). It has
been successfully applied to several fields such as hand-written
recognition (Lecun, Bottou, Bengio, & Haffner, 1998), image clas-
sification (Krizhevsky, Sutskever, & Hinton, 2017; Szegedy et al.,
2015), Face Recognition & Biometrics (Park & Jain, 2010) and
others. Before the CNNs, the improvements in image classifi-
cation, segmentation, and object detection were marginal and
incremental. However, the introduction of CNNs revolutionalised
this field. For example, Deep Face (Taigman, Yang, Ranzato, &
Wolf, 2014), a face recognition system that was first proposed
by FaceBook in 2014 achieved an accuracy of 97.35%, beating the
state-of-the-art then, by 27%.

Core image processing tasks such as shape and object detec-
tion, recognition, and tracking have become much less challeng-
ing even under different conditions and in much less controlled
environments. Faster Region-based CNN (R-CNN) (Ren, He, Gir-
shick, & Sun, 2015), Single Shot Detectors (SSD) (Liu et al., 2015),
Region-based Fully Convolutional Networks (R-FCN) (Dai, Li, He,
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& Sun, 2016) and You Only Look Once (YOLO) (Redmon, Div-
vala, Girshick, & Farhadi, 2016) are all relatively recent methods
that showed superior performance in the field of object detec-
tion, tracking, and classification. These methods and their exten-
sions have significantly advanced this area of research and solved
some of the most challenging and inherent vision problems such
as occlusions, light conditions, orientation, and others, which
were considered major challenges, even for a specific vision task
in a more controlled environment (Zhao, Chellappa, Phillips, &
Rosenfeld, 2003).

Significant advancement has also been made in the area of
Generative Models and was successfully applied in many appli-
cations. Among these, Generative Adversarial Networks (GAN)
proved to be one of the most established and commonly used
methods in generating content. GANs were initially introduced
by Ian Goodfellow in 2014 (Goodfellow et al., 2014). In the
Methods section, we will discuss our GAN-based method to
handle the class imbalance problem. This is another challeng-
ing problem that is common across many domains (Vuttipit-
tayamongkol, Elyan, Petrovski, & Jayne, 2018) including engi-
neering drawings, where one or more class of symbols in the
diagrams are either underrepresented or overrepresented in the
dataset (Vuttipittayamongkol & Elyan, 2020).

Despite this massive progress in the field of image processing
and analysis, very little progress has been made in the area
of digitising complex engineering drawings, and extracting in-
formation from these diagrams is still considered a challenging
problem (Arroyo, Fay, Chioua, & Hoernicke, 2014). To date, a
major problem of most of the existing solutions is that they still
follow a traditional image-processing approach, which requires
extensive features extraction and engineering and carefully de-
signed heuristics (Moreno-García, Elyan, & Jayne, 2018). These
are often very domain-dependent, sensitive to noise and data
distribution, and mostly dedicated to solving part of the problem
(i.e. detecting symbols, separating graphics from text, and so on).
As can be seen in Fig. 1, not only such an approach difficult to
generalise across different scenarios, but also the performance
of any machine learning algorithm will hugely depend on the
quality and accuracy of the extracted features.

In this paper, we propose an end-to-end framework for pro-
cessing and analysing complex engineering drawings. We argue
that the core task of such a framework is the accurate localisation
and recognition of symbols in the drawing that constitute a
major part of it and simplifies subsequent tasks (i.e. line and text
detection). We show how one of the main inherent problems in
classifying engineering symbols, namely class-imbalance can be
addressed using Generative Adversarial Neural Networks. Fig. 2
provides a schematic diagram of the work presented in this paper.
The main contributions of this work are outlined as follows:

• We propose a novel pipeline for processing and analysing
complex engineering drawings. At the core of this pipeline
is the accurate detection and recognition of symbols.

• We show that an advanced-bounding-box detection method
performs very accurately on challenging engineering dia-
grams. To the best of our knowledge, Deep Learning models
(e.g. YOLO Redmon & Farhadi, 2017, RCNN Girshick, 2015)
were never used in such domain at a large scale of symbols
with minimal difference. This is mainly due to the complex-
ity of the problem, and the very little variation and noise
within symbols of engineering drawings.

• Methods to handle the class-imbalance within engineer-
ing drawings are presented and thoroughly evaluated. We
present a fine-grained method to train GAN models to gen-
erate engineering symbols of different overlapping classes.

• Thorough evaluation using large collection of P&ID diagrams
provided by an industry partner in the Oil and Gas sector.

