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A B S T R A C T

In a near future, electric vehicles (EVs) will constitute considerable part of transportation systems due to their
important aspects such as being environment friendly. To manage high number of EVs, developing hydrogen
storage-based intelligent parking lots (IPLs) can help power system operators to overcome caused problems by
high penetration of EVs. In this work, a new method is applied to get optimal management of IPLs in an un-
certain environment and provide optimal bidding curves to take part in power market. The main purpose of this
work is to get optimal bidding curves with considering power price uncertainty and optimal operation of IPLs. To
model uncertainty of power price in the power market and develop optimal bidding curve, the opportunity,
deterministic and robustness functions of the information gap decision theory (IGDT) technique has been de-
veloped. Obtained results has been presented in three strategies namely risk-taker, risk-neutral, and risk-averse
corresponding to opportunity, deterministic, and robustness functions of the IGDT technique. In order to de-
monstrate the effects of demand response program (DRP), each strategy is optimized with and without DRP
cases. The mixed-integer non-linear programming model is used to formulate the proposed problem which is
solved using the GAMS optimization software under DICOPT solver.

1. Introduction

By increasing number of electric vehicles day by day, the power
system operators should prepare themselves to deal with this new
phenomenon. Based on prediction of the research institute of electric
power system, at the end of 2050, plug-in hybrid vehicles will con-
stitute more than sixty percent of vehicles in US [1]. Not only EVs are
not simple energy consumers, also they are active players in the power
system imposing many challenges on optimal system operation due to
their high uncertainty level [2]. To deal with raised problems by the
EVs, intelligent parking lots (IPLs) can be considered as a feasible and
reliable solution [3]. Intelligent parking lots act as a charging point for
high number of EVs which eases managing numerous EVs dispersed in
the different part of the distribution system [4]. Therefore optimal
operation of IPLs should be well-studied [5].

1.1. Literature review

In the literature, many worthy works has been published in field of
optimal operation and management of the IPLs in different situation
which will be briefly reviewed in the following. By introducing new
concepts, exchanged energy between the EVs and upstream network is
investigated in [6]. Optimal discharging and charging management of
EVs is surveyed using the game theory method in [7]. Considering re-
sidential and commercial places, scheduling of the EV is pursued during
day and night by utilizing two-stage approximate dynamic program-
ming framework in [8]. In a personal parking lot, scheduling of EVs’
discharge is investigated by taking parking patterns of EVs into account
in [9]. In a reserve and joint energy markets optimal charging and
discharging of EVs are studied considering requirements of EV owner in
[10]. Considering uncertain driving patterns of EV, optimal sitting of
IPL of electric vehicles in the distribution system is carried out using a
probabilistic method in [11]. To get online demand coordination be-
tween distribution system and EVs, a fuzzy system is proposed in [12].
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In [13], to estimate discharge capacity of IPL, which is equipped with
roof top PV, a mathematical model is proposed. As energy storage
systems, batteries of parked EVs in the IPL are considered in [14] to
take part in reserve market. With the goal of power loss and operating
cost minimization of the system, and increment system reliability, op-
timal IPL placement is investigated in [15]. To get discharge/charge
modes of EVs in large capacities, a conventional IPL is turned to IPL in
[16]. Different parameters of EVs are considered in [17] to raise the
sale of energy stored of EVs. In [18], optimal energy scheduling of huge
number of EVs in an urban IPL is investigated. A stochastic discharge
and charge scheduling of EV in the IPL is carried out in [19]. In [20], an
efficient stochastic based dynamic programming method is introduced
to optimally charge an EV. A bi-objective framework is developed in
[21] to minimize the emission and operational cost using the ε-con-
straint method. To pinpoint the optimal location and size of IPL con-
sidering the reliability of distribution system, multi-objective problem
for an IPL is provided in [22-24]. A deterministic model to analyze
behavior of EVs is presented in [25] using the Markov-chain technique
to optimize the discharge and charge processes.

