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A B S T R A C T

The Taiwan High Speed Rail (THSR) has transformed transportation in western Taiwan. Increasing costs of
construction and operation have rendered THSR tickets much more expensive than other forms of transporta-
tion. The effects of ticket price benefits on the relevant transportation agency and the distribution of passenger
flow have been analyzed to improve the profitability of the THSR. However, relying on analysis of passenger
flow information alone may be insufficient to the adjustment of ticket fares. An evolutionary optimization model
for maximizing the profits of the transportation agency that considers conflicts between executive decision
making and passenger flow was developed herein. To resolve these conflicts, the bi-level planning approach was
applied to consider both upper-level and lower-level planning and reflect passenger behavior and transportation
profit management. Therefore, developing business plans and strategies that maximize cost efficiency while
optimally balancing passenger satisfaction and profitability could improve THSR performance. Results indicated
that optimal fare rates should be divided into three groups: 3.1, 3.0, and 4.2 NTD/person-km for long, medium,
and short distances, respectively. This tool could be used to model and validate THSR fare adjustments and as a
reference for authorities when making policy recommendations.

1. Introduction

Railways are a popular mode of transport because of their safety and
environmental sustainability (Cordera, Sañudo, dell'Olio, & Ibeas,
2018). Research and development in the field of high-speed railways
(HSR) is performed globally to improve intercity links in megaregions
(Li, Strauss, & Lu, 2019; Wang, 2018; Zheng, Long, Chang, & Ye, 2019).
For instance, Italian and Spanish HSR have been studied to understand
the costs and demands of HSR in Europe (Beria, Grimaldi, Albalate, &
Bel, 2018). Improving the efficiency of railway systems has been a
major concern for several decades in numerous countries (Bai, Zeng, &
Chiu, 2019).

As Taiwan's economic development becomes increasingly stable,
transportation construction has become a major indicator of socio-
economic development. Moreover, public transportation, tourism, and
hospitality industries are rapidly developing in Taiwan, and the gov-
ernment has actively implemented policies to encourage overseas
tourists to visit Taiwan, prompting the development of public trans-
portation facilities, such as railways and highways.

In recent years, the standard of living and leisure awareness among
Taiwanese people have increased, and travelers have demanded higher-
quality transportation because of the increased perceived value of time
efficiency. However, the high construction and operation costs of the
Taiwan high-speed rail (THSR) have led to higher fares compared with
the other forms of public transportation (Yu & Johannesson, 2010). The
THSR has a smaller number of passengers than the projected plan de-
spite short travel times.

The declining number of passengers in public transportation, such
as the THSR, is also caused by the increasing quality of life of Taiwan's
residents. Therefore, standing out in this challenging and competitive
environment has become critical for the THSR. A novel HSR system can
significantly affect the spatial structure and market share of existing
transportation modes in certain areas (Hsu, Lee, & Liao, 2010). How-
ever, according to the financial analysis of the THSR, the debt level has
never dropped despite the continual growth of the recorded revenue.

The THSR must develop strategies to fulfill the passengers' sa-
tisfaction to continuously attract loyal customers. There are various
factors affecting the passengers' satisfaction, such as staff attitude
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(including the way of handling complaints), convenient ticket purchase
and time tabling, train time punctuality, comfortable traveling en-
vironment, staff interaction, access to HSR stations, waiting time, line-
haul, and egress from HSR stations (Chou & Kim, 2009; Chou, Kim, Kuo,
& Ou, 2011; Chou, Kim, Tsai, Yeh, & Son, 2017; Chou & Yeh, 2013;
Zhen, Cao, & Tang, 2018; Zhen, Cao, & Tang, 2019).

While there are various factors affecting the passengers' satisfaction
as mentioned above, alternative fare strategies (e.g., adjusting ticket
prices) have been known as the most effective of all methods offered to
the passengers. Importantly, the pricing strategy would reflect the
competitive and sustainable business environment faced by the HSR
operators. In this view, the price is a significant aspect that directly
affects passengers' willingness and decision to consistently choose HSR
service (Yang & Zhang, 2012).

Comprehensive strategy toward adjusting the HSR fares is crucial
given the role and effect for the HSR market. The challenge lies on the
analysis and decision that HSR agency should satisfy public expecta-
tions and passenger's satisfaction while maximize organization benefits,
considering generalized cost functions. However, as discussed by Chou
et al. (Chou, Chien, Nguyen, & Truong, 2018), HSR fares cannot be
accepted by the public because of lacking of objective justification
based on any theoretical method.

In the conventional model, ticket fares were a function of a single
factor, and factors considered were often biased. These conditions
hinder the comprehensive analysis of fares. Following this knowledge
gap, this research aimed to develop a conceptual bi-level planning
model to optimize THSR ticket fares while maximizing operator's an-
nual revenue and ensuring customer satisfaction toward fares and ser-
vice quality.

This paper is structured as follows: Section 2 reviews the literature
on public transportation cost pricing and fare adjustment and assesses
the bi-level programming model. Section 3 comprehensively describes
the optimization model developed in this research. Section 4 discusses
the empirical application of the model by using a THSR case study. The
analysis results and findings are explored and discussed in Section 5.
The final section draws recommendations and conclusions, presents
research limitations, and discusses possible improvements to the pre-
sented method and research directions.

2. Literature review

2.1. Pricing theory and time value

The service quality indirectly affects operating costs and other ex-
penses of the THSR (Chou et al., 2017; Chou et al., 2018; THSR, 2018).
The operation cost of THSR is affected by several factors, including
maintenance costs, development expenses, and employee salaries.
Common pricing theories include transportation pricing, target pricing,
equilibrium pricing, average cost pricing, and marginal cost pricing. In
these theories, average cost pricing and marginal cost pricing are
commonly used to set transportation ticket fares.

The theory of average cost pricing is based on the average cost with
a certain percentage profit. In contrast, the theory of marginal cost
pricing was developed based on providing an economic benefit in ex-
change for social welfare. This theory is mainly applied to situations in
which demand for a mode of transportation is inadequate or when
passengers use a mode of transportation during peak hours. The
cost–benefits that arise from changes in passenger flow apply to the
pricing of railway transportation.