The rest of this paper is organised as follows: Section 2
presents an overview and critical discussion of relevant work. In
Section 3, we present our methods, dataset and pre-processing
steps carried out. In Section 4 we present our experiments and
discuss results. Finally, conclusions and future work are outlined
in Section 5.

2. Related work

In this section, we discuss relevant literature. First, we discuss
literature related to the processing and analysis of engineering
drawings. This will be followed by a brief introduction to Gener-
ative Adversarial Neural Networks and how it can be applied to
handle the class imbalance problem.

2.1. Engineering drawings

An engineering drawing is a 2D image that contains different
types of shapes, symbols, lines, and text. These drawings are
commonly used in different domains and provide a rich repre-
sentation of complex engineering workflows or situations. The
digitisation of these drawings was subject to extensive research
from the machine vision research community over the past four
decades (Ablameyko & Uchida, 2007; Chhabra, 1997; Cordella
& Vento, 2000; Zhang & Lu, 2004). In recent years, and due to
the significant progress in machine vision research, computer
power and also due to the availability of large volumes of un-
digitised data, the demand to have a fully automated framework
for digitising these drawings is becoming increasingly important.

Examples of work that aimed at extracting information from
engineering documents include analysis of musical notes
(Blostein, 1995), mechanical drawings (Kanungo, Haralick, & Dori,
1995), optical character recognition (OCR) (Kulkarni & Barbadekar,
2017; Lu, 1995; Mori, Suen, & Yamamoto, 1992), and extracting
information from P&ID drawings (Elyan et al., 2018; Howie, Kunz,
Binford, Chen, & Law, 1998; Moreno-García, Elyan, & Jayne, 2017).
It can be argued that most of the existing literature followed a
traditional image processing approach (Gonzalez & Woods, 2008),
which requires some form of feature extraction from the im-
age (Chhabra, 1997), features representations (Zhang & Lu, 2004),
and classification to determine the class of objects (i.e. symbols,
digits, . . . ) (Ablameyko & Uchida, 2007).

The key limitation of traditional machine vision methods is
that they require extensive features engineering, depend heavily
on the quality of extracted features, and often will not generalise
well to other unseen examples. A recent extensive review showed
that most of the existing literature focused on solving part of the
problem rather than providing a fully automated framework for
digitising an engineering diagram (Moreno-García et al., 2018).
Examples include methods for recognising symbols and lines in a
drawing (Boatto et al., 1992), detecting and separating text from
symbols and other graphics elements in diagram (Moreno-García
et al., 2017), classifying symbols in engineering drawings (Elyan
et al., 2018) and so on. This is partly due to the complexity of the
problem (i.e. localising every single element in the document),
and also due to the limitations of the traditional image processing
and analysis methods and the inherent vision problems such
as the sensitivity to noise, quality of the image, the orientation
of shapes and so on. Consider for example the work in Elyan
et al. (2018), the authors used a set of heuristic rules to lo-
calise symbols in the drawings, a Random Forest (Elyan & Gaber,
2017) was then used to classify the symbols achieving an average
accuracy higher than 95%. Similar work was presented in Moreno-
García et al. (2017), where a set of heuristics were also used
to detect and separate text from graphics elements. However,
such an approach is very dependent on the data distribution, and
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Fig. 1. Traditional frameworks for analysing images/ documents.

Fig. 2. Schematic diagram of the framework for processing and analysing engineering documents.

a slight variation in the diagrams or in symbols representation
might require adapting the existing heuristics rules or creating
new ones.

In a closely related area, Rebelo, Capela, and Cardoso (2010)
presented a study on optical music recognition and classifica-
tion methods for musical symbols. They suggested that adjoin-
ing staff lines, presence of symbols in close proximity to mu-
sic notes, broken symbols, overlapping symbols and areas with
high symbol density all contributed to the complexity of optical
music recognition. Four classification methods namely a multi-
layer perceptron neural network model, Hidden Markov Model,
K-nearest neighbour and Support Vector Machine (SVM) were
evaluated on datasets of both synthetic and handwritten mu-
sic scores. The highest performance was obtained with an SVM
model, however all approaches implemented detection then re-
moval of music staff lines and segmented the symbols prior to
symbol classification.

Khan, Ansell, Kuru, and Bilal (2018), used video image analysis
as part of a flight deck warning system, which combined auto-
mated dial reading of flight instruments with domain knowledge.
Experiments on a flight simulator and real flight aimed to obtain
the position of a white needle on the flight instrument using three
image processing approaches: background subtraction, pattern
matching and a convolution based approach. Results showed that
the convolution method obtained the highest accuracy, highest
true positive rate and highest true negative rate.