1.2. Novelty and contribution

Up until now, many worthy works are carried out on planning and
operation of IPL. But, as far as we know, process of participating in
power market in the present of power price uncertainty has not been
considered in the previous works. Therefore, the main aim of the pre-
sent paper is to provide optimal bidding strategy to submit to the power
market by the operator of the IPL. To do so, IGDT technique is used to
develop a mechanism to construct optimal bidding-curve for each hour.
To get better analysis of the operation of the system, obtained results
has been presented in risk-taker, risk-neutral, and risk-averse strategies
corresponding to opportunity, deterministic, and robustness functions
of the IGDT technique, each of which, has been solved with and without
DRP. The novelty and contributions of this work are clearly provided
below.

1 Optimal bidding strategy for hydrogen storage-based intelligent
parking lot of electric vehicles is obtained.

2 IGDT technique is proposed to develop a mechanism to construct
optimal bidding strategy.

3 Risk-taker, risk-neutral, and risk-averse strategies are analyzed via
the proposed IGDT technique.

4 The effects of demand response program in each strategy are in-
vestigated.

1.3. Paper organization

The rest of this paper is categorized as follows: Deterministic for-
mulation of the problem is provided in Section 2. The IGDT method and
its implementation on the problem are detailed in Section 3. The ob-
tained results are discussed in Section 4. Finally, the conclusion of this
work is provided in Section 5.

2. Deterministic formulation

The under system study is illustrated in Fig. 1 [18] which is con-
sisted of RESs including WTs and PVs, MTs, HSS, and load. In the de-
veloped case study, the DRPs are considered as virtual generation units
to reduce operating cost by smoothing out the load curve. To exchange
energy with the upstream-grid and satisfy the required load demand, it
is assumed that the system operates in grid-connected mode. Upstream
grid price uncertainty is modeled using the proposed IGDT technique.
In other words, IGDT technique is applied to create optimal bidding
curve for each hour which has been submitted to the power market by
the operator of the IPL. Furthermore, the risk-taker, risk-neutral, and
risk-averse strategies corresponding to opportunity, deterministic, and

robustness functions of the IGDT technique are obtained considering
with and without DRP.

In order to get optimal operation strategy, the operator of the IPL
needs to get required information including the initial SOC of EV,
power limits of discharge/charge modes, EV's expected SOC at de-
parture, and elapsed-time of battery-life as soon as EVs enter to the IPL.
By considering mentioned data, the system operator can developed
optimal charging and discharging strategies to minimize its operating
cost. In should be noted that to optimize performance of IPL, a central
controller as an interface between the upstream network and IPL is
required.

2.1. Objective function

Minimizing the cost function of the IPL, which is presented in
Eq. (1), is the main aim of the IPL operator considering power exchange
between IPL and upstream-grid.
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where,
Indices

i, tIndicators of EV and time
jIndicators of DG
Parameters
πUG

t Upstream network price
π π,Ch Ev

i
Dch Ev
i

, , EV's charging and discharging price in the IPL
ΔtSampling period to count available EVs in the IPL
Decision variables
OBJObjective function
PUG

t IPL's purchased power from the upstream network
CLDG

j t, DG's operation cost
SCLDG

j t, DG's start-up cost in each time
SHCLDG

j t, DG's shut-down cost in each time
P P,Ch Ev

i t
Dch Ev
i t

,
,

,
, EV's charged/discharged power

The first term of Eq. (1) refers to the cost of power procurement
from the upstream network. The operating and start-up costs of the MTs
are modeled by the second term of the objective function. Finally, the
third term models discharging and charging costs of the parked EVs in
the IPL. It should be noted that as the operator of IPL gets benefit from
EVs' owners through charging their vehicles, charging cost of EVs is
considered as a negative term.

2.2. Operating constraints of IPLs

To guarantee safe performance of the IPL, following constraints
should be taken into account.
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i,t
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≥SOC SOCi t
Arrival
i t, , (10)

where,
Parameters

P P,Ch
i

Dch
i

,max ,max Maximum limits of EV's charged and discharged
power
Mi, tBinary parameter; whether the EVs are in the parking lot or not
t t,a

i
d
iApproximate arrival/departure time of EVs to/from the IPL

η η,G V V G2 2 EV's charging/discharging efficiency
SOC SOC,i i

max min Maximum and minimum SOC of EVs
SOCΔ i

max Maximum discharge/charge rate of EV
SOCArrival

i t, The initial SOC of EV when is arrived to IPL
NmaxSwitching limit between the discharge/charge states
Decision variables
W W,ch