Time value plays a major role in the processes of adjusting ticket
fares. Wei (2003) proposed six attributes of time value, namely pur-
posiveness, dual utility, dynamicity, regionality, overlapping, and non-
exclusivity. Time value is analyzed using abstraction, simplification,
and generalization because of its complexity and multiple attributes.
Furthermore, Hultkrantz (2013) considered time value to be a critical
parameter that reflects the opportunity cost of time as an input and the

direct utility (or disutility) of travel time.
Vickerman (2000) determined that individual income was a crucial

element of the standard value of a shortened transportation traveling
time that had been neglected in analyses. Therefore, Rothengatter
(2000) applied the wage rate method to verify the correlation between
time value and gross domestic product in Germany. In the United
States, time value calculated using the wage rate method was based on
the national average wage rate (Lee, 2000).

China has no single method for calculating time value (Talvitie,
2000). The high level of income inequality in China reduces the accu-
racy of the wage rate method. However, Börjesson and Eliasson (2019)
discussed other factors, such as political factors, that affect time value.
Because of the complexity of the public transportation system, con-
sidering various aspects for the analysis of transportation fare is crucial.

2.2. Generalized fare cost and passenger flow assignment

Main transportation factors that are of interest to the public are cost,
time, comfort, safety, and convenience (Maduwanthi, Marasinghe,
Rajapakse, Dharmawansa, & Nomura, 2015). Ma and Gao (2016) ana-
lyzed the relative weightings of these five factors by using the fuzzy
comprehensive evaluation method and determined that travel cost,
time, and comfort were primary factors that affected passenger's choice
to use public transportation. Therefore, these factors should be con-
sidered crucial variables when establishing a passenger travel choice
prediction model.

Espinosa-Aranda, García-Ródenas, Ramírez-Flores, López-García,
and Angulo (2015) investigated user's logic and their preference factors,
such as cost and time, and applied them in a simulation model to
analyze HSR business strategies. Chen and Gao (2004) reported that
higher passenger flow greatly increased the economic benefits of HSR.
Additionally, Wu, Luo, and Wang (2010) argued that both ticket fares
and passenger flow are influential factors in maximizing public trans-
portation revenue.

Passenger flow was further determined to be highly related to and
affected by ticket fares. The relationship between passenger flow and
ticket fares has been studied at length. For instance, Du and Si (2005)
studied passenger travel choices, which affect the passenger flow, by
using the conventional (statistical) method and stochastic model.

Chu (2018) established a novel model based on passenger's travel
choices and Wardrop's user equilibrium principle. The model analyzed
changes and verified the importance of passenger flow. Moreover,
Kurosaki and Alexandersson (2018) revealed that passenger flow was
critical in railway operation and management in Japan and Sweden.
Therefore, passenger flow should be considered a key factor in the as-
signment model for railway fare analysis.

Other than these key factors, conventional decision-making
methods for adjusting public transport fares generally consider a single
expert and do not feature multi-expert perceptions, which can cause
poor outcomes. Analyzing and adjusting public transportation fares is a
daunting task that requires multi-expert involvement. Several factors
must be considered simultaneously to solve the transportation fare
problem; thus, the bi-level programming model is discussed in the
following section.

2.3. Bi-level programming model for solving transportation problem

The bi-level programming problem arises in the field of transpor-
tation (Guo & Wang, 2011). The model consists of upper-level and
lower-level models, employed simultaneously to solve the transporta-
tion problems. The upper-level model minimizes the total passenger
travel cost, and the lower-level model is a random assignment model for
passenger arrival time (Zhu, Mao, Bai, & Chen, 2017). Yu, Kong, Sun,
Yao, and Gao (2015) applied the bi-level programming model to solve
problems with the bus lane network. In the study, the upper-level model
was used to analyze the average travel times of passengers and vehicle
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users, whereas the lower-level model was applied to solve the traffic
assignment problem by using the network equilibrium model.

Sun (2016) proposed methods to solve the continuous transporta-
tion network design problem. The study developed the objective func-
tion of the upper-level model to minimize the total investment budget
and total impedance. In particular, the lower-level model was applied
as a user equilibrium assignment model. Zito, Salvo, and La Franca
(2011) developed operational decision-making methods that simulate
the service fees and frequencies of airline services, and the optimal
solution is obtained by applying logit analysis. Ghassemi Tari and
Hashemi (2016) applied a genetic algorithm (GA) to solve the problem
of nonlinear transportation costs. The GA was applied to minimize the
transportation cost by considering the assignment in question and the
number of vehicles required to deliver products from a manufacturing
firm to depots.

When setting highway tolls, an appropriate pricing balance could be
obtained based on the destination of users (Dewez, Labbé, Marcotte, &
Gilles, 2008). Government agencies use management mechanisms to
mitigate problems caused by the concentrated use of roads and term-
inals. These problems can be solved using the speed-constrained par-
ticle swarm optimization (PSO) method (Assadipour, Ke, & Verma,
2016). The bi-level programming model was extended to sustainable
intercity transportation. The upper-level model minimized sustainable
operational indicators, and the lower-level model represents the ticket
fares of all modes of transportation.

Sun, Gao, and Wu (2008) discussed the superiority of bi-level pro-
gramming. First, the two decisions can be analyzed simultaneously in a
decision-making process, even if they have opposing goals. Second, the
bi-level programming model can reflect the actual problem because of
the availability of various decision-making methods. Third, the model
considers the objective values of two decision makers, which leads to an
expression of the interaction between decision makers.

In sum, scholars from various countries have used the bi-level
programming models to solve a variety of transportation problems si-
milar to that investigated in this research, thus confirming its appro-
priateness and reliability. Notably, the bi-level programming model
influences decision makers. However, it does not interfere with deci-
sions made. Decision makers should identify optimal solutions to the
ticket fares problem. The problem of HSR fares is complex because it
involves key factors discussed; therefore, the bi-level programming
model is applied as the model basis for development.

3. Model development

The proposed model integrates the bi-level programming method
with the PSO algorithm to optimize THSR ticket fares. Fig. 1 depicts the
model framework. The following subsections provide the fundamentals
and discussion of the development of the proposed model.

