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A B S T R A C T   

Large-scale integration of renewable energy systems poses challenges to the ubiquitous power Internet of things 
(UPIoT) construction in China. This paper aims to study beyond these challenges from a risk assessment per-
spective, using the combined dynamic weighting evidence fusion (CDWEF) method under the intuitionistic fuzzy 
group decision-making (IFGDM) environment. The UPIoT construction risk is identified and characterized by a 
17-indicator system which is scored by intuitionistic fuzzy relations (IFRs) from experts. The IFRs are corrected 
by the dynamic expert weight determined from both the intuitionistic fuzzy entropy and conflicts among IFRs. 
The IF-AHP-DEMATEL method is adopted to determine the combined indicator weight for correcting the risk 
mass functions, which are obtained from the IFRs with the evidence fusion theory. The proposed risk assessment 
method is validated in a case study, indicating that the UPIoT construction risk in China is high in commu-
nication networks and business innovation.   

1. Introduction 

A major current focus of the State Grid Corporation of China (SGCC) 
is how to ensure the security and sustainability of the main grid by 
establishing the ubiquitous power Internet of things (UPIoT). With 
large-scale integration of intermittent renewable energy systems (RESs) 
such as photovoltaic systems (PVs) and wind turbines (WTs), it is un-
doubted that the uncertainties in RESs can negatively impact the sta-
bility of the power system. Fig. 1 shows the dramatic increase in China’s 
RES capacity from 2013 to 2019, where the proportion of PVs and WTs 
generations in the total RES capacity arrived at 50% in 2019. Moreover, 
the share of total RES capacity in China has grown to about 39% re-
cently(NEA, 2020). As a result, the high proportion of intermittent RESs 
such as PVs and WTs poses a threat to the main grid in China (Li et al., 
2019). 

Another challenge to the UPIoT is depicted in Fig. 2. While the total 
electricity consumption increased steadily from 2013 to 2019, the an-
nual net profit of State Grid Corporation in China (SGCC) has declined 
for two constitutive years. The largest state-owned enterprise of China 
choose to develop new businesses through the construction of UPIoT 
(Jiang et al., 2019). 

Therefore, the main goal of UPIoT construction in China is to deal 
with the challenges from uncertain RESs penetration and profit 

shrinkage of SGCC (Ting et al., 2019). The UPIoT can accomplish its 
mission via the following routes.  

• State-of-the-art technologies such as 5 G and IoT are used to collect 
the data from hundreds of millions of smart meters and sensors 
distributed in every corner of China’s power grid(De Dutta & Prasad, 
2019).  

• A cloud data center is established to store valuable results from 
analyzing the obtained power grid operation data.  

• Lots of application scenarios are developed to explore the potential 
value of data sharing, supporting the power grid operation, in-
tegrated energy services, and business improvement, etc (Hu et al., 
2019). 

However, the UPIoT construction is risky under the new challenges 
from China's power system (Losavio et al., 2018). 

1.1. Literature review 

Since the UPIoT is technically the extension of IoT that has been 
widely used in the smart grid (Saleem et al., 2019), there is extensive 
literature on the UPIoT risks from studying IoT security (Lin et al., 
2017). For example, physical-layer security of IoT was studied in 
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(Mukherjee, 2015); (Bhoyar et al., 2019) discussed the communication 
challenges of IoT while meeting energy consumption, throughput, la-
tency, and security criteria; and the security requirements of IoT ap-
plication protocols was presented in (Nastase, 2017). Apart from the 
risk of IoT architectures, (Stergiou et al., 2018) studied the privacy is-
sues in the context of the big data era. 

Microgrids (MGs) and smart grids (SGs) are established with the 
deep integration of the RES and IoT technology, providing another view 
for the UPIoT risk analysis. (Khalili et al., 2019b) investigated optimal 
scheduling of the microgrids by considering the stochastic nature of 
RES generations, while (Bahramara & Golpira, 2018) took the uncertain 
behavior of electric vehicles into account. Impacts on modern power 
systems may also come from man-made behaviors, the UPIoT 

superimposed on an IoT based SG would contains millions of nodes that 
are likely to be attached by hacks (Kimani et al., 2019). Furthermore, 
the UPIoT can be threatened by state-of-the-art technologies such as the 
5 G network (De Dutta & Prasad, 2019), blockchain (Tariq et al., 2019), 
and artificial intelligence (Hossain et al., 2019). 

As aforementioned, the UPIoT construction risk has been demon-
strated from its endogenous structure and exogenous factors, but the 
UPIoT focuses more on the holistic perception and ubiquitous connec-
tion of energy. These ambitious goals can also add weight to the UPIoT 
construction risk (Jiang et al., 2019). For instance, cyber security and 
privacy issues on the Energy Internet (EI) was investigated in (Sani 
et al., 2019), (Shakerighadi et al., 2018) reviewed the challenges that 
an IoT based modern energy system must deal with, such as energy 

Nomenclature 

Parameters 

t Number of the first-layer risk indicators 
m Number of the second-layer risk indicators 
ms Number of the second-layer indicators belong to -th first- 

layer indicator 
n Risk levels 
P Number of experts 

Controller parameter for consistency repair 
i The centrality of i -th indicator 

Combining coefficient for the expert weight 
li Defense cost to deal with i -th risk level 

ij
kl Belief interval-based evidence distance 

ij
kl Conflict coefficient between mij

k and mij
l

Discount weight for evidence fusion 
Risk preference coefficient of the expert group 

Variables 

Fsi The i -th second-layer indicator of Fs
Fs The s -th first-layer indicator 
Dk The k -th expert 
Vj The j -th risk level 
Ak Importance comparison matrix for first-layer indicators 
Bk Interaction comparison matrix for first-layer indicators 
Ck Risk membership matrix for second-layer indicators 

A
ik Expert weights from Ak

B
ik Expert weights from Bk

C
ik Expert weights from Ck

eij
k Intuitionistic fuzzy entropy 

Ei
k Intuitionistic fuzzy entropy on i -th indicator 

ewi
k Expert weight from entropy 

cfij
kl Conflict between different judgment information 

swi
k The expert weight from the conflict information 

wi The value weight for i -th indicator 
H Comprehensive influence matrix 
cwi Combined weight for first-layer indicators 
Gs The intuitionistic fuzzy risk of indicator Fs
M A mass function vector for indicator Fs
ms Corrected risk mass function for indicator Fs
SF The risk value of indicator F
M Discounted mass function matrix for first-layer indicator 

risks 
dF Measurement on the effect of weights to the first-layer 

indicator 

Indices 

s Index of first-layer indicators number 
i Index of second-layer indicators number 
j Index of risk levels number 
k Index of experts numb 

Fig. 1. Renewable energy power generation of China from 2013 to 2019. Related data comes from the Center for Renewable Energy Development of China (http:// 
www.cnrec.org.cn/). 
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supply, big data processing, standards, etc. As for energy consumption 
in the UPIoT, (Li et al., 2018) optimized the dispatch strategy of virtual 
power plant under cyber-attacks, while (Jafari et al., 2020) analyzed 
the impact of demand response program when determining optimal 
capacity and type of the generation resources for microgrids (MGs). 