In recent years, DL-based methods were explored and suc-
cessfully applied to some tasks that are similar to engineering
drawings analysis. Ziran et al. proposed a method, based on Single
Shot Detectors (SSD) (Liu et al., 2015), to detect and recognise fur-
niture objects, doors, and windows in floor plan diagrams (Pacha,
Haji and Calvo-Zaragoza, 2018). The results were encouraging.
However, the datasets used were simple with a limited number
of furniture objects in each drawing (12). The performance also
dropped under the imbalanced class distribution of objects in the
images.

Faster R-CNN was used in Julca-Aguilar and Hirata (2017)
for the detection and recognition of handwritten characters. Al-
though the work focused mainly on specific elements of the doc-
uments (mathematical expressions and flowcharts), promising
results over other traditional methods were achieved.

Detection and recognition of musical notes in documents
have also benefited from adopting Deep Learning-based meth-
ods (Pacha et al., 2018; Pacha, Haji et al., 2018). R-CNN, R-FCN,
and SDD were applied successfully to detect and recognise hand-
written music notes (Pacha, Choi et al., 2018). Results showed
an improvement in symbols detection over other traditional
structured machine vision methods.

A framework for extracting information from P&ID drawings
was presented very recently in Rahul, Paliwal, Sharma, and Vig
(2019). The authors used a two-step approach. First, Deep Learn-
ing methods were used to localise symbols and text, and then
heuristic-based methods were employed to detect other elements
of the drawing (i.e. Euclidean metrics for associating tags and
symbols with pipelines, probabilistic Hough transform to detect
pipelines, etc.) The methods for localising symbols were based on
a fully connected convolutional neural network. A dataset of four
sheets consisting of 672 flow diagrams was used. Results were an
improvement over other traditional methods. However, accuracy
was not consistent across all components. Class accuracy ranged
from 100% for some components to 64.0% for others (i.e. symbols
of a certain class). Moreover, only a limited number of symbols
were used in this study (10 different classes of symbols) and the
P&ID sheets seem to be of a very good quality which is not often
the case in the real world.

To summarise, existing literature shows a clear gap between
the current state of machine vision and image understanding -due
to the rapid development in this field- and the slow and incremen-
tal progress in a very important application domain across many
industries.

2.2. GAN models

Generative Adversarial Networks (GAN) were initially intro-
duced by Ian Goodfellow in 2014 (Goodfellow et al., 2014). These
are considered as generative models that are capable of pro-
ducing new content. GANs are made of two contesting models
(i.e. Neural Networks, CNN’s, etc. . . ), the Generator (G), and the
Discriminator (D). The discriminator is a classifier that receives
input from the training set (authentic content), and from the gen-
erator (fake input). During the training process, the discriminator
will learn how to distinguish between authentic and fake input
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Fig. 3. Generative Adversarial Neural Networks.

samples. On the other hand, the generator is trained to generate
samples that capture the underlying characteristics of the original
data (replicating original content). Fig. 3 depicts the GAN model.

Adversarial training of both models G, and D is carried out
using value function as can be seen in Eq. (1).

min
D

max
G

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1 − D(G(z)))]

(1)

where pdata(x) is the probability distribution over the real data,
x is a sample from the real training data, pz is the probabil-
ity distribution over the noise vector z, and G(z) is the output
from the generator function G (or generated images). GANs are
state-of-the-art in terms of the quality of the image generated.

GANs have been successfully applied to different problems
including image generation (Ali-Gombe, Elyan, & Jayne, 2019; Ali-
Gombe, Elyan, Savoye, & Jayne, 2018), segmentation and speech
synthesis. In recent years they were also successfully applied
to handle class-imbalance problems (Ali-Gombe & Elyan, 2019;
Antoniou, Storkey, & Edwards, 2017). The class imbalance is
common across different domains including health, security, and
banking (Vuttipittayamongkol et al., 2018). The problem happens
when one or more class is either underrepresented or overrep-
resented in the dataset. In such scenarios, a typical supervised
learning algorithm tends to be biased towards the majority class
when dealing with imbalanced datasets (Vuttipittayamongkol &
Elyan, 2020).

Supervised GANs provide an extension to the original GAN
framework by introducing conditional probabilities in the value
function. This allows more control over the generated samples
and introduces diversity which is needed for augmenting syn-
thetic input data for class-imbalanced datasets. Typical examples
include vanilla GAN (Goodfellow et al., 2014), CGAN (Mirza &
Osindero, 2014) and AC-GAN (Odena, Olah, & Shlens, AUG 2017).
Although the literature shows that these models can be hugely
affected by class-imbalance especially in extreme cases (Mariani,
Scheidegger, Istrate, Bekas, & Malossi, 2018).