3.1. Upper-level and lower-level models

Two decision makers must be considered simultaneously in the form
of upper-level and lower-level models, with the intention of searching
the minimum values. The basic bi-level programming model is mathe-
matically expressed as Eqs. (1) and (2).

U min F x y( ) ( , )
x

s t G xy. . ( ) 0 (1)

L min f x y( ) ( , )
y

s.t. g(x,y) ≤ 0 (2)

where, (U) is the upper-level model, F(x,y) is the objective function of
the upper-level model, x is the decision variable in the upper-level

model, G(x,y) are the set of constraints on the decision variable in the
upper-level model, (L) is the lower-level model, f(x,y) is the objective
function of the lower-level model, y is the decision variable in the
lower-level model, and g(x,y) is the set of constraints on the decision
variable in the lower-level model.

After Eqs. (1) and (2) are performed, the upper-level decision maker
affects the lower-level decision-maker by setting the value x to restrict
the set of lower-level constraints. However, the lower-level decision
maker also influences the upper-level decision-maker by using the value
of y. The lower-level decision variable is considered a function of the
upper-level decision variable. Colson, Marcotte, and Savard (2005)
further suggested several solution methods. Their conditions of use
included principal points that should be considered in the bi-level
programming model, as described in Table 1.

3.2. Passenger flow assignment model for ticket fares

Passenger needs, including main reasons for choosing particular

Fig. 1. Flowchart of the proposed model.
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modes of transportation, must be clarified to obtain the maximum ef-
fectiveness of public transportation operational costs. In this study,
both time cost and perceived cost were considered fixed values.
Therefore, the economic cost and changes in passenger flow were main
variables. The upper-level programming model was determined to
maximize operator revenue without losing passengers.

The generalized cost indirectly influences passenger flow (Guo and
Wang Guo & Wang, 2011). The number of rides does not increase in-
definitely with the generalized cost but reaches a state of equilibrium.
In a single region, the mode of transportation with the lowest total
travel cost experiences an increasing flow of passenger, which in turn
increases the generalized cost. However, some passengers still choose
different modes of transportation (Hu, Xu, & Jin, 2001). Therefore, Du
(2010) concluded that a stable and uniform assignment of passenger
flow can be achieved.

The stable state reflects the user equilibrium for passenger flow
assignment in actual transportation facilities. This state is divided into
first and second principles. The first principle reflects that road users
fully understand the traffic conditions and choose what they perceive to
be the shortest route, whereas the second principle reflects that in the
system equilibrium state, passenger flow along congested roads is de-
termined by minimizing the average or total travel time. The mathe-
matical formula for the passenger flow assignment problem, the upper-
level model, is as follows (Du, 2010):

=
=

min U F x dx( )i
od

i

n q
i1 0

i

=s t q Q q n N. . 0,
n N i i (6)

where N is the number of modes of transportation, Fi is the generalized
travel cost for a randomly selected mode of transportation, qi is the
passenger flow for the ith mode of transportation, and Q is the total
passenger flow in section od.

3.2.1. Generalized ticket fares and passenger flow
The generalized cost is used in the field of transportation to de-

termine the separation modes of passenger flow in different modes of
transportation. The generalized cost function is usually a power or
logarithmic function, which is mathematically expressed as follows.

= +F q aq O( )i i i
b

i (7)

where, Oi is the variable ticket fare for the ith mode of transportation,
and a and b represent the service attribute parameters for the ith mode
of transportation.

Eq. (7) can be solved using the classic Frank–Wolfe algorithm (Xu &
Ma, 2018), which performs an all-or-nothing assignment of the pas-
senger flow to the minimum cost path. The cost of traveling along a
road section is assessed based on passenger flow in a particular road
section. As the passenger flow on a given road section increases, so does
the generalized cost. Therefore, the passenger flow must be assigned to
other road sections (Xu, Yun-Chao, & Zi-You, 2008) based on a fixed
demand. That is why the addition of a virtual path was proposed to
convert the original elastic demand into a fixed demand (Da, 2014).

3.2.2. Determined ticket fare variables
Studies on this topic have employed several variables to analyze and

adjust ticket fares in order to satisfy the expectations of travelers, as
discussed in Table 2.

3.3. Operational revenue model

The operational revenue model was established to assess the ac-
ceptable range of ticket fares among passengers while maintaining
operational revenue. The objective was to maximize the profit that was
indirectly obtained after deductions of the operational cost for a given
mode of transportation. The operational cost refers to various expenses
that are incurred by HSR and are directly related to the production and
operations during a passenger's journey. This model refers to a man-
agement method in which operators seek to sell products to right cus-
tomers at the right price and the right time (Zhou, Song, & Wang,
2016).

3.3.1. Revenue optimization
To maximize the revenue of HSR, a clear definition of price levels

and an understanding of the relationship between demand and selling
price are required. The lower-level model begins with maximizing op-
erational revenue. After including the passenger flow and the range of
ticket fares that are provided by the upper-level model, the solution is
to identify the optimum fare that maximizes operators' benefits, which

Table 1
Methods for solving bi-level programming model.

Method Description

Extreme point search method The upper-level and lower-level objective functions, including the constraints, must have linear programming and are described as Eq.
(3). All optimal solutions appeared at the extreme points of the lower-level model.
Ω = {(x,y) : x ∈ X,G(x,y) ≤ 0 and g(x,y) ≤ 0} (3)
where, x is the upper-level variable, and G(x,y) and g(x,y) are the upper-level and lower-level constraints, respectively.

Kuhn–Tucker This method focuses on the linear bi-level programming model, in which the substitution is performed under Kuhn–Tucker conditions
that pertain to the problem of interest. In this method, the bi-level problem is transformed into a single-level nonlinear problem. The
corrected nonlinear optimization problem is given by Eq. (4).
min f x( )

x
s.t. g(x) ≤ 0, h(x) = 0 (4)
where, f(x) is the value of the objective function, x is the decision variable, g(x) is the inequality constraint set, and h(x) is the equality
constraint set.