i t
Dch
i t, , Binary variable for determining charging and discharging

modes
SOCi, tEV's SOC
SOCDeparture

i t, EV's SOC at departure

EVs’ charged power and discharged power are limited via Eqs. (2)
and (3), respectively. To avoid charging and discharging of the EVs at
the same time, constraint (4) is utilized. Taking the battery-life of EVs
into account, the maximum switching between charge and discharge
states has been limited via constraint (5). Using Eq. (6) the SOC of EVs
is calculated. Also, the SOC of EVs should be restricted in its minimum
and maximum limits which is modeled by constraint (7) [26]. In ad-
dition, constraint (8) is implemented to model the maximum charge/

discharge rates of EVs considering different charging time of utilized
batteries in EVs which is an important parameter in scheduling of the
IPL. To make sure that the SOC of EVs is in requested level at departure,
constraint (9) is utilized. Finally, the SOC of EVs at each time should be
equal or greater to the EVs’ SOC when entering which is modeled via
constraint (10) [18].

2.3. Modeling of renewable energy sources

Generated power by the WT which is dependent on the wind speed
is modeled by constraint (11) [27]. Power output of PV system which is
related to temperature and solar radiation is calculated by constraint
(12).
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where,
Indices

k, pIndicators of wind generation and PV system
Parameters
P P,R

k
W
k t, WT's rated and output power

V V V, ,c
k

R
k

F
kWT's cut-in, rated and cut-out speed s

VtForecasted wind speed
PPV

p t, PV's output power
ηpPV's conversion efficiency
sp, TaArea of PV and temperature
GtSolar irradiation

Fig. 1. An IGDT-based risk-involved the proposed model for IPL [18].
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2.4. Modeling of MTs

Technical constraints of MTs are provided by Eqs. (13)-(23).
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where,
Indices

fAuxiliary index for modeling of DG's minimum OFF-time and ON-
time starting from 1 to the high value of {mutj, mdtj}.
Parameters
aj, bjCoefficients for DG's operation cost function
UDCjDG's start-up cost
SDCjDG's shut-down cost
P P,LDG

j
LDG
j

,max ,min DG's maximum and minimum power
RDj,RUjRamp down /up amount of DG
MUTj, MDTjDG's minimum up/down times
Decision variables
Uj, tBinary variable, which is equal to 1 if MT is ON; otherwise 0
PLDG

j t, DG's scheduled power
Dnj, f, Upj, fAuxiliary positive variable for modeling DG's minimum
down/up time limit

Eqs. (13)-(15) models the operation, start-up and shut-down costs of
MTs, respectively [19]. Operating constraints of MTs are presented by
Eqs. (16)-(23). Eqs. (16) and (17) models maximum and minimum
generated power limits, Eqs. (18) and (19) models ramp up and down
constraints, and Eqs. (20) and (21) presents minimum down-time and
up-time constraints of the MTs, respectively. Lastly, Eqs. (22) and (23)
is used to linearize minimum down-time and up-time limitations of MTs
[19].

2.5. Constraint of upstream network

The exchanged energy between the upstream network and IPL is
limited in Eq. (24) [19].

≤P PUG
t

UG
max (24)

where,
Parameter

PUG
max Maximum limit of power exchange between the upstream

network and IPL

2.6. DRP modeling

Eqs. (25)-(28) are utilized to implement time-of-use rate of DRP. In
this program, it is assumed that some load can be transferred from
peak-periods to off-peak periods which smooth outs the load-curve
while aggregation of consumed energy is not reduced during time-
horizon of the study [24].

= +load load DRPt t t
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0 (27)

∑ =
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DRP 0
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where,
Parameter

load DRP,t
0

max Load amount and maximum load participation in DRP
Decision variables
loadtLoad profile after implementing DRP
DRPtFree variable for DRP implementation which is positive when
load is increased and negative when load is decreased

After DRP implementing, the amount of load is determined using
Eq. (25). Using Eqs. (26) and (27), the amount of transferred power
from one period to another is restricted. In this study, it is assumed that
only 20% of base load at each hour can be transferred to other periods.
To ensure that the load demand is just transferred from peak periods to
off-peak periods, Eq. (28) is utilized [28].