For the UPIoT construction risk management methods, optimization 
and evaluation models are most commonly used. (Samper et al., 2019) 
optimized the distribution system with high penetrations of solar pho-
tovoltaic via a heuristic algorithm using modified risk-adjusted cost 
ratios, while (Khalili et al., 2019a) investigated optimal reliable and 
resilient construction of microgrids by the fuzzy satisfying approach 
and Pareto optimality methods. Evaluation models often study the 
planning risks through combining multiple mathematical models. For 
example, (Luis & Jose, 2019) analyzed the risk of renewable energy 
construction projects based on the Monte Carlo approach and Prob-
abilistic Fuzzy Sets with AHP, (Wu & Zhou, 2019) evaluated the urban 
rooftop distributed PVs with hesitant fuzzy linguistic term sets and 

DEMATEL, an integrated method of Mahalanobis-Taguchi Gram- 
Schmidt and TOPSIS was applied to regional energy security assessment 
(Yuan & Luo, 2019). The optimization method features accurate but 
needs adequate data from the existing system, whereas the evaluation 
method based on experts’ knowledge can analyze the system risk 
without obtaining any objective data. 

However, although risk issues on IoT, SGs, and MGs that related to 
the UPIoT were well studied over the past few years, little attention has 
been paid to the comprehensive risk assessment of the UPIoT con-
struction. 

1.2. Novelty and contributions 

The present study comprehensively evaluates the UPIoT construc-
tion risk from four dimensions: basic support, business, cyber security, 
and management, which has not been performed by other literature so 
far. Novelty and contributions of this paper are briefly presented below: 
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Fig. 2. Total power generation and net profit of SGCC from 2013 to 2019. Related data comes from the SGCC (http://www.sgcc.com.cn/).  
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• A two-layer risk indicator system is established to cover all risk 
factors that may impact the UPIoT, including four indicators in the 
first layer and 17 in the second.  

• The UPIoT construction risk is evaluated via the IFGDM-CDWEF 
method that considers both the interaction between risk factors and 
the domain knowledge of decision-makers.  

• The research results indicate that the UPIoT construction risk is high 
in communication network and conventional business innovation, 
providing a risk management perspective for further establishing the 
sustainable energy ecosystem in China. 

1.3. Paper organization 

This paper is organized as follows: Section 1 is the introduction 
related to the research issue as aforementioned, followed by Section 2 
identifies detailed risk factors from the UPIoT construction. Section 3 
focuses on the risk assessment model used in the case study, and the 
results are shown in Section 4. The study is concluded in Section 5. 

2. Overview and risk identification of the UPIoT construction 

In this subsection, the basic concept of UPIoT construction in China 
is introduced, and the UPIoT construction risk is identified and de-
composed to form a hierarchical indicator system. 

2.1. The concept of UPIoT 

The UPIoT is an intelligent and ubiquitous network that connects all 
things and people related to the existing power system via IoT tech-
nologies (Hu et al., 2019b). A large number of entities like power 
generation companies, power grid companies, power suppliers, and 
power users are connected by the UPIoT, thus the flow of information, 
energy, and business underlying in the entities can be accelerated to 
provide high-quality and innovative services (Jiang et al., 2019). 

Fig. 3 shows relationships between the Power Internet of Things 
(PIoT), the UPIoT, and the SG. Both the UPIoT and SG are supported by 
the PIoT, while the former can communicate with entities outside the 
SG. Specifically, the PIoT is integrated into the SG to support its power 
generation, transmission, and distribution by monitoring and uploading 
operational data. Based on that, the resources of external enterprises, 
suppliers, and users are involved to form a larger power network called 
the UPIoT, which gets more advanced capabilities than the PIoT. 

Due to the functional similarity with IoT, the crucial point of UPIoT 
construction in China can be divided into four layers corresponding to 
the hierarchical structure of IoT (Jiang et al., 2019).  

• The perception layer: The construction work of this layer focuses on 
the infrastructure for data collecting, such as smart meters, in-
telligent substations, RFID tags, etc.  

• The network layer: The communication networks and advanced 
communication technologies play an important role in the con-
struction of this layer.  

• The platform layer: Massive data is uploaded to this layer through 
the perception layer and the network layer, thus a unified data 
center needs to be established for mining the potential value of the 
data.  

• The application layer: This layer concentrates more on the service 
than the technology, and opens a window leading to more promising 
applications such as energy services, customer services, and lean 
enterprise management. 

Hence, the UPIoT is a ubiquitous network focusing on data sharing 
and prospective businesses. 

2.2. Risk identification of the UPIoT construction 

2.2.1. Basic support risk (F1) 
The basic support risk means that the IoT technology or facilities do 

not fully support and coordinate the SG so that the components of 
UPIoT fails to achieve the expectative construction goals. 

(1) Sensor device coverage (F11): The UPIoT must get enough 
sensor devices such as smart meters and smart substations to collect 
massive operational data of SGs (Kumar et al., 2019). 

(2) Communication network support (F12): The speed and 
bandwidth of the communication network must meet the needs of 
UPIoT to transmit massive data (Kuzlu et al., 2014). 

(3) Heterogeneous data fusion (F13): It is critical to fuse and 
share the heterogeneous data generated by various data sources during 
the SG operation (Pacevicius, Roverso, Salvo Rossi, & Paltrinieri, 2018). 

(4) Unified cloud platform (F14): Building an uniformed and 
automatic cloud-based platform that enables to process data produced 
by dispersed equipment is essential for the UPIoT (Wilcox et al., 2019). 

(5) Emerging technology applications (F15): The application of 
emerging technologies such as blockchain, 5 G and artificial in-
telligence poses threats to the UPIoT (Akpakwu et al., 2018). 

2.2.2. Business risk (F2) 
With the development of the renewable industry including electric 

vehicles and charging piles, the business risk is mainly caused by the 
traditional power grid services that cannot meet the new emerging 
demand of customers. 

(1) End-user services (F21): The UPIoT needs to satisfy end-users 
with flexible and convenient services such as electronic payment, au-
tomatic meter reading (Ellabban and Abu-Rub, 2016). 

(2) Corporate asset management (F22): A large number of cor-
porate assets in the power system needs to be managed online, in-
cluding not only the official materials for daily use but also plenty of 
power grid devices widely distributed in cities and suburbs (Kure & 
Islam, 2019). 

(3) Power grid operation management (F23): The UPIoT is re-
sponsible to assess and forecast the health status of the power grid 
based on the widely collected data from weather, equipment, and even 
people, etc (Wu et al., 2018). 

(4) Conventional business innovation (F24): Traditional power 
grid business needs to be promoted through the UPIoT construction, 
becoming more convenient and interconnected (Skvortsova et al., 
2019). 

(5) Energy industrial ecosystem building (F25): The goal of UPIoT is 
to establish an energy industrial ecosystem with coordinating external 
entities such as universities, governments, and research institutes. The 
ecosystem can enhance the ability of the power grid to consume more 
renewable energy and provide more innovative services (Jiang et al., 
2019). 

2.2.3. Cyber security risk(F3) 
It is important to prevent the UPIoT from cyber security threats due 

to its ubiquitous distributed IoT infrastructures (Ferrag et al., 2018). 
Risk factors are identified from the hierarchical structure of the UPIoT 
as follows (Ande et al., 2019). 

(1) Perception layer security (F31): The sensors in the perception 
layer of the UPIoT are susceptible to natural disasters or man-made 
sabotage because they are usually exposed to the air (Khattak et al., 
2019). 