Descent method The search for feasible solutions under the optimal conditions of the lower-level model starts with the assumption that the solution (i.e., x
and y) is an implicit function of x, y(x). In the descent method, the subpoint is obtained using the formula x + αd (α > 0). When
ensuring the feasibility of the bi-level problem, the F value is reduced to a reasonable extent. This reduction is required to solve the
gradient of the objective function in the upper-level model. Notably, the matching method must be identified before the descent method
is used, because the solution obtained is generally a local optimal solution to the bi-level programming problem.
∇xF(x,y(x)) = ∇xF(x,y) + ∇yF(x,y)∇xy(x) (5)
where, ∇xF(x,y(x)) is the gradient of the upper-level objective function.

Fuzzy mathematical method This method applies the concept and characteristic of fuzzy logic to the function of the decision variable of both upper-level and lower-
level objective values. The bi-level programming problem is transformed into a single-level optimization problem in which the optimal
solution (i.e., single-level linear programming) is applied to replace the satisfactory solution in the bi-level programming problem. The
fuzzy mathematical method is used to solve mathematical problems in which the boundaries are neither distinct nor fuzzy.

Non-numerical optimization methods Non-numerical optimization methods were applied to solve the traffic equilibrium problems, among other things, and included the
particle swarm optimization, genetic algorithm, neural network, ant colony optimization, and firefly algorithm.
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is expressed as follows.

= × ×max L q d f C( )i
od

i
od

o
od

i t

s t f f f. . min i max (18)

where, qiod is the passenger flow for the ith mode of transportation and
Ct is the unit cost per kilometer of the ith mode of transportation.

3.3.2. Operational cost
Operational expenses refer to all monetary expenses incurred by the

HSR company in conveying passengers to their destinations (Guo,
2009). Zhao and Ren (2015) proposed an algorithm to optimize costs,

which comprises four components that consider the number of kilo-
meters per vehicle. The four components are the annual depreciation
and maintenance cost (C1), the annual total personnel cost (C2), the
annual cost to operate and manage train stations and routes (C3), and
all other costs (C4).

The average operational costs are allocated to each passenger for a
particular mode of transportation over each kilometer, which produces
an algorithm of the average passenger–kilometer cost formula, an-
nounced by the Taiwan Railways Administration (TRA), Ministry of
Transportation and Communications (MOTC, 2020). The operational
cost equation is as follows.

Table 2
General ticket fare variables and their descriptions.

Variable Description

Time cost The transit time, which is related to travel distance, mode of transportation, and travel speed, affects the cost of travel (Engelson & Fosgerau,
2016). The time cost is given by Eq. (8), and the value of time (vot) is converted using Eq. (9).

= ×T voti
di

od

vi
(8)

where, Ti is the time cost for the ith mode of transportation, diod is the distance traveled from the origin to the destination using the ith mode of
transportation, vi is the average travel speed for the ith mode of transportation, and vot is the time value for passengers.
Moreover, the time value represents the monetary value of a unit of travel time (Zong et al., 2009). In this research, the wage rate method was
used to calculate both the time and travel values per average time unit at the macroeconomic level. The equation of the time value for
passengers is expressed as follow.

= ×vot GDP
Pe te( ) (9)

where, GDPis the average gross domestic product, Peis the domestic employed population, and te is the average number of domestic working
hours in a year.

Perceived cost–Convenience cost Fan et al. (2016) determined that the public perceived public transportation waiting times as longer than actual times (Fan et al., 2016).
Waiting time, which serves as a measurement of convenience, can be calculated using Eq. (10) (Osuna & Newell, 1972; Welding, 1957). The
waiting time is further converted to time value, and the convenience cost can be obtained using Eq. (11).

= +W 1i
h

h2
2
2 (10)

where, h is the average departure time interval, and σ is the standard deviation of the departure time interval.
Ci = ∑1iWi × vot (11)
where, Ci is the convenience cost for the ith mode of transportation, and Wi is the waiting time for the ith mode of transportation.

Perceived cost–Punctuality cost With an increasing focus on time, passengers are willing to select more punctual modes of transportation. (Wei, Chen, Jiang, Wang, & Shao,
2015) expressed punctuality as the average delay of a mode of transportation. The punctuality cost is expressed as follow:
Pi = ti × vot (12)
where, Pi is the punctuality cost for the ith mode of transportation, ti is the average delay time for the ith mode of transportation, and vot is the
value of time.

Perceived cost–Comfort cost The comfort cost refers to a shorter fatigue recovery time. This approach indicates that higher comfort levels result in higher passenger
adaptability during travel. Fatigue recovery time, which is related to the travel time and cabin environment, can be assessed using Eq. (13)
(Wei et al., 2015) and Eq. (14) after value conversion.

=

+

ti
AB Hi

ie
i

di
od
vi

1

(13)

where, Hl is the limiting value of the fatigue recovery time, βi is the recovery-time intensity coefficient per unit travel time for the ith mode of

transportation, and αi is the minimum recovery time for the ith mode of transportation, for which the recovery time is
+
Hi

i1
at t = 0t = 0.

Ai = tiAB × vot (14)
where, Ai is the comfort cost for the ith mode of transportation.

Safety Safety is crucial in the transportation industry (Elms, 2001). In this study, the safety performance, associated with the casualty rate, was used
to reflect the operators' credibility. Guo (2012) (Guo, 2012) indicated that safety credibility reflected the safeness of a particular mode of
transportation. The safety factor formula is expressed as follows.

=Si rie i i
1 (15)

where, Si is the safety credibility of the ith mode of transportation, ri is the casualty rate of the ith mode of transportation, and eαiβi is the
coefficient to be determined.

Economic cost The economic cost is the principal factor affecting passenger travel choices (Zhang, Zhu, Wu, Shen, & Song, 2014). In general, the economic
cost is the sum of ticket fares that are associated with the modes of transportation employed by passengers to reach their destinations. The
ticket fare is the product of the unit fare rate and the distance traveled. Therefore, the ticket fare to be paid for the mode of transportation can
be used to measure the economic cost (Wei et al., 2015). The economic cost is given by Eq. (16).
Ei = fi × diod (16)
where, Ei is the economic cost for the ith mode of transportation, and fi is the unit fare rate for the ith mode of transportation.
In this study, the variable ticket fare model is a part of the upper-level model, whereas the time cost, perceived cost, and economic cost are
combined, as in Eq. (17). The economic cost is the main value in the upper-level model. The value of the safety index cannot be converted
because safety is considered unique. Therefore, safety is used as the denominator by which the sum of all relevant costs is divided. The
principal constraint in the upper-level model is ticket fare because the minimum value of ticket fare cannot be lower than the cost required for
operation and the maximum value cannot be higher than the maximum ticket fare rate determined by the government.