2.7. Hydrogen storage system modeling

A hydrogen storage system (HSS) which is composed of hydrogen
storage tanks, FC, and EL is considered in the case study [29]. In the
considered HSS, the electrolyser converts energy to hydrogen molar
during low-price time periods which is stored and filled the hydrogen
tank. Then, hydrogen stored in the tank is turned to energy during high
price periods. Eqs. (29)-(41) model the operation of the HSS [30].
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where,
Parameters

ℜ, TH2, LHVH2Constant of gas, average temperature and minimum
heating amount of hydrogen
N N,H

EL
H
FC

2,max 2,max Maximum limit of hydrogen molar production and
consumption in the electrolyser (EL) and fuel cell (FC), respectively
P P,EL EL

min max Minimum and maximum limits of power consumption in
the EL
P P,FC FC

min max Minimum and maximum limits of power production in the
FC
P P,initial

H
t
H2
0

2Hydrogen tank's pressure in the starting time
P P,H H

max
2

min
2 Hydrogen tank's maximum and minimum pressure limits

VH2Overall tank volume
ηFC, ηELFC/EL's efficiency
Decision variables
N N,H t

FC
H t
EL

2, 2, FC/EL's hydrogen molar consumption/production
Pt

H2Pressure of hydrogen tank
P P,t

EL
t
FCEL/FC's power consumption/production

U U,t
FC

t
ELBinary variable for FC/EL's ON or OFF modes

The maximum and minimum power consumption constraints of the
electrolyser are presented by constraints (29) and (30). Eq. (31) limits
the maximum hydrogen molar generation of the electrolyser. Using
Eq. (32), the generated hydrogen molar by the electrolyser can be
calculated [30]. In addition, constraints (33)-(35) model the initial
amount of pressure, maximum and minimum amounts of hydrogen
tank, respectively [30]. Furthermore, the maximum hydrogen molar
consumption of the fuel cell is limited by Eq. (36). Consumed hydrogen
by the fuel cell, NH t

FC
2, , to generate power, Pt

FC, is calculated by Eq. (37).
Finally, in order to restrict amount of generated power by the fuel cell,
Eqs. (38) and (39) is utilized. In order to prevent simultaneous opera-
tion of the electrolyser and fuel cell, Eq. (40) is provided. Finally,
Eq. (41) presents the dynamic model of HSS [30].

2.8. Power balance constraint

Constraint (42) is used to make a balance between consumed and
procured power by the IPL. The new load demand after implementing
DRP is used rather than initial load amount in the power balance
constraint.
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3. The background of IGDT technique

Various valuable approaches such as stochastic, fuzzy modeling,
robust-optimization, and IGDT method are developed to model un-
certainty in any system. IGDT is firstly proposed by Prof. Ben-Haim in
[31]. To compare the IGDT technique with similar approach like robust
optimization, IGDT technique analysis the worst and the best strategies
to deal with but robust optimization only deals with worst strategy. It
should be noted that any uncertain parameter might have negative or
positive impacts on the system. Therefore, the IGDT method is utilized
as a proper method to evaluate both negative and positive sides of an
uncertainty by considering robustness and opportunity functions, re-
spectively, which is impossible using other methods. Using the IGDT
method, three strategies as risk-taker, risk-neutral, and risk-averse are
developed in which the system operators can get better interception of

impacts of uncertainty of power price in the upstream grid and get
optimum decision based on their preferences. In the previous studies,
IGDT is applied to obtain optimal bidding strategy of large consumer in
[32] and central concentrating solar power plant in [33].

The problem formulation in the presence of upstream grid price
uncertainty model is briefly expressed in Eqs. (43)-(47) which λis the
uncertainty parameter.
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In above equations, Xand U show the decision variables and set of
uncertainty in the model, respectively. Eq. (47) expresses the un-
certainty model mathematically, which is based on fractional error
model from IGDT technique [31]. The parameters α and π̃UG

t are the
uncertain radius and the forecasted amount of uncertain parameter. In
other words, α is the maximum deviation value of uncertain parameter
from its forecasted value. The three risk-based strategies in IGDT
technique are expressed as follows:

3.1. Risk-neutral strategy

When the uncertainty parameter is forecasted exactly to its certain
values, the uncertainty has no effect on objective function. The math-
ematical model for risk-neutral strategy is formulated below.