(2) Network layer security (F32): IoT devices in the UPIoT are 
vulnerable to cyberattacks (Habibi Gharakheili et al., 2019), especially 
the wireless sensor network for power grid operational data transmis-
sion (Kimani et al., 2019). 

(3) Platform layer security (F33): The information of power users 
is managed by the platform layer of the UPIoT, data leakage and 
privacy problems may occur when the platform interface is intruded by 
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hackers (Girma, 2018). 
(4) Application layer security (F34): As the platform data is 

available for many entities via software or web services, there may be 
potential threats of data stealing and database attacks (Radoglou 
Grammatikis et al., 2019). 

2.2.4. Management risk (F4) 
Constructing the UPIoT is an innovative revolution that requires all 

the organizations and individuals to make changes and maintain the 
same goal. However, human-involved projects often get managerial 
uncertainties. 

(1) Obstacles from customers (F41): Due to the unawareness of 
project prospects, the UPIoT construction process may be blocked by 
power users (Sovacool et al., 2019). 

(2) Obstacles from employees (F42): Decision-makers should 
persuade employees to participate in the UPIoT construction and deal 
with the possible boycotts from old employees who are unwilling to 
make changes (Rafferty & Jimmieson, 2017). 

(3) Organizational guarantee (F43): Adequate supports from the 
responsible organization is required when constructing the UPIoT 
(Ibadov, 2017). 

Consequently, a hierarchical indicator system is established with the 
above risk factors, the two-layer system shown in Fig. 4 can specifically 
outline the UPIoT construction risk from multiple perspectives. 

3. Risk assessment model for the UPIoT construction 

An IFGDM-CDWEF method is proposed to evaluate the UPIoT con-
struction risk based on the indicator system shown in Fig. 4. For lack of 

factual data in the early stage of UPIoT construction, the risk indicators 
are scored by experts using intuitionistic fuzzy relations (IFRs) under 
the IFGDM environment. The subjectivity of IFRs is minimized with the 
combined dynamic weighting (CDW) method, which is composed of the 
combined indicator weight and dynamic expert weight, the former is 
determined by IF-AHP-DEMATEL method, while the latter is obtained 
from the underlying uncertainty and conflict of the IFRs. According to 
the evidence fusion (EF) theory, the UPIoT construction risk is in-
tegrated without conflict. Fig. 5 shows the framework of UPIoT con-
struction risk assessment based on the IFGDM-CDWIF method, in-
cluding totally five phases listed below.  

• Phase 1: Selecting several experts who are professional in the UPIoT 
and asking them to score the risk indicator system with IFRs;  

• Phase 2: The diversification in the domain knowledge of experts is 
considered for determining the dynamic expert weight, which is 
obtained from the intuitionistic fuzzy entropy and conflict in-
formation in the IFRs;  

• Phase 3: Determining the combined weight of first-layer indicators 
by an IF-AHP-DEMATEL method;  

• Phase 4: Using the combined dynamic weights (CDWs) came from 
the Phase 2 and 3, the IFRs on second-layer indicators are integrated 
via the evidence fusion method to obtain risk mass functions of the 
first-layer indicators;  

• Phase 5: Evaluating and analyzing the construction risk of UPIoT 
with weighted aggregating the risk mass functions. 

The step-by-step illustration for the risk assessment model is dis-
played in the following subsections. 

The risk of  UPIoT 
construction in China

Basic support risk (F1)

Business risk (F2)

Cyber security risk (F3)

Management risk (F4)

Sensor device coverage (F11)

Communication network support (F12)

Heterogeneous data fusion (F13)

Unified cloud platform (F14)

Emerging technology application (F15)

End-user services (F21)

Corporate asset management (F22)

Power grid operation management (F23)

Conventional business innovation (F24)

Energy industrial ecosystem building (F25)

Perception layer security (F31

Network layer security (F32)

Platform layer security (F33)

Application layer security (F34)

Obstacles from customers (F41)

Obstacles from employees (F42)

Organizational guarantee (F43)

Fig. 4. The two-layer indicator system reflecting the UPIoT construction risk.  
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3.1. Phase 1: Problem definition and data collection 

According to the indicator system of UPIoT construction risk built in  
Fig. 4, let { }F F F, , ...,s s sm1 2 s be the second-layer indicator set and 

=F s t( 1, 2, ..., )s be the first-layer indicator set, where ms refers to the 
number of second-layer indicators that belong to the corresponding 
first-layer indicator Fs, and = =m mi

t
i1 represents the number of 

second-layer indicators. 
Since no historical data is available, the raw data used in the risk 

assessment model is scored by experts in the domain of UPIoT. 
Intuitionistic fuzzy numbers (IFNs) capable of reflecting the hesitation 
of decision makes are used for scoring the risk indicators of UPIoT 
construction (Atanassov, 1999). P experts under the IFGDM environ-
ment are asked to give three intuitionistic fuzzy relations (IFRs) on the 
risk indicator system. Specifically, each expert =D k P( 1, 2, ..., )k pair-
wise compares first-layer indicators and gives two intuitionistic fuzzy 
preference relations (IFPRs) based on their importance relative to the 
UPIoT construction risk and their interactions, respectively (Xu, 2007). 
Assuming that each second-layer risk indicator gets n risk levels (each 
level denoted as =V j n( 1, 2, ..., )j ), its membership degree to the risk 
levels is scored by the expert via the intuitionistic fuzzy judgment 
matrix (IFJM). All the IFRs including IFPRs and IFJM are listed below.  

• = = =×A a i j t k P( ) ( , 1, 2, ..., , 1, 2, ..., )k
ij
k

t t is an IFPR scored for first- 
layer indicator value weights determination, where 

=a µ , ,ij
k

ij
k

ij
k

ij
k represents the relative importance of in-

dicatorFiandFj;  

• = = =×B b i j t k P( ) ( , 1, 2, ..., , 1, 2, ..., )k
ij
k

t t is also an IFPR scored for 
first-layer indicators comprehensive weights determination, where 

=b µ , ,ij
k

ij
k

ij
k

ij
k represents the influence degree between indicator 

Fi and Fj; 

• = = = =×C c i m j n k P( ) ( 1, 2, ..., , 1, 2, ..., , 1, 2, ..., )k
ij
k

m n is an in-
tuitionistic fuzzy judgment matrix (IFJM) scored for second-layer 
indicator risk assessment, where =c µ , ,ij

k
ij
k

ij
k

ij
k represents the 

risk membership of i th second-layer indicator with respect to risk 
level =V j n( 1, 2, ..., )j . 

The element in the IFRs given by expert Dk can be generally re-
presented by µ , ,ij

k
ij
k

ij
k , where µij

k , ij
k represents the membership 

degree and non-membership degree of i -th indicator relative to j -th 
indicator, respectively. Since = µ1ij

k
ij
k

ij
k represents the hesita-

tion of the expert, the element is often simply denoted as µ ,ij
k

ij
k . 

Additionally, experts can score each indicator according to the re-
ference scale shown in Table 1. 