= + × + × + × + ×Oi
Ei Ti Ci Pi Ai

Si
( 1 2 3 4) (17)

where, λ1, λ2, λ3, and λ4 are the weight parameters that correspond to the service attributes.
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= + + +
×=

C C C C C
d q

t
i
N

i
od

1 2 3 4

1 (19)

where q is the passenger flow for the mode of transportation.

3.4. The optimization algorithm

In this research, the PSO method is applied to solve the bi-level
programming problem. The PSO can maximize the profits of the
transportation agency by considering conflicts between executives and
passengers by reflecting the perspectives of both passenger behavior
and transportation profit management, respectively. Zhao, Wang, and
Huang (2013) suggested the PSO method, which has a relatively simple
structure; thus, parameters are easy to control compared with other
algorithms. Hereafter, the PSO method is suitable for this study. The
general steps of the PSO algorithm are as follows.

(1) Initialize the particle swarm, including its characteristics, speed,
and position.

(2) Find a suitable function to define each particle based on the pro-
blem to be optimized.

(3) Compare the redefined particles with the original values. If the
redefined particles are more favorable to the historical optimal
solutions, update and redefine the particles as the current optimal
solutions.

(4) After all the particles have been updated, update the particle whose
adaptability exceeds the global optimal solution as the optimal
solution.

(5) Repeatedly update particle speed and position by performing the
loop iteration until the objective condition is met; then, stop the
iterative process.

The PSO algorithm is updated for each iteration by using Eq. (20).
Several parameters are critical during the optimization processes. The
first parameter is the number of particles and iterations. The second
parameter is the inertia weight (ω), which determines the proportion of
the original speed in the next iteration, given by Eq. (21). The third
parameter is learning factors (c1 and c2), which generally take the value
of 2 because it is the weight of random acceleration terms for each
particle as it flies to both local optimal and global optimal positions
(Zhao, Gu, & Li, 2007).

= × + × × + ×
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where, v is particle velocity, pi is the current position of the particle i,
and rand is a random number that lies between zero and one.

= ×iter
iterMax

Max Min

Max (21)

where, ωMax is the maximum weighting coefficient, ωMin is the
minimum weighting coefficient, iter is the number of current iterations,
and iterMax is the total number of iterations.

The traditional PSO algorithm is easily trapped at local optimal
solutions (Fan & Jen, 2019). A random perturbation parameter enables
the algorithm to escape from local traps. Therefore, applying a random
perturbation parameter is beneficial to facilitate the search for a glob-
ally optimal solution (Zhao et al., 2013). Meanwhile, to increase the
probability of obtaining the global optimal solution, the mutation is
performed on gbest, which is expressed in Eq. (22).

= × + ×g g (1 0.5)best best (22)

where, η is a random variable with the standard normal distribution
η ~ N(0,1).

In this study, the values of perturbation parameters are set into the

PSO algorithm to obtain a solution that matches the model optimally.
The upper and lower-level models are then initialized, and data related
to the upper-level model are collected. The passenger flow assignment
model is then initiated. After the model has been processed, the re-
levant decision variables are introduced to the lower-level model. The
improved PSO algorithm is then employed to obtain the overall optimal
solution. If results do not reach the expected upper-level, the steps are
repeated until optimization results completely correspond to both
upper-level and lower-level optimal solutions.

4. Empirical applications

The present study employed the developed model to identify and
determine optimal fares for THSR by considering passenger flow sa-
tisfaction, the growth of annual operator profits, and the overall gains
of the THSR Corporation (THSRC).

4.1. Taiwan high speed rail corporation and its system

The THSR was constructed in the western part of Taiwan with an
average speed of 250 km/h, 12 stations, and a total length of 345.2 km.
The complete THSR map is depicted in Fig. 2. The THSR system is now
operated by a private corporation (THSRC) under a 35-year BOT con-
tract until 2033, after which the system's operational ownership will
transfer back to Taiwan's government (Cheng, 2010). The BOT project
was completed by the private sector, based on plans by the THSRC,
rather than under the constraints of the government's budgeting pro-
cess.

The THSRC has the right to construct and operate commercial de-
velopment on the land near HSR stations for 50 years. This BOT model
enables THSRC to incur profits and losses during the time it operates
the system. The benefits for THSRC of the BOT contract come in the
form of support from the government, including land acquisition, fi-
nancial loan acquirement, alleviation of environmental concerns (vi-
bration and noise), and integration with the local transportation
system.

The THSRC offers a non-reserved seat service at lower ticket fares
without seat reservations for specific boarding of carriages 9, 10, 11,
and 12. Passengers can only purchase non-reserved seat tickets on the
date of travel at ticket windows and ticket vending machines at HSR
stations. The non-reserved seat service permits the sale of standing
tickets, which may cause dissatisfaction with service quality. The non-
reserved seats' transportation volume is much higher than that of re-
served seats, mainly because of the more economical ticket price for
non-reserved seats.

Passengers in business cars, all of which are reserved seats, pay
higher prices for a much more comfortable onboard service, which
includes free snacks, drinks, and magazines. The standard class car
offers two kinds of services: reserved seats and non-reserved seats.
There is currently one car for business passengers, four cars for non-
reserved seats, and seven cars for reserved seats. THSRC offers a price
discrimination strategy between reserved seats and non-reserved seats.

The load factor in carriages offering non-reserved seat service is
relatively high because of the ticket price discount. Passengers in car-
riages for non-reserved seats account for 40% of total train passengers
on weekdays and 50% during weekends. Fares for certain tickets, in-
cluding senior, disabled person, and children tickets, are 50% off from
the fare regulated by the Ministry of Transportation and
Communications. Senior citizens, disabled persons, and one accom-
panying passenger and children are all eligible to purchase tickets at
half price. Group discounts are offered to groups purchasing 11 or more
adult tickets. The discount rate for group tickets is 10%.