=f f X πmin( ( , ˜ ))b UG
t (48)

≤H X( ) 0 (49)

=G X( ) 0 (50)

The formulation of risk-neural strategy is based on zero deviation of
uncertain parameter from its exact amount.

3.2. Risk-averse strategy based on robustness function of IGDT

Power price rising in the upstream network is modeled by the ro-
bustness function. To get robust operation of the system, α r^ ( )c de-
termines the maximum resistance against any rising of power price in
the upstream network. In this case, the system operator by spending
more money on energy procurement seeks to get the risk-averse
strategy. To get α r^ ( )c value, optimization problem (51)-(57) should be
optimized.

=α r α^ ( ) maxc (51)

≤f X π r( , )UG
t
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≤ ≤μ0 1 (57)

Robustness function based on IGDT technique is provided in
Eq. (51) which should be optimized subject to constraints (52)-(57). As
provided above, the α r^ ( )c is the maximum radius of uncertainty para-
meter and rc is the predetermined amount of objective function and will

J. Liu, et al. Journal of Energy Storage 27 (2020) 101057

5



be determined by the operator or decision maker. In addition, μ is the
percentage of increased cost due to uncertainty parameter modeling.

3.3. Risk-taker strategy based on opportunity function of IGDT

To model power price decrease in the upstream network, the op-
portunity function of IGDT technique is utilized as risk-taker strategy.
In other words, the deviation of uncertain parameter has positive effects
on objective function. In this case, lower values of β r^ ( )w is desirable.
Optimization problem (58)-(64) express the opportunity function based
on IGDT.

=β r α^ ( ) minw (58)

≤f X π r( , )UG
t

w (59)

= × −r f X π σ( , ˜ ) (1 )w b UG
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≤ <σ0 1 (64)

Opportunity function based on IGDT technique is provided in
Eq. (58) which should be optimized subject to constraints (59)-(64).
The rwis the minimum reduction value of objective function from its
based determined amount and β̂ has positive value and defined as
minimum radius of uncertainty. The σ is also determined by operator or
decision maker.

4. An IGDT risk-involved problem formulation

4.1. Risk-averse strategy via robustness function of IGDT

To get risk-averse strategy of the system via robustness function of
IGDT, α r^ ( )c determines the maximum resistance against any rising of
power price in the upstream network. In this case, the system operator
by spending more money on energy procurement seeks to get the risk-
averse strategy.

The risk-averse strategy of the system via robustness function of
IGDT is formulated as follows:

=α r α^ ( ) maxc (65)
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It should be noted that the constraint (69) is added to construct
optimal bidding curves which is submitted to the upstream grid to
purchase power.

4.2. Risk-neutral strategy without considering IGDT technique

The amount of forecasted upstream grid price is the same as the real
value and the formulations are as follows:
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Subject to:

−Constraints (2) (42) (72)

4.3. Risk-taker strategy via opportunity function of IGDT

To model power price decrease in the upstream network, the op-
portunity function of IGDT technique is utilized. In this case, lower
values of β r^ ( )w is desirable.

The risk-taker strategy of the system via opportunity function of
IGDT is formulated as follows:

=β r α^ ( ) minw (73)
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It should be noted that the constraint (77) is added to construct
optimal bidding curves which is submitted to the upstream grid to
purchase power.

5. Numerical simulation

In this paper, the main scope is to construct optimal bidding curve
to be submitted in the upstream grid by the operator of the IPL taking
impacts of HSS and DRP into account. On the other hand, optimal
scheduling of the different components of the system is studied con-
sidering uncertainty of power price. Therefore, the results have been
presented in risk-taker, risk-neutral, and risk-averse which are corre-
sponded to opportunity, deterministic, and robustness functions of
IGDT technique. In addition, at each strategy, to show the effectiveness
of the DRP, with and without DRP cases is considered to solve the
problem. All the required information for the simulation has been taken
from Jannati and Nazarpour [34]. Simulations are implemented under
GAMS optimization software [35] and solved using DICOPT solver
[36].