Recent work appeared in Ali-Gombe and Elyan (2019) intro-
duced a new extension of the GAN models. The authors trained
the GAN models at a fine-grained level by updating the discrim-
inator objective to not only distinguish between fake and real
instances but also to classify the fake instances into different
classes (i.e. Fake 1, Fake 2, etc. . . ). Extensive experiments using
four different datasets showed superior results over other GAN
models. Generated samples proved to be of good quality and
were successfully used to augment the dataset and improve the
detection rate of minority class instances.

3. Methods

Most engineering drawings contain a set of symbols, connec-
tivity information (lines) and some form of annotation (text).
However, no public dataset is available for evaluation purposes.
In Section 3.1 we introduce our approach for end-to-end symbols
recognition from complex engineering drawings. The following
subsection will discuss in detail the dataset used for experiments.

This will include data exploration and pre-processing. Finally,
Section 3.4 provides details of our proposed method to handle
class-imbalance in these drawings.

3.1. Symbols recognition

For locating and recognising symbols in the P&IDs, we pro-
pose to use YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016)
method. This allows us to represent the problem as a set of
bounding box coordinates and class probabilities. The method is
based on dividing the entire image into S × S grid, where each
cell predicts B bounding boxes and confidence scores for those
boxes (Redmon et al., 2016). The confidence scores are used to
decide if a cell contains a symbol or not. These are represented as
a five-dimensional vector (x, y, w, h, and confidence). Here, (x,y)
represents the centre of the bounding box, while the width and
height are predicted relative to the whole image. The prediction
from a grid is presented as S × S × (B∗5+C), where S is the size
of the grid, B is the bounding box and C is the class probabilities
(i.e. probability of the symbol being gate valve, sensor, etc...).
Fig. 4 depicts this setting.

The YOLO model was chosen for two main reasons. First, it
is a simple framework, which allows simultaneous predictions
of multiple bounding boxes and class probabilities using a single
convolutional neural network. Second, compared to other models,
YOLO is considered extremely fast. For testing P&IDs that may
contain on average 180 instances of various engineering symbols,
this is very important in a practical context.

3.2. Dataset - P&ID diagrams

For experiments in this paper, we chose to work with Piping
and Instrumentation Diagrams (P&IDs) Fig. 5. A collection of 172
P&ID sheets were obtained from an Oil and Gas industrial partner
for evaluation purposes. These diagrams contain different types of
symbols, lines, and text (Fig. 5).

Additionally, the P&IDs are of different qualities, which makes
the dataset suitable for evaluation purposes. The P&ID diagrams
can be defined as schematic diagrams representing the different
components of the process and the connectivity information. It
is a representation of equipment (often depicted as symbols) and
process flow (depicted as different types of lines) (Elyan et al.,
2018).

Such diagrams are available across many industries in the
form of paper or scanned documents. Interpreting and analysing
these documents requires expert knowledge, and is often time-
consuming (Arroyo, Hoang, & Fay, 2015; Moreno-García et al.,
2018). Moreover, a misinterpretation of such documents can be
very costly. For example, if a pipe needs to be replaced in an
Oil and Gas installation, then an engineer needs to check the
corresponding P&ID diagram, identify the valves that must be
closed before carrying on the task to ensure safety. In other
words, accurate interpretation of these drawings is paramount.

3.3. Data exploration & pre-processing

The original P&IDs sheets are large images, 7500 × 5250
pixels. To speed up the training process we divided the sheet
into 6 × 4 grid, resulting in 24 sub-images (patches) with rel-
atively much smaller sizes compared to the original sheets
(1250 × 1300).

Training a Deep Learning model requires fully annotated im-
ages/ diagrams. To do so, we have used the Sloth tool1 to annotate
the collection of P&ID diagrams. In total 29 different symbols
were annotated in the whole dataset (Fig. 7). The annotation

1 https://sloth.readthedocs.io/en/latest.

https://sloth.readthedocs.io/en/latest
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Fig. 4. The method divides the P&ID Diagram into a grid, following the YOLO model (Redmon et al., 2016), and predicts the class probabilities of the bounding
boxes. The figure shows the symbols sensor, flange, DBBPV, DB&BBV and RS.

Fig. 5. Part of a P&ID Diagram.

process is simple and involves customising the sloth tool to
record the corresponding symbols names (class) and its location
in the diagram.