3.2. Phase 2: Determining the dynamic weight of experts 

Due to differences in knowledge background, cognitive ability, and 
work experience, the scoring information given by experts needs to be 
corrected for maximizing the accuracy of group decision-making ac-
tivity (Du et al., 2018). Therefore, in this study, a method for de-
termining dynamic expert weights is proposed to correct the IFRs on the 
UPIoT construction risk. The method calculates the expert weight by 
fully considering the intuitionistic fuzzy entropy (IFE) and the potential 
conflicts compared with other experts’ judgments. Take the IFJM Ck as 
an example, the following demonstrates how to calculate the dynamic 
weight = =i m k P( 1, 2, ..., , 1, 2, ..., )C

ik of expert Dk relative to the 
i th indicator. Similarly, A

ik, B
ik can be calculated based on Ak and Bk

Intuitionistic fuzzy group decision-makingenvironment

Consistency repair

Combined indicator weights

IFPRs IFRs

IF-AHP-DEMATEL Evidence Fusion

Risk mass functions

The UPIoT construction risk analysis

Dynamic expert weights

• Entropy
• Conflicts

Integration

Phase 1

Phase 2

Phase 4

Phase 5

Phase 3

Pairwise comparison of 
first-layer indicators 

Scoring the risk of 
second-layer indicators

Fig. 5. Risk assessment framework of the UPIoT construction.  
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in the same way. 

3.2.1. IFE based expert weights 
The intuitionistic fuzzy entropy (IFE) reflects how much a decision- 

maker knows about the problem. For example, expert Dk who is not 
sure about the membership of i -th indicator to the risk level 

=V j n( 1, 2, ..., )j tends to get a fairly high IFE . The IFE eij
k can be 

measured by eq. (1) defined in (Chen & Li, 2010). 

=
+

+ +
e

µ
µ

1 | |
1ij

k ij
k

ij
k

ij
k

ij
k

ij
k

ij
k

(1)  

Therefore, the IFE of expert Dk on the i -th indicator can be obtained 
via eq. (2). 

=
=

E
n

e1
i
k

j

n

ij
k

1 (2) 

Where Ei
k indicates the IFE expert Dk relative to the i -th indicator. Then 

the corresponding IFE based weight of expert Dk can be calculated by 
eq. (3). 

=
=

ew E P E(1 )/( )i
k

i
k

k

P

i
k

1 (3) 

Where =ew i m( 1, 2, ..., )i
k represents the expert weight that based on 

the IFJM Ck, indicating how well the expert Dk understands the i -th risk 
indicator of UPIoT construction. 

3.2.2. Weight correction from conflicts 
In the group decision-making environment, the judgment that 

contradicts with others is unreliable, thus the expert Dk gives a more 
controversial IFR should be assigned with a smaller weight. The method 
proposed in (Wang et al., 2019) that can measure the conflict between 
two experts is adopted to correct the weight of experts. 

Firstly, according to the evidence theory, each element in Ck is 
converted into a mass function via eq. (4): 

= =

=

=

=

m m V
µ V

V

m m V

( ) 0, ( )
( )

[1 ( )]

( ) 1 ( )

i
k

i
k

j
i
k

j

j
n

i
k

j

i
k

j

n

i
k

j

1

1 (4) 

Where = =V j n{ | 1, 2, ..., }j is the recognition framework, thus m ( )ij
k

and m ( )ij
l can represent the evidence give by expert Dk and Dl (k l) 

on the hypothesis ( 2 ), respectively. Then the conflict between 
corresponding elements in Ck and Cl is denoted as cfij

kl, which can be 
calculated by eq. (5). 
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Where BetParg max ( ( ))mij
k represents the maximum support hypothesis 

on the recognition framework , ij
kl is the belief interval-based evi-

dence distance defined in (Han et al., 2018), and ij
kl is the conflict 

coefficient between mij
k and mij

l that can be obtained in (Dempster, 
2008). 

The weight of expert Dk depends on the supports from other experts, 
it can be calculated via eq. (6). 

= =

= =

sw
cf

cf

(1 )

(1 )i
k l l k

P
i
kl

k
P

l l k
P

i
kl

1,

1 1, (6) 

Where swi
k represents the expert weight from the conflict information, 

cf1 i
kl indicates the extent to which expert Dk is supported by other 

experts, and cfi
kl is obtained by eq. (7). 

=
=

cf
n

cf1
i
kl

j

n

ij
kl

1 (7)  

Finally, the dynamic weight of expert Dk calculated from Ck is de-
noted as = +ew sw( )/2C

ik
i
k

i
k , which is the combination of the IFE based 

weight ewi
k and the conflict based weight swi

k. 

3.3. Phase 3: Determining the comprehensive weight of first-layer indicators 

Using the preference information on a hierarchical system, the 
Analytic Hierarchy Process (AHP) (Saaty, 2001) has deep expertise in 
analyzing the importance of different indicators relative to the target, 

Table 1 
Reference scale for scoring indicators.    

Preference description Reference value  

Indicator i is much more important than j (0.9,0.1,0.0) 
Indicator i is even more important than j (0.8,0.1,0.1) 
Indicator i is more important than j (0.7,0.2,0.1) 
Indicator i is a bit more important than j (0.6,0.3,0.1) 
Indicator i and j are equally important (0.5,0.5,0.1) 

Note: IFNs in the table are for reference only, experts can score indicators with 
more values beyond the table.  

Target

Indicator 1 Indicator 2 Indicator n

V1

Weights determined by AHP

V2

V3

Weights determined by DEMATEL

I1 I3

I2

Importance

The Integrated combined weights

Interactions

……

Fig. 6. The determination framework for the combined indicator weight.  
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while the decision-making trial and evaluation laboratory (DEMATEL) 
focuses on the interaction between indicators (Fontela & Gabus, 1976).  
Fig. 6 illustrates the complementary advantages of AHP and DEMATEL 
in determining indicator weights. Therefore, an intuitionistic fuzzy 
group decision making (IFGDM) based AHP-DEMATEL method is pro-
posed in this study to determine the combined weight of first-layer 
indicators. The specifics of the method are demonstrated as follows. 

3.3.1. Preprocessing the IFPRs 
In order to avoid misleading solutions, it is important to study the 

consistency of preference relations expressed by decision-makers 
(Herrera-Viedma et al., 2004), thus the consistency of IFPRs Ak and Bk

given by expert =D k P( 1, 2, ..., )k needs to be checked before they are 
used to determine the comprehensive weight of UPIoT construction risk 
indicators. 

The IFPR should be corrected when its consistency is unacceptable, 
but the traditional correction method is time-consuming because it 
requires the iterative participation of experts. An automatic algorithm 
defined in (Xu & Liao, 2014) for repairing the inconsistent IFPR is used 
here to preprocess Ak and Bk . 

For each IFPR Ak, its perfect consistent intuitionistic fuzzy pre-
ference matrix =A a( )k

ij
k is produced by eqs. (8)(9). 
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(9) 

Where =a µ ,ij
k

ij
k

ij
k , =i j t, 1, 2, ..., . Then the consistency of Ak is 

measured by eq. (10). 