5.1. Risk-averse strategy of the system

By using the robustness-function based on IGDT technique, any in-
crease in the power price is modeled and its impact on the scheduling of
different elements of the system can be comprehensively investigated.
Therefore, robustness function results are used to develop the risk-
averse strategy. In this strategy, the system operator seeks to be im-
mune to the high power prices in the upstream-grid by using its internal
sources. Fig. 2 depicts the robust operating cost of the system against
the robustness parameter α r^ ( )c . It is seen that by increasing total op-
erating cost of the system, the robustness parameter in both without
and with DRP cases is continuously increasing. This means that higher

J. Liu, et al. Journal of Energy Storage 27 (2020) 101057

6



robustness in operation of system considering increase in the power
price, more money should paid as the operating cost of the system. In
addition, it can be seen that by implementing DRP, obtained robustness
is considerably increased. For example, by considering $1320 as oper-
ating cost of the system the robustness of the system is about 15% in
without DR case, while this number is increased to 20% by im-
plementing DR case.

5.2. Risk-taker strategy of the system

As said before, the opportunity function based IGDT technique is
used to get analysis of possible power price reduction in the power
systems. In this study, any reduction in power price will lead to a
windfall profit in operation of the system. To get precise interception of
obtained results on the operation of the system, risk-taker strategy is
obtained based on opportunity function results. The opportunity func-
tion versus the operating cost of the system is illustrated in Fig. 3. It is
shown that total opportunistic operating cost against the opportunity
parameter is continuously descending. This means that higher risks
against the uncertainty by considering the lower operating cost. Ac-
cording to Fig. 3, by considering 15% for opportunity function, the total
operating cost of the system approximately will be equal to $1120 and
$1100 for without and with DRP cases.

5.3. Load profile

By applying DRP, the load demand is transferred from high price
time periods to low price time periods to flatten the load curve which
will result in lower operating costs. Fig. 4 presents the load curve of the
system in three strategies. In is obvious that the load demand is in-
creased during early hours of the day because reasonable power price is
offered in the upstream grid. In contrast, during hours 17–23 where
higher power prices are experienced in the upstream grid, the load
demand is reduced in all strategies by applying demand response pro-
gram at this period. In risk-averse strategy to avoid high risks of power
price, amount of shifted demand is higher than two other strategies. In
opposite way, the minimum amount of load transition between low and
high price period is recorded in the risk-taker strategy due to take ad-
vantage of possible power price decrease in the upstream network.

5.4. Power generation of MTs

As discussed before, to satisfy required load demand of the system,
three different MT units are considered as internal power sources in the
system. Power generation of these units is depicted in Figs. 5-7. Ac-
cording to Fig. 5 which shows the power generation of MT1, in risk-
averse strategy, this unit generate power under its maximum capacity
to help the system operator to be reduce power procurement from the
upstream network. Turning to Fig. 4 shows that by implementing DR
program load is shifted to hours 1–6 in this strategy; therefore, gener-
ated power by MT1 is increased to satisfy load after applying DR pro-
gram in risk-averse strategy while power generation of other units is not
changed or even decreased.

In risk-neutral strategy, power generation of MT2, which is shown
in Fig. 6, is increased after implementing DR programs. In contrast, as it
can be shown from Fig. 7, generated power by the MT3 is equal to zero
when DR program is applied while there is not significant change in
generated power by the MT1 in this case.

To get advantage of lower electricity prices in the upstream

Fig. 2. Robustness-function based on IGDT technique.

Fig. 3. Opportunity-function based on IGDT technique.

Fig. 4. Load demand after implementing DRP.
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network, the system operator prefers to purchase power from upstream
network than using its internal resources. Therefore, scheduled power
generation of MTs in risk-taker strategy is much less than generated
power in other two strategies in which the MT3 is not scheduled to

generate power in this strategy. In addition, it is seen that implementing
DR program has no made significant difference in scheduling of the MTs
in the risk-taker strategies. Finally, as was expected, comparing ob-
tained results show that the maximum generated power by the MTs is
recorded in risk-averse strategy while the minimum amount of sched-
uled power of these units is reported in risk-averse strategy.

