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Many modern histopathology laboratories are in the process of digitizing their workflows. Digitization
of tissue images has made it feasible to research the augmentation or automation of clinical reporting
and diagnosis. The application of modern computer vision techniques, based on deep learning,
promises systems that can identify pathologies in slide images with a high degree of accuracy.
Generative modeling is an approach to machine learning and deep learning that can be used to
transform and generate data. It can be applied to a broad range of tasks within digital pathology,
including the removal of color and intensity artifacts, the adaption of images in one domain into those
of another, and the generation of synthetic digital tissue samples. This review provides an introduction
to the topic, considers these applications, and discusses future directions for generative models within
histopathology. (Am J Pathol 2021, -: 1e7; https://doi.org/10.1016/j.ajpath.2021.02.024)
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Clinical histopathology is at an exciting paradigm shift, with
many laboratories replacing traditional microscopy with
high-resolution scanners and large digital displays. Unlike
traditional slides, digital images can be shared electronically,
marked up simultaneously by multiple pathologists, and
assessed automatically.1 The deployment into clinical prac-
tice of systems that automate and augment diagnostic
reporting is expected to lead to a significant increase in
assessment capacity alongside quicker reporting times. This
article provides a brief introduction to deep generative
models, reviews their current use in digital pathology, and
envisions their future applications within the field. To
contextualize this work, deep generativemodels are discussed
in relation to the current state-of-the-art deep learning tech-
niques for pathology and the problems that generative tech-
niques can solve within a conventional pipeline.

Before discussing the place that generative models could
take in the field of automated histopathology, it is necessary
to describe the current typical workflow of machine learning
in digital pathology and some of the common issues that can
hinder downstream reporting tasks. A taxonomy of data
science tasks, independent of pathology, organized into five
stigative Pathology. Published by Elsevier Inc
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categories, undertaken sequentially: obtain, scrub, explore,
model, and interpret (dataists, http://www.dataists.com/
2010/09/a-taxonomy-of-data-science, last accessed September
18, 2020, are shown in Figure 1. This model can be used to
understand the process of applying machine learning in
digital pathology. Data are obtained through the fixing,
staining, and scanning of tissue to transform into a set of
whole slide images. These images are then scrubbed, or
preprocessed, to remove artifacts and prepared to be used in
the modeling phase. Tasks such as stain normalization, data
augmentation, and patch generation fall into this category.
In the exploration phase, resulting scrubbed data are
analyzed, either automatically or by a human, to determine
. All rights reserved.
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Figure 1 A taxonomy of data science tasks applied to automated whole slide image analysis.

Morrison et al
an appropriate modeling technique, such as a specific neural
network architecture. A large number of different pathol-
ogies and tissue types may be of interest in digital pathol-
ogy. This makes it impractical to iteratively try every
possible modeling technique, and in the case of ensemble
learning, every combination of technique. The machine
learning system is trained and evaluated during the
modeling phase. In the interpretation phase, human pathol-
ogists are presented with the predictions of the model which
can be used for clinical or research work.

The automation of whole slide image (WSI) analysis and
diagnosis presents several significant challenges.2 Foremost
is the issue of data size; whole slide images are multi-gigabyte
images in the range of approximately 100,000 � 100,000
pixels. This makes a direct application of modern computer
vision algorithms on non-specialist computing hardware
impractical. Typical solutions to overcome this include:
downsampling the image and breaking the image up into
smaller subimages called patches.

Second, data availability is problematic for most re-
searchers. Supervised machine learning requires labels for
each sample. In WSI analysis, this may mean assigning a
category to each slide as a whole, identifying a set of points
of interest on the tissue, or drawing around areas to segment
tissue types or pathologies. For each of these, a trained
specialist in histopathology is required. The process is time-
consuming and expensive, and there is often a lot of inter-
observer and intraobserver variability between the labels
provided by pathologists. As a result, data sets used to train
automated digital pathology models tend to be small
compared with those available in other computer vision
subfields, such as ImageNet,3 where non-specialists can
straightforwardly provide labels (eg, labeling a cat versus a
dog). This situation, however, has been improved by the
release of tissue annotated open data sets, such as Camel-
yon164 and Camelyon175. Furthermore, initiatives such as
iCAIRD (iCAIRD, https://icaird.com, last accessed
September 18, 2020) and Pathlake (PathLAKE, https://
www.pathlake.org, last accessed September 18, 2020)
provide large, well-annotated, and curated WSI data sets
linked to clinicopathologic data. These make rich digital
pathology training material widely available, albeit within
narrowly defined clinical reporting and specific tissue types.
2
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Third, WSI analysis experiences several domain-specific
image artifacts caused by the process of surgical removal,
fixing, cutting, staining, and scanning the tissue. These can
include folds in the tissue, retraction artifact, variations in
the application of chemicals in the staining process, small
cracks and imperfections in the glass slide and coverslip,
partial blurring of the image caused by focusing errors, and
image resolution and compression differences between
different scanners and file formats.
Despite these challenges, computer vision techniques