= +

+
= =

d A A
n n

µ µ( , ) 1
2( 1)( 2)

(| | | |

| |)

k k

i

t

j

t

ij
k

ij
k

ij
k

ij
k

ij
k

ij
k

1 1

(10) 

Where d A A( , )k k represents the distance between A k and Ak, and Ak is 
acceptable when d A A( , ) 0.1k k . However, if >d A A( , ) 0.1k k , then Ak

is merged with A k to form a new IFPR Ak
1 according to eq. (11). 
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Where [0, 1] is a controlling parameter, it can be noted that when 
= 0, =A Ak k

1 , and when = 1, =A Ak k
1 . Correspondingly, a new 

d A A( , )k k
1 is obtained. If d A A( , ) 0.1k k

1 , Ak
1 is accepted, otherwise Ak

1
needs to be merged with A k iteratively to produce a new IFPR via eq.  
(11) until the IFPR is acceptable. Finally, the repaired IFPR Ak is de-
noted as = ×A a( )k

ij
k

t t. 
Hence, two acceptable IFPRs A k and B k of each expert Dk are ob-

tained with the consistency repairing algorithm. 

3.3.2. Determining the value weights 
The importance of the first-layer indicators can be expressed by the 

value weights that are calculated from all the IFPRs =A k P( 1, 2, ..., )k

using the intuitionistic fuzzy AHP (IF-AHP) method. Firstly, each IFPR 
A k is converted to a vector with t dimensions via eq. (12). 
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where wi
k represents the weight of i -th indicator, thus the weight vector 

of each expert Dk can be denoted as = …w w w w[ , , ]k k k
t
k T

1 2 . 
According to the Phase 2, the expert weight 

= =i t k P( 1, 2, ..., , 1, 2, ..., )A
ik can be obtained from IFPR Ak. Then the 

Intuitionistic Fuzzy Weighted Average (IFWA) operator defined in (Xu, 
2006) is applied to integrate the vector wk by eq. (13). 
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Where the µ ,w wi
k

i
k represents the IFN in wi

k, w represents the in-
tegrated weight vector for the first-layer indicators, thus the real 
number value weights can be calculated via eq. (14). 

=
=

w H w
H w

( )
( )i

score i

i
t

score i1 (14) 

Where wi is the value weight of the i th indicator, 
=H v u v(1 )/(2 )score is the scoring function for an IFN 

(Atanassov, 1999). 

3.3.3. Comprehensive weight determination considering interactions 
The IFPRs =B k P( 1, 2, ..., )k are used to determine final weights of 

the first-layer indicators following the basic ideas of the DEMATEL. 
Firstly, with the expert weight B

ik obtained from the Phase 2, P IFPRs 
are aggregated via eq. (15). 

= =
= =

h µ µ, 1 (1 ) , ( )ij ij ij
k

p

ij
k

k

p

ij
k

1 1

B
ik

B
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(15) 

Where µ ,ij
k

ij
k is the element of B k, = ×H h( )ij t t is the integrated IFPR. 

Then considering the risk appetite of experts, the defuzzification is 
performed on H via eq. (16) (Xie et al., 2014). 

= + =h w µ i j t[ (2 1) ], , 1, 2, ...,ij j ij ij ij• (16) 

Where w j• is the value weight of the j th indicator, is the risk pre-
ference coefficient, and > 0.5 indicates that most of the experts are 
risk lovers, and vice versa. Then the real matrix = ×H h( )ij t t is nor-
malized to form = ×H h( )ij t t via eq. (17). 

=
= =

h
h
h hmax(max , max )ij

ij

i n j
n

ij
j n i

n
ij

1 1 1 1 (17)  

Finally, a comprehensive influence matrix = ×U u( )ij t t of the in-
dicators can be calculated by (18) 

=U H I H( ) 1 (18) 

Where I is a unit matrix and I H( ) 1 is the inverse matrix of I H( ). 
Therefore, the comprehensive weight cwi of the the i th indicator is 
obtained via eq. (19). 
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=
=

cwi
i

i
t

i1 (19) 

Where i standards for the centrality in DEMATEL, the comprehensive 
weight vector can be represented by =cw cw cw cw[ , , ..., ]t1 2 . 

3.4. Phase 4: Aggregating the risk of second-layer indicators 

Each first-layer indicator =F s t( 1, 2, ..., )s is decomposed 
into ms second-layer indicators, so the IFJM =Ck

= = =×c i m j n k P( ) ( 1, 2, ..., , 1, 2, ..., , 1, 2, ..., )ij
k

m n contains several sub- 
matrixes, i.e. =C C C C[ , ,..., ]k k k

t
k T

1 2 . The IFJM = ×C c( )s
k

ij
k

m ns represents 
the second-layer indicator risks judged by expert Dk, then an integrated 
IFJM = ×G g( )s ij m ns representing the risk of indicator Fs is obtained by 
eq. (20). 
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ik

ij
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Where µ ,c cij
k

ij
k is the element of Cs

k, C
ik
s is the expert weight calculated 

from the IFPR Cs
k. Then based on evidence theory, a mass function ms on 

the first-layer indicator Fs can be obtained by eq. (21). 
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Where = =m V i m j n( )( 1, 2, ..., , 1, 2, ..., )i
s

j s is the mass function con-
verted from the i th row of Gs via eq. (4), represents the discount 
weight calculated by eq. (22). 

=
=

m V m V m V( ) ( ) ( )
V V V

m n1 1 2 2
n

s
1 2 (22)  

Therefore, a risk vector of first-layer indicators is obtained, denoted 
as =M m m m[ , , ..., ]t1 2 . 

3.5. Phase 5: Weighted aggregating the UPIoT construction risk 

Before upward aggregating UPIoT construction risks, 
=M m m m[ , , ..., ]t1 2 needs to be corrected by the comprehensive weight 

cwi of the first-layer indicators. The mass function ms can be weighted 
by eq. (23). 

= =
= +

m m V m V
m m

( ) 0, ( ) • ( )
( ) 1 • ( )

s s
j s s j

s
s s s (23) 

Where = cw cw/max( )s s , ms is the corrected mass function for the first- 
layer indicator =F s t( 1, 2, ..., )s . Then repeating the information fusion 
process via eq. (21),t mass functions are merged into a single function 
denoted as mr , which is defined on the risk level set =V V V V{ , , ..., }n1 2 . 
Each element m V( )j indicates the possibility of evaluating the UPIoT 
construction risk as Vj level. 

4. Case study 

In this section, with the application of IFGDM-CDWEF method 
proposed in Section 3, the UPIoT construction risk in China is evaluated 
thoroughly and comprehensively from multiple aspects, the risk as-
sessment results are also demonstrated and discussed. 

4.1. Data collection and preparation 

As aforementioned, the IFGDM-CDWEF method is based on the 
preference information provided by experts. Therefore, 10 experts in 
the UPIoT domain are asked to score the UPIoT construction risk based 
on their domain knowledge and work experience. Table 2 lists the de-
tailed information of the experts. Each expert Dk receives a ques-
tionnaire that includes the description of risk levels, scoring rules, and 
indicators identified in Section 2, the expert uses the IFNs to score the 
indicator risk and then returns the feedback. 

Consequently, Ak, Bk , Ck are extracted from the returned ques-
tionnaire, where Ak and Bk are ×4 4 dimensional IFPRs on the first- 
layer indicators, and Ck is ×17 5 dimensional IFJM on the second-layer 
indicators, all the data collected from experts is available in the 
Appendix A. Other parameter values used in the case study are listed in  
Table 3, and notably, the variable symbols used in this section share the 
same meaning defined in Section 3 as well as the nomenclature. 

Therefore, based on the collected data and set parameters, the 
UPIoT construction risk can be evaluated following the procedure of 
IFGDM-CDWEF method. 