5.5. Operation of the IPL

Average SOC of the IPL is shown in Fig. 8. According to Fig. 8, it can
be interfered that parked EVs in the IPL have not been charged or
discharged between hours 1–5 in risk-neutral strategy and risk-taker
strategy as their SOC's has not changed. In all strategies, the EVs have
been charged during hours 6–17 in which their SOC level has been
increased from 40% to about 90%. Fig. 9 depicts discharging and
charging power of the IPL which approves the previous explanations.

5.6. Operation of HSS

The charged and discharged power of HSS is illustrated in Fig. 10. It
should be noted that charged power is shown by positive numbers while
the discharged power is provided by negative numbers. In all strategies
the HSS is charged at early and late hours of the time horizon because
the load demand and power price are low. On the other hand, hours 19
and 20 when the load demand is high, the HSS injects power to the
system in risk-taker and risk-averse strategies, respectively. In risk-taker
strategy, in with DR case, the HSS only is discharged during hours
12–14.

5.7. Optimal bidding curves

To take part in the power market and power procurement from the
upstream network, submitting offering and bidding curves to the power
market is necessary. According to a common requirement in almost any
power markets, the offering and bidding curves should be steadily

Fig. 5. Scheduled generated power of MT1.

Fig. 6. Scheduled generated power of MT2.

Fig. 7. Scheduled generated power of MT3.
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increasing and decreasing, respectively. When there is an uncertainty in
the power market, providing bidding curves helps the system operator
to purchase power from upstream network at the best possible prices.
Therefore, at each hour, the bidding curves should be provided and

submitted to the market. In this paper, the optimal bidding curve at
each hour is developed in four different cases as opportunity with DRP,
opportunity without DRP, robustness with DRP, and robustness without
DRP to cover all the possible situations. Fig. 11 illustrates the optimal
bidding curve of the system at hour 8. As it can be shown, in all cases,
when the bidding price is higher than 0.08 $/kWh the bidding power is
equal to zero. In other words, in opportunity with and without DRP
cases, when the bidding price drops to less than 0.065 $/kWh, the
bidding power reaches its maximum level which is 1000 kW.

Fig. 12 presents the optimal bidding curves at hour 14. At this hour
bidding power in robustness with and without DRP cases is equal to
zero which means that the power prices in the market is not reasonable
according to the robustness strategy of the system operator. In oppor-
tunity with DRP case, bidding power is zero which price is higher than

Fig. 8. Average SOC of the IPL (%).

Fig. 9. Discharging and charging power of EVs in the IPL.

Fig. 10. Charged and discharged power of the HSS.

Fig. 11. Optimal bidding curve at hour 8.
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0.069 $/kWh while by reaching bidding price to under this level, the
bidding power is increase to its maximum level. In addition, in op-
portunity without DRP case, by reducing bidding prices to 0.076 $/
kWh, the system operator increased its bidding power to procure power
from the upstream network.

Optimal bidding curve of the system of hour 15 is depicted in
Fig. 13. At this hour, bidding power in robustness with DR case is equal
to zero for all power prices while 102.7 kW at price 0.076 $ and
116.7 kW at price $0.074 at this hour is bided by the system operator in
robustness without DR case. Finally, in opportunity with and without
cases, the bidding power is equal to 1000 kW when bidding price is less
than $0.063 at this hour.

6. Conclusion

In this work, developing a new method to get optimal bidding
curves and optimal energy management of IPL in the presence of the
HSS considering DRP has been investigated in an uncertain power
market structure. DRP is taken into account as a virtual generation unit.
To model power price uncertainty and develop optimal bidding curve,
the opportunity and robustness functions based on IGDT technique has
been developed. Obtained results has been presented in three strategies
namely risk-taker, risk-neutral, and risk-averse corresponding to

opportunity, deterministic, and robustness functions of the IGDT tech-
nique, each of which, has been solved in two cases as with and without
DRP cases. Furthermore, the optimal bidding curve and optimal sche-
duling of different elements of the system is discussed in the context.
Finally, in the future work, robust optimization method can be applied
to obtain optimal energy management and optimal bidding curves of
IPL in the presence of the HSS and DRP in an uncertain environment.
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