based on supervised and weakly supervised learning have
been used to successfully automate some common
assessment tasks in histopathology. These include, for
example, cell nucleus identification, pathology classifica-
tion, and cancer segmentation.6 Unsurprisingly, state-of-
the-art results on slide classification tasks, such as the
work by Campanella et al7 on prostate cancer, basal cell
carcinoma, and breast cancer nodal metastases, rely on
large data sets.
Deep Generative Models

This section briefly introduces required terminology from
computer vision, deep learning, and generative modeling
before describing their uses in a digital pathology work-
flow. First, an image filter or kernel is a rectangular matrix
that can be applied to parts of a digital image to extract
information, called features, from it. To apply a filter, a
dot-product is performed (component-wise multiplication
followed by a sum) between the filter and a section of the
image with the same dimensions. In computer vision, this
operation is referred to as a convolution. By sliding the
filter across the image and performing the convolution at
each point, this operation can produce a new matrix,
known as a feature map. Filters that recognize primitive
features, such as horizontal or vertical lines, can be hand
crafted; however, more complex features must be learned
by the model. Neural networks are the most commonly
used machine learning approaches.8 A convolutional neural
network9 is a machine learning approach that enables
image filters to be learned from data rather than pro-
grammed explicitly.
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Generative Models in Digital Pathology
Generative models are an approach to machine learning
in which systems attempt to estimate the probability of a
specific sample being picked at random based on training
data.10 Once there is an estimate for the probability density
function over the training set, the model can be used to
generate new examples. For example, a model can be
trained to generate new images of cats by training it on a
large number of images of cats. Generative models are
contrasted with discriminative models, which estimate the
probability of an output value given an input value (this
includes classification and regression problems). Recently,
generative models based on deep learning have shown
promise in generating novel data across a range of domains
and tasks.

The most effective techniques, such as generative adver-
sarial networks (GANs)10 and variational autoencoders,11

come from a class of models known as latent variable
generative models. In such systems, a model is trained that
takes the lower-dimensional representation of data, called the
latent space vector, and generates high-dimensional data from
it. GANs and variational autoencoders differ in the way they
are trained, but both conceptualize generation as decoding.
By changing what data are passed in, as the latent space
vector, model parameters can be learned that enable themodel
to perform data translation tasks. Figure 2 shows an example
of a latent space vector and generated images. In their recent
review of GANs in pathology, Tschuchnig et al12 split the
GANs up based on what kind of translation task the model is
training for. This put the emphasis on task (eg, image-to-
image translation verses label-to-image translation). The
rest of this review describes how different generative models
have been trained to perform different translation tasks and
how these could be usefully applied to the automated
reporting of a clinical task within a digital pathology pipeline.

Generative adversarial networks10 are a class of genera-
tive model in which a network, known as the generator, is
trained by having it attempt to trick a second model, known
Figure 2 A low-dimensional vector is used to generate data in latent space
transformation. The example output of the network shows 64 images, each 64 p
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as the discriminator. The discriminator and the generator are
trained simultaneously. During training, the generator is
sampled from by having to translate noise into fake data.
The discriminator is then trained on a combination of the
fake data, labeled as fake, and the real data, labeled as real.
The generator is then trained by having it generate fake data
and asking the discriminator to predict labels for it. The
training loss for the generator is based on how well the
discriminator can tell them apart [ie, how well the generator
can fool it (generating fake data that the discriminator
classes as real)]. This simultaneous training procedure can
cause GANs to both be computationally expensive and
experience difficulty in converging to an accurate solution.
Generative Models in the Digital Pathology
Pipeline

Generative models have the potential to overcome several
issues that come up when developing computer vision
systems for digital diagnosis and reporting. For example,
data sets stained at different institutions can often have a lot
of variation in color and intensity. It can be expensive and
time-consuming to acquire high-quality labeled training
data. Generative models can generate synthetic data sets to
overcome this. They can also be used to virtually stain tis-
sue, reducing the tissue preparation overhead.