4.2. Results 

The UPIoT construction risk of China is evaluated via Matlab pro-
gramming that realizes the IFGDM-CDWEF method, the Matlab project 
can be accessed in the Appendix A. This subsection demonstrates the 
UPIoT construction risk assessment results based on the proposed 
method. 

4.2.1. Dynamic expert weights 
According to the dynamic expert weight determination method 

proposed in Section 3.2, the IFRs Ak, Bk and Ck scored by experts are 
used to determine their weights on first-layer indicators. 

The initial IFE based expert weight ewi
k is determined by eqs. (1), 

(2), and (3), then the IFRs are converted into mass functions via eq. (4). 
After that, according to eq. (5), the mass functions are used to measure 
the conflicts between different experts, thus the conflict information 
based expert weight swi

k can be calculated by eqs. (6) and (7). Finally, 
the expert weights A

ik, B
ik and C

ik are obtained by averaging ewi
k and 

swi
k. The weight matrixes of experts are available in the Appendix A, A

ik

and B
ik are both ×4 10 dimensional matrixes, while C

ik is a ×17 10
dimensional matrix. 

Fig. 7 shows the expert weight distribution of 
= =k i( 1, 2, ...,10, 1, 2, ..., 4)A

ik , it can be seen that different experts 

Table 2 
Basic information of interviewed experts.       

Expert ID Professional title Professional field Working years Working department  

1 Director Power system operation and IoT 24 Science and Technology Department of SGCC 
2 Assistant Power system operation 9 Science and Technology Department of SGCC 
3 Manager State Grid innovation and entrepreneurship 11 E-commerce company of SGCC 
4 Assistant The Internet and informatization 6 E-commerce company of SGCC 
5 Business manager Sales and grid business innovation 12 E-commerce company of SGCC 
6 Secretary Innovation and development policy 5 E-commerce company of SGCC 
7 Professor Energy Internet and Electricity Market 25 North China Electric Power University 
8 Professor Emerging grid technology application and risk management 27 North China Electric Power University 
9 Professor Information economy research in power grid 22 North China Electric Power University 
10 Ph. D Power system big data analysis 5 North China Electric Power University 
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get different weights, but the weight is dynamic because one expert can 
be weighted with various values according to different indicators. For 
example, expert D2 gets the lowest weight on the indicator F3, in-
dicating that the expert may be less familiar with F3 than other in-
dicators. Therefore, the proposed expert weight determining method 
can well discriminate the domain knowledge of experts, this capability 
is crucial for correcting the IFRs used in the subsequent risk assessment 
phases. 

4.2.2. Combined first-layer indicator weights 
The comprehensive weight of first-layer risk indicators can be de-

termined by the IF-AHP-DEMATEL method proposed in Section 3.3. 
First of all, the consistency of IFPRs Ak, Bk is checked and automatically 
repaired by eqs. (8)∼(11), obtaining the consistent matirx A k and B k. 
Then using eqs. (12)(13)(14), the value weight w of indicators can be 
determined from A k , where =w [0.2676,0.2808,0.2373,0.2143]. The 
value weight indicates that the importance of first-layer indicators re-
lative to the UPIoT construction risk can be ranked as F F F F2 1 3 4. 

Afterwards, B k is processed with eqs. (15)∼(19) to produce the 
influence relation matrix U , where 

=U
0.3062 0.8008 0.5831 0.4267
0.3478 0.3593 0.3798 0.3530
0.3557 0.6538 0.2794 0.4022
0.5390 0.7790 0.5157 0.3050 (24)  

Finally, the comprehensive weight of first-layer indicators can be 
obtained, denoted as =cw [0.2481, 0.2730, 0.2335, 0.2454]. Compared 
with w , the weight of indicators F1, F2, and F3 decreases, while the 
weight of indicator F4 increases and exceeds the weight of F3. Therefore, 
the first-layer indicator weight can be ranked as F F F F2 1 4 3, the 
management risk indicator is emphasized with the integration of 
DEMATEL. 

Moreover, the comprehensive influence matrix = ×U u( )ij 4 4 can be 
transformed into an upper triangular matrix = ×U u( )ij 4 4, where 

= <u u u i j( )ij ij ji and = =u i j0( )ij . >u 0ij represents the impact of 
indicator Fi on Fj, while <u 0ij represents the opposite. Therefore, the 
interaction of first-layer indicators is shown in Fig. 8. 

=

F F F F

U

F
F
F
F

0 0.4530 0.2274 0.1123
0 0.2739 0.4261

0 0.1135
0

1 2 3 4

1

2

3

4 (25)  

It can be observed that the business risk (F2) is prone to be largely 
affected by other indicators, thus its weight decreases slightly in cw, on 
contrary, the weight of the management risk (F4) increases dramatically 
due to its wide impact on all other three indicators. Since the Fig. 8 is a 
fully-connected directed diagram, one risk indicator can become a high- 
influence risk source by affecting another through different paths. For 
example, the basic support risk (F1) is more important than the cyber 
security risk(F3) because it gets two influence paths to the indicator F2
while the later gets only one path. Therefore, although it is crucial to 
construct the UPIoT businesses such as comprehensive energy service 

and energy data service, the impact of related risk factors including 
basic support, cybersecurity, and management cannot be neglected. 

4.2.3. Second-layer indicator risk comparison 
In this section, the IFJM =C k( 1, 2, ..., 10)k is processed with the 

determined expert weights and first-layer indicator weights for the 
UPIoT construction risk assessment. Firstly, all the IFJMs given by ex-
perts are integrated with the expert weight =i( 1, 2, ...,17)C

ik via eq.  
(20), thus a comprehensive IFJM G that consists of four sub-matrixes 

=G s( 1, 2, 3, 4)s is obtained, each of them represents the risk of second- 
layer indicators that belong to the corresponding first-layer indicator Fs. 
Then the sub-matrixes are converted into risk mass functions 

=m i m( 1, 2, ..., )i
s

s . 
Fig. 9 shows the risk integration results of all second-layer in-

dicators. According to the Maximum Membership Principle (MMP) 
(Boltyanski & Poznyak, 2012), the indicator risk can be judged as level 

=V j( 1, 2, ...,5)j when m V( )i
s

j is the largest membership degree among 
others. Therefore, the block with the darkest color in Fig. 9 represents 
the risk level of the corresponding second-layer indicator. It can be 
observed that most second-layer indicators are at ‘High’ risk level, other 
indicators like F14, F24, F25, F34 are at “Very high” risk level, while F15 and 
F21 are at ‘General’ risk level. 

However, there are two blocks with very similar colors on the same 
horizontal line of Fig. 9, thus the risk level of the risk indicator corre-
sponding to the line is difficult to determine. For instance, the mass 
function of indicator F32 is 

Table 3 
The parameter values for the UPIoT construction risk assessment.     