The resulting annotation of data is captured in a file represent-
ing the 29 symbols. Data recorded included the x,y coordinates of
the centre of the bounding boxes, width and height of the bound-
ing box enclosing symbols. In total, 13,327 symbols belonging to
the 29 different classes were annotated. The dataset is hugely
imbalanced as can be seen in Fig. 6.

Only 25 symbols of these were used in the experiments. These
are shown in Fig. 7. Five symbols that were extremely under-
represented in the whole dataset (i.e. only one or two instances
of these symbols appear in the training and testing sets) were
excluded from the first experiment.

3.4. MFC-GANs

To handle the class-imbalance in the dataset of engineering
symbols (at the classification level), we are proposing to use a

method similar to the MFC-GAN model presented in Ali-Gombe
and Elyan (2019). This model is chosen due to the very minor
and in some cases subtle difference between different classes of
symbols. MFC-GAN model allows us to train the discriminator
to classify not only real symbols but also fake symbols, which
provides more fine-grained discrimination between instances.

For this work, the discriminator network is designed to have
four convolution layers with strides of two and batch normalisa-
tion is used between layers. All convolution layers are activated
using Leaky ReLu with alpha set to 0.2, and Sigmoid function is
used in the final layer as the activation function.

The discriminator layers are shared with a classifier model
that outputs 2 × N soft-max, where N is the number of classes.
We also designed the generator to have one linear layer and five
transpose convolution layers with strides of two in each layer.
Batch normalisation was also used between adjacent layers and
all layers were activated using Leaky ReLu apart from the final
layer which is sigmoid activated.
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Fig. 6. Class distribution of symbols in the whole dataset.

Fig. 7. Symbols used in the training and testing sets.

Similar to most GAN models the generator’s input is a noise
vector of size 100 and combined with symbol label encoding
(see Ali-Gombe & Elyan, 2019 for details). This label encoding is
used to control the class-specific generation, which is essential
for our experiment.

The generator output is a 64 × 64 greyscale symbols image.
For our experiments (following sections) we used a batch size
of 100 and a learning rate of 0.001 which was experimentally
chosen. Spectral normalisation was used in both the generator
and the discriminator. The proposed model will be trained using
Eqs. (2) and (3), (4).

Ls = E[log P (S = real|Xreal)] + E[log P
(
S = fake|Xfake

)
] (2)

Lcd = E[log P (C = c|Xreal)] + E[log P
(
C ′

= c ′
|Xfake

)
] (3)

Lcg = E[log P (C = c|Xreal)] + E[log P
(
C = c|Xfake

)
] (4)

where Ls is used to estimate the sampling loss, which represents
the probability of the sample being real or fake. Lcd and Lcg are
used to estimate the classification losses over the generator and
the discriminator. Xreal represents the training data and Xfake is the
set of generated images.

4. Experiment & results

Two experiments were carried out. The first experiment was
designed to evaluate an end-to-end solution for recognising sym-
bols in engineering drawings. We are assuming here, that locating
and recognising these symbols will simplify subsequent tasks in a
framework for analysing the whole drawings (i.e. detecting text,
pipelines, etc...). This is simply because the majority of these
types of drawings are made of symbols. The second experiment is
separate and is focused on handling the class-imbalance problem
using GAN-based methods.

4.1. Symbols recognition

In our dataset, the P&ID sheets were approximately 7500 x
5250 pixels in size. To use such image size in training data is
computationally expensive and therefore each P&ID was split into
24 patches by dividing the original P&ID width by 6 and the
height by 4. This gave a patch size of approximately 1250 x 1300
pixels. The annotation data for each patch was obtained using
the annotations for the whole P&ID as discussed in the previous
section.

For the training phase, we excluded symbols that overlapped
multiple patches. After extensive experiments, it was decided to
use the 3rd version of the YOLO framework which proved to be
improving the detection rate of small objects compared to the
first and second YOLO models (Redmon et al., 2016; Redmon
& Farhadi, 2017). It is worth pointing out that the sizes of the
various engineering symbols in our dataset are relatively small
compared to the image size.

The YOLO architecture was customised for the purpose of this
experiment. First the number of classes in each of the three YOLO
layers was set to 25, and the number of filters was changed
accordingly and was set to 3 × (Classno + 5), where the Classno
denotes the number of classes in the dataset.

The dataset was split approximately 90%:10% into training
(155 P&IDs) and test (16 P&IDs) sets. A pre-trained Network was
used and retrained using our dataset and all layers were fine-
tuned. Darknet implementation of the YOLO was used in this
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experiment.2 During the training process the network input size
of 416 x 416 was adjusted after every ten batches; adjusting the
input size during training was reported to improve object detec-
tion across different object scales (Redmon & Farhadi, 2017). The
network was trained with a learning rate of 0.001 and training is
stopped when the model was trained on 10,000 batches, (batch
size of 64).