The basic fare rate approved by the government is adjusted ac-
cording to the consumer price index, expressed in Eq. (23). The THSRC
is allowed to adjust the standard fare rate (Fg) after approval from the
government. However, the annual fare increment rate cannot exceed
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20%. Although the revenue from the THSR is increasing, benefits to the
transportation agency are still limited (Hsu et al., 2010).

= × … =+F F X X GICP GICP
GICP

(1 %) %g t g t t t
t t

t
, 1 ,

1

1 (23)

where GICP is the consumer price index in Taiwan.

4.2. Constructing the upper-level model

Although revenue collected by the TRA is gradually increasing, the
debt of the company has only slightly declined (Yu & Johannesson,
2010), which indicates that the overall revenue has not reached the
operator's expected revenue. Therefore, a passenger flow model that
satisfies passenger needs was constructed and used as a basis for de-
veloping the upper-level model while maximizing annual operator
revenue.

The basic generalized cost following the THSRC principle for

calculating ticket fares is 4.386 NTD per km for each passenger. The
THSR passengers can be categorized into three groups based on the
distance traveled: long-distance, medium-distance, and short-distance
passenger groups. The first group undertakes long-distance travel from
Taipei to Zuoying. The highest and lowest numbers of THSR passengers
were assumed to be 92,957,423 and 34,637,399 per year, respectively.

A virtual path was added to convert the original elastic demand into
a fixed demand. The demand function is represented in Eq. (24), and
the cost-sensitive parameter is assumed to be 10 (Da, 2014). The im-
pedance function is represented as Eq. (25), and the impedance func-
tion obtained from the maximum and minimum values was 0.1q2. The
passenger flow was divided based on the original fare rate (q0), the
current model (q1), and the remaining selected paths (q2). Accordingly,
the upper-level formula was Eq. (26).

=Q F F92,957,423 10max i i (24)

where, Qmaxwas the maximum number of passengers required; θ is the

Fig. 2. THSR map and distance between stations.
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cost-sensitive parameter (i.e., θ > 0), and Fi is the minimum gen-
eralized travel fare.

= =

=

D Q Q q

q

( ) 9,295,742.3 0.1 9,295,742.3 0.1(92,957,423 )

0.1

1
2

2 (25)
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0
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o
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+ + = =s t q q q and q i. . 92,957,423 0, 0, 1, 2i0 1 2 (26)

Table 3 presents the result of the passenger flow analysis by using
the first upper-level model. Passenger flow was determined to change
with the fare rate between 3.0 and 3.5 NTD/person-km. Integrating the
analysis result into the lower-level analysis yielded a maximum op-
erational cost at a fare rate of 3.5 NTD/person-km. However, narrowing
the scope of passenger flow assignment is crucial to accurately de-
termine changes in passenger flow.

Table 4 presents the results of the second passenger flow assign-
ment, which indicated that passenger flow changed significantly at fare
rates of 3.1 and 3.2 NTD/person-km. The corresponding costs were
calculated based on this fare rate interval to yield the overall opera-
tional income.

The second group investigated was medium-distance passengers
who traveled from Taipei to Taichung. Based on the recorded numbers
of passengers who depart from Taichung station, the maximum and
minimum numbers of passengers were assumed to be 16,005,991 and
5,744,008 people per year, respectively. The formula for generalized
cost was ∫ oq1(2qi0.4 + diod × f+ 221.1)dq, in which the variable ticket
fare is 221.1 NTD. A distance of 159.83 km from Taipei to Taichung was
substituted into this formula. The first analysis revealed a change in
passenger flow with a fare rate between 3.0 and 3.5 NTD/person-km.
However, the second analysis revealed changes in passenger flow
within a fare rate interval of 3.0–3.1 NTD/person-km.

The third group in this study was short-distance passengers who
traveled from Taipei to Banqiao. Records of numbers of passengers who
depart from Banqiao station report the maximum and minimum num-
bers of passengers of 6,049,514 and 3,435,956 people, respectively. The
formula for generalized cost was∫ oq1(2qi0.4 + diod × f + 58.7)dq, in
which the variable ticket fare was 58.7 NTD.

A distance of 7.22 km from Taipei to Banqiao was substituted into
this formula. The first analysis revealed that the passenger flow pri-
marily changed with a fare rate between 4.0 and 4.5 NTD/person-km.
However, a second analysis revealed that the passenger flow changed
within the fare rate interval from 4.2 to 4.3 NTD/person-km.
Incorporating these three groups into the lower-level model yielded the
overall operational status for various distances.

The five previously discussed variables involved in ticket fares were
also applied to calculate variable ticket fares and obtain optimum ticket
fares that are accepted and satisfy public expectations. Table 5 de-
scribes the specific variables related to THSR ticket fares. The ranges of
rates that incur major changes in the number of passengers were in-
cluded in the lower-level model for analysis. The analysis results of
ticket fare adjustment on passenger expectation satisfaction were
evaluated to determine whether the THSR operator's overall benefits
exceeded rates that were previously set.

4.3. Developing the lower-level model

The upper-level model indicated that passenger flow from Taipei to
Zuoying in the first group mostly changed in fare rates between 3.0 and
3.5 NTD/person-km. Within this range, the maximum and minimum
passenger flows were determined to be 34,421 and 8,709 thousand
people, respectively. The PSO algorithm was used to evaluate the
maximum operator profit. Therefore, the lower-level model formula
was modified so that the maximization of operational income became
the minimization. The modified formula is presented in Eq. (27).

= × ×min L q d f C( )i
od

i
od

i
od

i t (27)

Parameters in the algorithm must be defined before execution.
Particle size was assumed to be 50 (n = 50); Inertia weight was de-
termined to be 0.1 (ω = 0.1), and the maximum number of iterations
was 50 (iterMax = 50); learning factors generally take the value of 2
(c1, c2 = 2); and the perturbation coefficient was set to 0.005
(η = 0.005) (He & Cheng, 2017; Zhao et al., 2013). The passenger flow
and ticket fare rates obtained from upper-level programming were in-
corporated into the lower-level model.