Parameter Value Description  

t 4 Number of first-layer indicators 
m 17 Number of second-layer indicators 
m t(1, 2, ..., )s [5,5,4,3] Number of subordinate indicators of the first-layer indicator Fs
n 5 Number of risk levels 

=V j n( 1, 2, ..., )j {‘Very high’,’ High’, 
’General’,’ Low’,’ Very low’} 

Risk level scales 

0.7 Risk-biased experts accounted for 70% 
0.8 Controlling parameter for consistency repairing 
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} Combination coefficient for the expert weight 

Fig. 7. Dynamic expert weight distribution on first-layer indicators. The expert 
weights under different indicators are described by bar groups with different 
colors. 
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=m [0.2868 0.2995 0.1649 0.0909 0.0406 0.1173]2
3 (26) 

Where =m V( ) 0.28682
3

1 is very close to =m V( ) 0.29952
3

2 , but according 
to the MMP, the risk level of F32 is considered as V2. This may be unfair 
because the strong membership degree m V( )2

3
1 is disregarded, thus the 

MMP can be too simple and rough to judge the risk level of the indicator 
which gets two very close or even the same membership degrees in its 
risk mass function. 

In order to accurately compare risk values among different indicators, 
an equation to calculate the comprehensive risk value of each second- 
layer indicator is proposed on the basis of risk management theory. 
Assuming that the defense cost for the risk with different levels is 

=l i( 1, 2, ...,5)i , then li increases as the indicator risk level goes up. The 
risk value of second-layer indicators can be calculated according to eq.  
(27). 

=
=

S m l m V(1 ( )) • ( )F
i

n

i F i
1 (27) 

Where SF was the risk of indicator F , was the identification framework 
and m V( )F i represents the mass function of indicator F , and V 2i . This 
method converts the risk mass function into a real number and takes into 
account all the information contained in the membership. 

Fig. 8. The influence relation between first-layer indicators. Numbers in the directed graph represent the influence weight of upstream nodes.  

Fig. 9. The heat map for second-layer indicator risks. VT on the x-axis re-
presents an unknown and uncertain risk level). 
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Sensor device coverage

Communication network support

Heterogeneous data fusion

Unified cloud platform

Emerging technology application
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Organizational guarantee

Second-layer indicator risk values

Fig. 10. Comprehensive risk values of second-layer indicators.  
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Therefore, let li change linearly from 5 to 1, then =l (5, 4, 3, 2, 1),  
Fig. 10 shows the risk values of all second-layer indicators obtained 
from M . 

Each bar in the Fig. 10 represents the corresponding second-layer 
indicator risk value calculated by eq. (27). It can be seen that com-
munication network support risk (F12) is the highest, followed by 
network layer security risk (F32), conventional business innovation risk 
(F24), and application layer security risk (F34). Therefore, much at-
tention should be paid to the communication network construction as 
well as its security issue. High innovation risk to the conventional 
business indicates that it is hard for power grid companies to improve 
their existing businesses because they have been profiting from elec-
tricity sales for decades. The risk of application layer security is also at a 
high level, indicating that the deployment of external applications on 
the UPIoT may be harmful to the data inside the power grid. 

The lowest risk indicators are end-user services (F21) and emerging 
technology application (F15). Notably, since the second-layer in-
dicators can be grouped by different first-layer indicators, the second- 
layer indicator risk values often get polarized distribution in the same 
group. For example, the difference between the risk values of indicators 
F24 and F21 is fairly large, while both of them belong to the business 
risk indicator that gets the highest weight cw2. This phenomenon in-
dicates that it is hard to compare the risk of first-layer indicators purely 
according to the second-layer indicator risk values, and there may be 
conflicts between the risk mass functions of second-layer indicators, 
thus a risk integration method such as evidence fusion that considers 
the conflict information is needed. 

4.2.4. The UPIoT construction risk integration 
The mass functions of second-layer indicator risks can be integrated 

by eq. (21) to obtain the mass function =m s( 1, 2, ...,4)s of first-layer 
indicators, where 

=

V V V V V

M

F
F
F
F

1 2 3 4 5
0.0678 0.8383 0.0797 0.0107 0.0031 0.0003
0.1545 0.5179 0.2533 0.0567 0.0164 0.0011
0.3004 0.5707 0.0896 0.0297 0.0092 0.0005
0.0498 0.6762 0.1554 0.0636 0.0467 0.0083

1

2

3

4 (28)  

According to eq. (23), the mass functions representing first-layer 
indicator risk are discounted with the indicator weight cw. 

=

V V V V V

M

F
F
F
F

1 2 3 4 5
0.0617 0.7620 0.0725 0.0098 0.0028 0.0914
0.1545 0.5179 0.2533 0.0567 0.0164 0.0011
0.2569 0.4881 0.0766 0.0254 0.0078 0.1451
0.0447 0.6080 0.1397 0.0571 0.0420 0.1084

1

2

3

4 (29) 

Where M is the discounted mass function matrix for the risk of first- 
layer indicators. Compared with eq. (28), except for the mass function 
of indicator F2 with the highest indicator weight, the mass function 
values of other indicators decreases. The maximal membership of m3 is 
smaller than that of m2 in eq. (29), but the opposite is true in the eq.  
(28). These observations indicate that the first-layer indicator weight 
can discriminatively discount the risk mass functions, some of them are 
largely discounted, some of them are lightly discounted, but the risk 
mass function of the indicator that gets the largest indicator weight stay 
unchanged. 

Then using the evidence fusion process shown in eq. (21) again, M
is integrated to form a mass function mr that represents the compre-
hensive UPIoT construction risk, where 

=m [0.0223 0.9505 0.0259 0.0011 0.0002]r (30)  

Hence, the overall risk to China’s UPIoT construction is at a ‘High’ 
level, indicating that lots of risk factors may threat the construction 
process of UPIoT. 

4.2.5. Sensitivity analysis on the combined dynamic weights 
IFGDM-CDWEF method is a risk assessment model with combined 

dynamic weights (CDWs) including the combined indicator weight and 
the dynamic expert weight. In this subsection, sensitivity analysis is 
performed, and four scenarios listed below are designed for exploring 
the effect on the first-layer indicator risks. 

• Scenario 1: The first-layer indicator risk is integrated without con-
sidering the expert weight or the indicator weight. 

• Scenario 2: The first-layer indicator risk is integrated with the cor-
responding indicator weight, but the expert weight is not con-
sidered.  

• Scenario 3: Contrary to the scenario 3, the first-layer indicator risk is 
integrated with the expert weight, but the indicator weight is not 
used.  

• Scenario 4: The first-layer indicator risk is integrated with both the 
expert weight and the indicator weight. 

All the four scenarios are simulated based on the data declared in 
Section 4.1, and the condition of disregarding expert weights in a sce-
nario is equivalent to setting all expert weights to 1 / P, where P is the 
number of experts. In Section 3.2, the expert weight is combined by 
averaging the sum of ewi

k and ewi
k, but in the simulation scenarios, the 

weight is obtained by eq. (31). 

= +ew sw• (1 )•ik
i
k

i
k (31) 

Where the combination coefficient = {0,0.1,0.2,...,1} is set to test the 
effect on the results with respect to different parts of the expert weight. 
The simulation results of each scenario are shown below. 

Table 4 lists the first-layer indicator risks obtained from scenario 1 
and scenario 2, the results from the two scenarios are similar to eqs.  
(28) and (29), respectively. However, since eqs. (28) and (29) are ob-
tained considering the expert weight that is not included in scenarios 1 
and 2, the discounting effect of first-layer indicator weights exists 
whether the expert weight is considered or not. 