At testing time, the model input was adjusted from 416 × 416
to 2400 × 2400. In this way, we were able to test on the original
P&ID images and simplify symbol detection across a whole P&ID
diagram in one step as opposed to combining detections from
the P&ID patches. For evaluation, symbols were compared against
the ground truth and the Intersection over Union IOU was set
experimentally to 0.5. A simple front end was developed using
Python Libraries and OpenCV3 for visualisation and manual error
analysis purposes.

4.1.1. Results
The training accuracy achieved was ∼ 96%. On the testing set,

1352 symbols out of 1424 were correctly located and recognised
with a testing accuracy equal to ∼ 94.9%. A heatmap of the
confusion matrix for the testing set is presented in Fig. 8. It
can be seen and as expected that majority class instances were
accurately detected and recognised. In other words, symbols with
enough examples in the training set were accurately recognised.

A typical output from the proposed methods where different
symbols are highlighted in different colours is shown Fig. 9.
Recognised symbols here were numbered and the predicted la-
bels were recorded for further comparison against the ground
truth. These symbols include inlets/outlets that are denoted by la-
bel_to, label_from, sensors, ball valve, reducers, gate valves, globe
valves, and others.

Table 1 provides more details about the number of instances
of each symbol in the training and testing set named as No of
Training Symbols and No of Testing Symbols respectively. Further-
more, it also shows the number of correctly recognised symbols
in the testing set (Correctly Recognised) and the testing accuracy
per class (Class Accuracy).

Results show that the majority of instances were accurately
detected and recognised (1352 of 1424). Fig. 10 shows different
symbols from various P&ID diagrams. Notice here that symbols
are accurately detected and recognised regardless of its orienta-
tion. For example, reducers, gate valves, check valves, and others
appear in different orientations (Fig. 10). Similarly, sensors are
accurately detected and recognised regardless of the text overlap
with these instances. This clearly shows that unlike traditional
methods the proposed method is robust to these inherent vision
challenges (at least in this context).

As can be seen in Table 2, in total 72 instances of the P&ID
symbols were either unrecognised at all (missed), or incorrectly
classified as different symbols. Of these, 8 instances of symbols
were incorrectly classified (Table 2). Additionally, 64 symbols
were completely missed. This can be largely attributed to the
nature of the drawings, wherein these cases symbols will have
text and annotation almost covering its entirety. This is evident
if we look at the IOU in Table 2 which is zero across all these
missed symbols.

Further visual analysis of the results presented in Table 2
showed that some symbols were incorrectly labelled. In partic-
ular, the instance of the symbol Ball Valve, although the model
predicted the ‘wrong’ class symbol, visualising the results showed
that the model actually predicted the right class for these symbols
despite the wrong label. This is illustrated in Fig. 11. Here, we use

2 https://github.com/AlexeyAB/darknet, A. A.B., Darknet,(2019).
3 https://opencv.org/.

Table 1
Results of the proposed methods for symbols recognition (Testing set).

Symbol No of
training
symbols

No of
testing
symbols

Correctly
recognised
(Testing)

Class
accuracy

Sensor 2810 302 297 98%
Ball valve 1629 213 212 99%
Label_From 1347 103 103 100%
Label_To 1178 113 113 100%
Flange 1110 158 121 77%
Reducer 821 91 90 99%
DB&BBV 542 67 66 98%
Gate valve 535 110 104 94%
Check valve 396 42 42 100%
TOB/Butterfly valve 178 59 58 98%
Plug valve 173 8 8 100%
Globe valve 161 7 7 100%
Needle valve 160 10 10 100%
RS 143 26 24 92%
PSV 118 25 22 88%
Eccentric reducer 98 23 22 96%
POB valve 84 16 16 100%
DBBPV 83 15 15 100%
PRV 32 8 8 100%
Control valve globe 30 6 6 100%
Control valve 22 5 5 100%
Vent to atm 19 8 2 25%
Injection/sample point 13 2 1 50%
Angle valve 11 2 0 0.0%
BPRV 11 5 0 0.0%

Table 2
Unrecognised and misclassified symbols in engineering drawings.