When the unit fare rate was 3.5 NTD/person-km, the operational
revenue travel from Taipei to Zuoying was higher. To reflect variations
in passenger flow after a change of ticket fare, a simulation was per-
formed using the upper-level model. The fare rate interval in the second
simulation was between 3.1 and 3.2 km/h. This interval was then in-
corporated into the lower-level model for analysis. The revenue was
maximized for a fare rate of 3.2 NTD/person-km.

The calculations of variable costs revealed that the fare rate ob-
tained from the second simulation was 3.2 NTD/person-km, and the
revenue from the deducted cost rate was 89.4 billion NTD. However,
this result does not satisfy the optimization condition of the upper-level
passenger flow assignment model. Therefore, to enable both the upper
and lower-level to reach optimum states, the fare rate was modified to
3.1 NTD/person-km.

The number of passengers who selected this ticket fare in the upper-
level model reflected passenger satisfaction, whereas the lower-level
model satisfaction represented revenue that exceeded the expected
THSR revenue. Therefore, a greater distance traveled corresponded to a
greater effect on overall revenue. The optimal fare rate of the first group
was selected as the standard in setting all ticket fares. Table 6 provides
the corresponding ticket fares.

To determine the operator's income, costs were classified as

Table 3
Analytical results of fare rates and passenger flow in the first upper-level model.

Rate
(NTD/
person-
km)

Original passenger
flow q0 (thousand
people)

Research model
traffic q1 (thousand
people)

Remaining path
traffic q2 (thousand
people)

Max Min Max Min Max Min

2.0 31,719 8208 36,822 10,411 24,415 16,017
2.5 32,620 8509 35,622 9910 24,715 16,217
3.0 33,621 8909 34,421 9310 24,915 16,417
3.5 34,521 9310 33,321 8709 25,116 16,617
4.0 35,522 9610 32,120 8208 25,316 16,818
4.5 36,322 10,010 31,019 7608 25,616 17,018
4.7 36,723 10,110 30,619 7408 25,616 17,118

Table 4
Analytical results of fare rates and passenger flow in the second upper-level
model.

Rate
(NTD/
person-
km)

Original passenger
flow q0 (thousand
people)

Research model
traffic q1 (thousand
people)

Remaining path traffic
q2 (thousand people)

Max Min Max Min Max Min

3.0 33,621 8909 34,421 9310 24,915 16,417
3.1 33,820 8910 34,221 9210 24,915 16,178
3.2 34,021 9010 33,920 9110 25,015 16,518
3.3 34,221 9110 33,720 8910 25,015 16,618
3.4 34,321 9210 33,520 8810 25,115 16,618
3.5 34,521 9310 33,321 8709 25,116 16,617
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operational costs, operational expenses, and other expenses. These cost
categories were then divided by the passenger flow at relevant rates,
followed by the comprehensive evaluation of the formula provided by
the TRA (Eq. 28). The relevant data were then incorporated into the
computation to generate the total operational cost in 2017, which was
2.98 NTD. After the PSO algorithm was applied to the annual cost rate,
the operator's total revenue from deducted costs could be obtained as
follows.

= + +
×=

C
d q

Operation cost Operation expenses Other cost
t

i
N

i
od

1 1 (28)

In the second group analysis, which comprised medium-distance
travelers from Taipei to Taichung, the first fare rate at which the pas-
senger flow changed was between 3.0 and 3.5 NTD/person-km. When
the fare rate approached 3.5 NTD/person-km, the operational revenue
was optimal. Based on the second analysis, the range of fare rates was
3.0–3.1 NTD/person-km. The operational revenue was reached the
optimal value when the fare rate was 3.1 NTD/person-km. However, to
satisfy the upper-level and lower-level, the fare rate was adjusted to 3.0
NTD/person-km.

For the third group, which comprised short-distance travelers from
Taipei to Banqiao, the first fare rate at which passenger flow changed
was between 4.0 and 4.5 NTD/person-km. The maximal operational
revenue was determined to occur at a fare rate of 4.5 NTD/person-km.
The second analysis indicated that the range of fare rates was between
4.2 and 4.3 NTD/person-km. Therefore, the operational revenue was

maximized when the fare rate was 4.3 NTD/person-km. However, to
satisfy both levels, the fare rate was adjusted to 4.2 NTD/person-km.
The adjustment is performed to prevent the operator from losing pas-
sengers.

5. Findings and discussion

The analyses revealed that optimal fare rates were divided into
three groups by distance traveled. In the first group, the optimal fare
rate for long distances was 3.1 NTD/person-km; in the second group,
the optimal fare rate for medium distances was 3.0 NTD/person-km;
and in the third group, the optimal fare rate for short distances was 4.2
NTD/person-km. The original generalized cost to use the THSR was
approximately 4.4 NTD/person-km for all three groups.

The bi-level programming model yields optimal ticket fares from
Taipei to Zuoying (longest distance) and from Nangang to Taipei
(shortest distance) of 1,110 and 75 NTD, respectively. For shorter dis-
tances, the optimal ticket fare was close to the original THSR ticket fare.
Therefore, public satisfaction should be observed for short-distance
trips because the current THSR fares are close to the optimal ticket fare
(e.g., Taipei to Banqiao or Nangang to Taipei).

The analysis also demonstrated that the optimal ticket fare becomes
increasingly lower than the current THSR ticket fare as distance tra-
veled increases. For certain trips, higher mileage corresponds to greater
gains. Therefore, the relevant agency should promote long-distance
trips. For instance, Taiwanese people select THSR for long-distance

Table 5
Applied THSR ticket fare variables and their descriptions.

Variable Description

Time cost The official website of the Executive Yuan and National Statistics states that a calculation of time value must consider the average gross
domestic product, domestic employed population, and average annual domestic working hours. The value of time for 2017 was thus
calculated to be 707 NTD/person–hour.

Perceived cost–Convenience cost Based on the concept of convenience cost, passengers perceive the waiting time as the convenience cost. The timetable announced by the
THSRC was organized and relevant calculations were performed before the time value was converted to the convenience cost.

Perceived cost–Punctuality cost The THSR has always outperformed in punctuality. The THSRC has confidence in its targeted and average punctuality, which is provided on
the official website every month. The punctuality cost in 2017 was 1.24 NTD. The annual amount spent was close to zero, indicating that
passengers did not incur extra expenses because of lateness.