These two scenarios provide the baseline for scenario 3 and scenario 
4 that are simulated with the expert weight. In Section 4.2.3, it has been 
found that the MMP can be unconvincing when judging the risk level of 
an indicator with two very close membership degrees on different risk 
levels. Therefore, a distinction value dF is defined in eq. (32) to 
measure the effect of CDWs on the first-layer indicator risk assessment. 

=d m mmax( ) sec max( )F F F (32) 

where mmax( )F represents the maximum membership an indicator risk 
mass function mF , and msec max( )F represents the second largest one. 
Hence the larger the index dF , the easier it is to distinguish the risk 
level of the indicator, and vice versa. For example, in the scenario 1 in  
Table 4, = > =d d0.3658 0.0013F F2 3 , indicating that the risk level of 
F2 are more distinguishable than F3. 

Fig. 11 shows the distinction values simulated from scenarios 1 and 
3, both of them do not consider the influence of first-layer indicator 
weights, but scenario 3 is simulated with varying expert weights. In 
subgraphs a) and b), the distinction values obtained from scenario 3 are 

Table 4 
Simulated results of scenarios 1 and 2.            

V1 V2 V3 V4 V5 Θ  

Scenario 1 F1 0.0666 0.8396 0.0796 0.0107 0.0031 0.0004 
F2 0.1536 0.5194 0.2528 0.0566 0.0164 0.0011 
F3 0.4280 0.4267 0.0807 0.0422 0.0164 0.0060 
F4 0.0574 0.6109 0.1932 0.0700 0.0521 0.0165 

Scenario 2 F1 0.0611 0.7698 0.0730 0.0099 0.0028 0.0834 
F2 0.1536 0.5194 0.2528 0.0566 0.0164 0.0011 
F3 0.3668 0.3657 0.0692 0.0361 0.0141 0.1481 
F4 0.0519 0.5524 0.1747 0.0633 0.0471 0.1106 
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sensitive to the variation of parameter and increase steadily, while the 
corresponding values in the subgraphs c) and d) are more insensitive. 
Compared with scenario 1, dF1 and dF2 of scenario 3 are relatively 
small at the beginning, but exceeds those of scenario 1 eventually as the 
parameter increase. However, dF3 and dF4 of scenario 3 are larger 
than scenario 1 regardless of the parameter value . Notably, in the 
subgraph c), it is difficult to determine the risk level of indicator F3
according to scenario 1 because its dF3 is close to zero, but the di-
lemma is well solved in scenario 3 due to its relatively large distinction 
values distributed on the parameter . 

Fig. 12 shows the simulation results of scenario 4 and scenario 2, 
both of them consider the influence of first-layer indicator weights, but 
the scenario 2 is simulated without the expert weight. It can be seen 
that the subgraphs b), c) and d) in Fig. 12 are similar to the Fig. 11, but 
the highest distinction values in the subgraphs a), c) and d) are a little 
lower than those shown in the Fig. 11 due to the participation of first- 
layer indicator weights. Nevertheless, contrary to the scenario 3 in the 
subgraph a) in Fig. 11, the distinction values of scenario 4 decrease as 
the parameter increases. Since the only difference between scenarios 
3 and 4 is that the latter considers the first-layer indicator weights, the 
discounting effect of the weight on different membership degrees of a 
risk mass function can lead to a downward trend in the distinction 
values. 

4.3. Discussion of the results 

According to Fig. 7, each expert can be weighted from the IFE and 
conflict information capable of measuring the uncertainty caused by 
differential domain knowledge and working experience, thus the 
weight changes dynamically with different experts and indicators.  
Fig. 8 indicates that risk factors do not affect the UPIoT construction 
independently, the interactions between indicators can change their 
weight in the system. Therefore, with the discounting effect from 
CDWs, the risk mass function of UPIoT construction becomes more 
comprehensive and representative, suggesting that the UPIoT con-
struction risk of China is at a relatively high level, especially the basic 
support risk shown in the eq. (29). Fig. 9 intuitively shows the risk mass 
functions of second-layer indicators, but Fig. 10 provides a more clear 
and quantitative comparison of the second-layer indicator risk, in-
dicating that the communication network support risk, the conven-
tional business innovation risk, and the network layer security are three 
the most threatening factors underlying the UPIoT construction risk. 
Consequently, when constructing the UPIoT, SGCC should concentrate 
more on the IoT structure including the network layer and application 
layer, especially the infrastructure and security of communication 
networks. Moreover, since SGCC is a conventional state-owned com-
pany, the risk from its internal resistance to innovative new businesses 
cannot be ignored. 
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Fig. 11. Simulation results of scenario 1 and scenario 3: a) indicator F1, b) indicator F2, c) indicator F3, d) indicator F4. (Note: The distinction values are calculated by 
eq. (31)). 
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In terms of the sensitivity analysis, Figs. 11 and 12 display the ef-
fects of changing CDWs. When the expert weights are not considered in 
scenarios 1 and 2, two membership degrees in the risk mass function of 
an indicator may be too close to distinguish which risk level the in-
dicator belongs to. Nevertheless, in scenarios 3 and 4, this embarrass-
ment can be greatly improved by including the expert weight capable of 
weighting different IFRs in the risk integration process, even though the 
risk mass functions of some indicators fluctuate slightly with the in-
crease of the combination coefficient . Hence, the IFGDM-CDWEF 
method is able to deal with the conflict information from multiple ex-
perts, obtaining a fairly stable and comprehensive indicator risk value. 

However, although the proposed method has potential in compre-
hensive risk assessment areas that lack objective data, it is inevitable 
that there are some limitations need to be improved in the future. For 
example, this study dedicates to find out the risk factors that pose the 
greatest threat to the UPIoT construction, but lacks the mechanism 
analysis on how each risk factor affects the UPIoT. The method for 
determining the weight and risk in this paper is chosen based on the 
problem characteristics, thus further details need to be discussed when 
dealing with other problems beyond the scope of UPIoT. 

5. Conclusions 

In this paper, the risk of UPIoT construction in China is studied with 
a comprehensive risk assessment framework based on the IFGDM- 

CDWEF method. A hierarchical indicator system with two-layer risk 
factors affecting the UPIoT construction is identified from four aspects: 
basic support, business, cyber security, and management. Under the 
IFGDM environment, the combined indicator weight determined via the 
IF-AHP-DEMATEL method can effectively discount the risk mass func-
tions of first-layer indicators. Moreover, the dynamic expert weight 
obtained from the entropy and conflict information of IFRs is able to 
discriminate and correct the multi-source scoring data. Therefore, both 
the IFRs and risk mass functions of indicators can be well corrected by 
the CDWs. Based on the sensitivity analysis, although the changing 
CDWs result in a slight fluctuation of the risk mass function, the dy-
namic expert weight is able to resolve the vagueness of indicator risk 
levels by correcting the IFRs. Moreover, the risk comparison method 
that considers the risk defense cost is more thoughtful and practical 
than the pure application of MMP. According to the evidence fusion 
theory, the UPIoT construction risk is comprehensively integrated 
considering conflicts. The results indicate that China’s UPIoT con-
struction risk is generally at a high level, especially in the construction 
of strong communication networks and innovative businesses, pro-
viding a risk preventing perspective for establishing the sustainable 
ecosystem in China. 
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Fig. 12. Simulation results of scenario 2 and scenario 4: a) indicator F1, b) indicator F2, c) indicator F3, d) indicator F4.  
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