Actual class No of instances Predicted class IOU

Ball valve 1 Reducer 0.81
BPRV 5 PRV 0.91
Eccentric reducer 1 Reducer 0.72
Reducer 1 Eccentric reducer 0.90
Angle valve 2 – 0.00
Flange 37 – 0.00
Gate valve 6 – 0.00
Sensor 5 – 0.00
TOB/Butterfly valve 1 – 0.00
Vent to Atm 6 – 0.00
Injection/sample point 1 – 0.00
PSV 3 – 0.00
RS 2 – 0.00
DB&BBV 1 – 0.00

a simple front end to visualise the recognised symbols alongside
an item number that we assign for each of them. This has greatly
facilitated the analysis and visualisation of the results.

Similarly, consider the symbol of class BPRV which was classi-
fied as PRV in all five instances in the testing set. First, it is worth
noting that the number of training instances of this symbol is
extremely low (11). Additionally, the symbol is very much similar
to the PRV class. However, it is anticipated that more training
examples of this symbol will certainly improve its detection rate,
as it is the case with most majority class symbols (i.e. Sensor,
Ball Valve, Reducer, Gate Valve, Check Valve, Globe Valve and
so on). Fig. 12 shows samples of the BPRV symbols which were
incorrectly classified alongside the actual PRV symbol.

In summary, it can also be seen from the results presented in
Table 1 that the recognition rate of the symbols (vent to atm, Angle
Valve, and BPRV ) was quite low. This is mainly due to the limited
numbers of training samples that represent these symbols. But
overall, and excluding these three symbols, the average class
accuracy of the remaining 22 symbols in the dataset is over 92%
which is very encouraging results for such a challenging problem.

https://github.com/AlexeyAB/darknet
https://opencv.org/
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Fig. 8. Heatmap of the Confusion matrix of the 25 symbols predictions (Testing Set).

4.2. MFC-GAN for class-imbalance

In this experiment we aim at evaluating a GAN-based model
to handle the class-imbalance problem in the dataset. This is not
a recognition task as in the first experiment but rather a classi-
fication problem. The experiment aims first at generating more
symbols using MFC-GAN model. Then these synthesised samples
will be used to augment the training set aiming at improving
classification results.

The dataset used in this experiment is almost the same one
used in Experiment 1. All symbols were resized to 64 × 64 grey-
scaled images. The problem is formulated as a supervised learning
task where the aim is to learn a function f (x) that maps an in-
stance xi of a particular engineering symbol to the corresponding
class yi. In this case, yi ∈ Y where Y is a discrete set of classes
representing the 29 symbols in the dataset. As discussed earlier
the dataset is hugely imbalanced, and some of the instance that
were dropped in Experiment 1 populates less than ∼ 0.01% such
as angle choke valve.

The experiment was carried out in two stages, a GAN train-
ing stage and a classification stage. First, we trained MFC-GAN
using all the samples in the dataset. The MFC-GAN model was
conditioned to generate engineering symbols in extreme cases of
class imbalance. To do so, we considered the least represented
symbols in the whole dataset. These are Angle Choke Valve, Angle
Valve, Injection Sample Point, Back Pressure Regulating Valve, PS
Gate Valve, Control Valve, Through Conduit Gate Valve, Control

Valve Globe and Pressure Regulating Valve. These symbols have
2, 13, 15, 17, 17, 27, 31, 36 and 42 instances respectively in the
training set. The model was trained only once on this dataset and
the samples were generated after training was completed. Dur-
ing training, the minority classes were resampled to encourage
learning of minority instances structure.

The trained MFC-GAN model was then used to generate sym-
bols of minority class instances (the least represented in the
dataset, nine symbols). The original dataset was split 70% for
training and 30% for testing set. Synthetic datasets were then
added to the training set. For each minority class, 5000 more
synthetic samples were added. This enabled us to rebalance
the dataset by increasing the presence of the least represented
symbols.

In order to evaluate the quality of the generated symbols, we
build a classification model to compare performance before and
after adding the generated symbols to the training set.

The classification model chosen is a CNN with 4 layers. The
first three layers are convolution layers with 32, 64, 128 outputs.
These layers have a kernel size of 3 × 3, 2 × 2 and max-pooling
in-between them. The fourth layer is a fully connected layer with
256 units that feeds in to a 29-way SoftMax output representing
the 29 symbol classes. The CNN was trained using SGD with a
batch size of 64 and a learning rate of 0.001. Classification results
were recorded using common metrics, namely true positive rate,
balanced accuracy, G-mean and F1-Score.



E. Elyan, L. Jamieson and A. Ali-Gombe / Neural Networks 129 (2020) 91–102 99

Fig. 9. A P&ID diagram with various recognised symbols (Testing Set).

4.2.1. Results
Fig. 13 compares the generated samples from MFC-GAN model

with the original symbols from the diagram. We also report the
symbols classification results in Table 3.