Perceived cost–Comfort cost Comfort is related to both travel time and cabin environment, which is reflected in fatigue recovery time. The maximum fatigue recovery time
(Hl) is 15 h, and the minimum recovery time (αi) and recovery-time intensity coefficient (βi) are reported in the study by (Wei et al., 2015).
Longer distances traveled result in a longer fatigue recovery time. Therefore, perceived comfort costs will also be higher.

Safety Safety is a significant factor when selecting a mode of transportation. Failure to embrace and prioritize safety will inevitably damage the
operator's reputation which causes passengers to be reluctant in choosing a particular mode of transportation. In this study, safety was
quantified as safety credibility. Following the data announced by THSRC, the number of deaths and casualties in 2017 were both zero, so
safety credibility for that year was 1.

Economic cost Another crucial factor that affects passenger travel choices is ticket fare. The HSR ticket fare rates are set according to the passenger flow.
Following the combination of time cost, perceived cost, and safety factors, the variable ticket fare model was substituted into the upper-level
model to obtain the number of passengers affected by these costs. Based on the service attribute parameters proposed by (Zhang et al., 2014),
the weights of service attribute parameters were λ1 = 0.3607, λ2 = 0.2692, λ3 = 0.1896, and λ4 = 0.1805. Because the economic cost can be
obtained using both upper-level and lower-level models, each value must be combined with the economic cost to obtain the total cost of travel
in the variable ticket fare model.

Table 6
Ticket fares between stations.

Station Nangang Taipei Banqiao Taoyuan Hsinchu Miaoli Taichung Changhua Yunlin Chiayi Tainan

Nangang
Taipei 75
Banqiao 98 81
Taoyuan 188 171 177
Hsinchu 281 264 270 187
Miaoli 382 365 371 289 214
Taichung 571 554 560 477 403 325
Changhua 658 641 647 565 490 412 207
Yunlin 734 718 723 641 566 488 283 230
Chiayi 837 820 826 744 669 591 386 332 234
Tainan 1030 1013 1019 937 862 784 579 525 427 321
Zuoying 1127 1110 1116 1034 959 881 676 623 525 418 187

Unit: NTD.
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traveling because of its convenience, frequency, and rapidity.
According to analytical results, the current THSR pricing policy en-
courages passengers to select short-distance service.

The optimal fare rates for medium and long distances are lower than
the current ones, implying that the current fare rates are higher than
passengers expect them to be. Although the THSR remains the optimal
choice of passengers for medium and long distances trips, the policy
does not attract new customers or maintain loyal customers, because
the high fare rate fails to meet customer expectations. Therefore, the
THSRC should improve the service quality as well as providing con-
cession tickets for both medium-distance and long-distance trips to
meet passengers' expectations.

Following the findings discussed above, the bi-level optimization
model has proven to be robust comparing to the previous analysis
model. The model is capable to generate optimal ticket fares based on
the distance traveled. Accordingly, the simulation outputs from the
model not only generate the optimum ticket fares but also consider the
trade-off of ticket fares for the travelers between stations allocated by
THSRC.

The optimization model and evolutionary algorithm were designed
to solve the fare issue considering different travel distance and travel
volume. The evolutionary bi-level model shows that the perturbation
parameter that has been applied within the optimization processes
enables the algorithm to reaching a globally optimal ticket fares.
Compared to the original THSR ticket fares approved by the TRA, the
model gave lower ticket fares.

The difference between the proposed optimization model and other
relevant ones is that it takes HSR capacity, different distance, passenger
volume, operations cost, and current ticket fare constraints into con-
sideration. The analytical case demonstrates that the pricing strategy
based on the proposed model can increase the agency revenue as well as
stimulate the potential travel demand.

6. Concluding remarks

An evolutionary optimization model for assessing the optimum HSR
ticket fare was developed by applying a bi-level programming method.
Passenger flow assignment was applied in the optimization analysis as
the baseline for analyzing optimal ticket fares adjustment while ex-
amining the operator's overall revenue. The constructed model can
quantify operator revenue in terms of various factors, such as ticket fare
rates and travel volume, to provide quantitative justification on the
effects of adjustment of ticket fare rates on operational revenue.

The analysis revealed that upper and lower-level models were mu-
tually constrained. Subsequently, both the rights and interests of pas-
sengers were unaffected by operational revenue. Applying the proposed
model on the THSR case study yielded optimal ticket fares of 1,110 and
75 NTD for Taipei to Zuoying and from Nangang to Taipei, respectively.
For shorter distances, the optimal ticket fare was close to the original
HSR ticket fare.

As the distance traveled increases, the optimal ticket fare becomes
increasingly lower than the current THSR ticket fare. Higher mileage
generally corresponds to higher earnings. Therefore, the relevant
agency should promote long-distance trips. The case study demon-
strates both the feasibility and superiority of the bi-level programming
model. Empirical application on the THSR case confirmed the effects of
changing ticket fares on agency revenue.

This research has two limitations. First, this investigation considers
the transportation agency as the main stakeholder and passenger sa-
tisfaction as the key factor. Second, both the transportation agency and
passengers' weight value are disregarded within the analysis. Further
work should modify the bi-level programming model into trilateral
game theory and verify or calibrate the model with a survey or stake-
holders' perception information that considers various stakeholders
with their divergent weight values (including operator, passengers, and
government agencies) to investigate and analyze other modes of public

transportation ticket fare in more detail.
There are certainly many potential directions for future research in

this area, such as expanding the optimization of ticket fares for multiple
trains considering the passengers' choice behavior among these train
services. Another research direction is to dynamically determine when
to open each fare grade based on the available seats and time left.
Future work can also determine ticket price for HSR by expanding
multiple objectives with the proposed evolutionary bi-level planning
model.

In sum, this study contributes practical tools for decision makers
because the structured procedure, indicators, and series of key factors
can be used to assess and determine public transportation ticket fares
while considering passengers' satisfaction and operations performance.
Furthermore, the proposed model could assist in decision making re-
lated to the governance of public transportation through a more com-
prehensive understanding of the transportation market and by aiding in
achieving breakthroughs in the adjustment of ticket fare intervals by
policymakers.
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