MFC-GAN generated far superior and more realistic samples.
Visual inspection revealed distinct symbols features and the

required categories were generated in each instance. Moreover,
MFC-GAN high-quality samples had a positive effect on the per-
formance of the classifier. For example, the G-Mean and sensi-
tivity improved from 0 to 100% on angle choke valve as can be
seen in Table 3 with just two instances of the classes. This result
is consistent in seven of the nine minority classes. However, we
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Table 3
CNN performance on symbols classification.
Metric Model Angle choke

valve
Angle
valve

BPRV Control
valve

Control valve
globe

Injection
sample point

PRV PS gate
valve

TCG
valve

Sensitivity Baseline 0.00 0.50 0.60 0.88 1.00 0.80 1.00 1.00 0.89
MFC-GAN 1.00 1.00 0.80 0.88 1.00 0.88 0.77 1.00 0.91

Specificity Baseline 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MFC-GAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Precision Baseline 0.00 1.00 1.00 1.00 0.85 1.00 0.72 1.00 1.00
MFC-GAN 1.00 1.00 0.67 1.00 0.92 1.00 0.91 0.83 1.00

F1-score Baseline 0.00 0.67 0.75 0.93 0.92 0.89 0.84 1.00 0.94
MFC-GAN 1.00 1.00 0.73 0.93 0.96 0.93 0.83 0.91 0.95

Accuracy Baseline 0.50 0.75 0.80 0.94 1.00 0.90 1.00 1.00 0.95
MFC-GAN 1.00 1.00 0.90 0.94 1.00 0.94 0.89 1.00 0.96

G-mean Baseline 0.00 0.71 0.77 0.94 1.00 0.89 1.00 1.00 0.94
MFC-GAN 1.00 1.00 0.89 0.94 1.00 0.93 0.88 1.00 0.95

Fig. 10. Examples of detected symbols.

Fig. 11. Incorrectly labelled symbol.

observed that the model did not improve the baseline in the
other two classes control valve and PRV classes. A closer look
at Fig. 13 revealed a high similarity between symbols. There is
extreme similarity between angle valve (fifth symbol from the
top) with control valve globe (eighth symbols from the top) and
PRV (seventh symbol from the top) and BPRV (second symbol

from the top). Although symbols were distinctly generated, the
similarity of symbols dwindled the classification results in these
classes. The low precision in BPRV and control valve globe classes
from Table 3 further solidifies this observation.

MFC-GAN models proved in this experiment to be able to gen-
erate minority class instances that are extremely under-
represented in the dataset. The quality of these samples was
evaluated subjectively by inspecting the resulting samples, and
objectively by measuring a classifier performance before and
after adding the generated samples to the training sets. Results
show clearly that performance improved across several common
evaluation metrics. However, it has to be said that MFC-GAN
is only one method that can be used to handle the class im-
balance problem. Other possible methods can also be explored
and utilised. Class-imbalance is a very well researched problem,
and there is a wide range of methods that ranges from simple
data augmentation, sampling to more advanced methods such as
GAN (Vuttipittayamongkol & Elyan, 2020). For an extensive re-
view of different possible methods, the reader is referred to Anon
(2017).
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Fig. 12. Incorrectly classified BPRV symbols (first four instances from left) as PRV symbol (fifth instance).

Fig. 13. Comparing original P&ID samples with MFC-GAN generated samples.

5. Conclusion & future direction

In this paper, we proposed an end-to-end framework for pro-
cessing and analysing complex engineering drawings. Thorough
experiments using a large collection of P&ID sheets from an
industrial partner showed that our method accurately recog-
nises more than 94% of the symbols in the drawings. Advanced-
bounding-box detection methods proved in our experiments that
they perform accurately in such challenging tasks by recognising
symbols of 25 different classes, despite the very little differ-
ences between some of these symbols. Additionally, we proposed
a GAN-based model to handle class-imbalance in the symbols
dataset. Our experiments demonstrated that our method was
capable of generating plausible engineering symbols and also
proved to be improving classification accuracy when augmenting
the training set with this synthesised data. Experimental results
show that the proposed GAN model can learn from a smaller
number of training examples.

A future direction of this work will focus on utilising Gen-
erative Adversarial Neural Networks to generating symbols in a
diagram context. In other words, generate part of the engineering
diagram, and not only the symbols. This will greatly help in
saving efforts needed for manual data annotation. Additionally,
future work will include building a unified framework based on
the proposed methods to allow full processing and analysis of
engineering diagrams such as P&ID. We hypothesise that the
work presented in this paper will greatly simplify subsequent
tasks such as text localisation and line detection.
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