Color and Intensity Normalization

During tissue preparation, particularly staining, variations in
color and intensity can be introduced between different
whole slide images. These artifacts can complicate the
interpretation of the slide by pathologists and computers.
When this occurs, similar tissue features can present
differently or different ones similarly. Such artifacts are
introduced from several sources, such as differences
models. In this example, a series of convolutions are used to achieve this
ixels wide and 64 pixels high.
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between scanners, the thickness of the cut tissue samples,
and the amounts and concentrations of chemicals used in
varying staining protocols. These issues can be mitigated in
three ways: ignoring color information, training models to
learn features insensitive to the artifacts,13 or normalizing
images to account for differences.

By converting the image to grayscale, much of the in-
formation provided by the staining process is lost. Analysis
techniques for grayscale pathology images have to rely on
other features (eg, texture and morphology),14,15 leading to
lower performance on downstream tasks. In other situations,
artifacts can be compensated for by applying a large number
of color perturbations to the training data so that a wide
range of variations are presented to the model during
training.13 This technique requires the perturbations to be
statistically similar to the color and intensity variations
across the data to be assessed, information that is not always
available, and requires increased computational and mem-
ory overheads because of the large amount of data
augmentation.

Ruifrok and Johnston16 proposed a novel method based
on color-deconvolution that dependeds on user-determined
color information to reconstruct images for each stain.
This method provides state-of-the-art results for stain
normalization but is limited in its applicability to extensive
studies because the user needs to estimate the values used in
the deconvolution manually. Magee et al17 presented a
method for estimating the required color deconvolution
parameters from the image data, eliminating the need for
user input. This work was extended by Khan et al18 to ac-
count for image-specific color variations and to improve the
training data used to separate the different stains.

A limitation of color-deconvolution techniques is their
failure to take into account information outside of the image
color (eg, tissue structure or texture). Generative models are
able to address this limitation. Stain normalization can be
thought of as an image generation problem. Generative
models have proved useful for image generation and
recently have been applied to generate normalized pathol-
ogy slides. Three different approaches have been applied to
this task: stain-style tranfer,19 CycleGAN20 based image-to-
image translation, and Pix2Pix-based translation.21

Stain-Style Transfer
Neural style transfer22 is an image translation technique that
transfers the style of one source image onto the content of
another to generate a target image. The terms style and
content can be a little misleading at first; content refers to
aspects of the image, like the shape and arrangement of
nuclei and cells and the tissue architecture that they
comprise; and style refers to aspects such as color, like the
hematoxylin and eosin (H&E) shades, and texture (eg, the
nuclear chromatin). Style representations are derived from
correlations in between the same location in different acti-
vation maps of the same layer of a neural network. For
example, there might be a filter that recognizes blue pixels
4
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and another that recognizes a curve. If they consistently
activate together, then this would represent that curves are
generally blue. Stain normalization can be thought of as a
kind of style transfer from the source to the target; however,
it is important that only the color distribution is transformed,
not other histopathologic features.
Stain-style transfer19 uses a modification on GANs to

perform color normalization, as indicated by its application
on patches extracted from the Camelyon16 data set.4 The
normalized patches improve tumor classification. In this
technique, the input into the GAN generator is changed
from noise to the unnormalized image. A conditional
GAN23 is then used in which both the generator and
discriminator are trained to generate and discriminate class
labels for each patch, in this case tumor or nontumor, in
addition to the fake or real labels. On its own, this produces
distortion in the patches’ noncolor histopathologic features.
To address these issues, two other loss functions were added
to the system: reconstruction loss, to minimize the differ-
ence between the source and generated images; and feature-
preserving loss, which derives a loss by comparing the ac-
tivations of the final layer of the discriminator when the
source and generated images are passed though the network.
This approach improves the classification accuracy of a
convolutional neural networkebased model trained on
image patches extracted from the Camelyon16 data set.
BenTaieb and Hamarneh24 propose a similar approach in
which the generator architecture is replaced with a U-Net
encoder-decoder style network, called the stain transfer
network, and the discriminator is given an additional clas-
sification task. This approach was assessed on both classi-
fication and segmentation tasks, across three separate data
sets, showing it can be used to improve the identification of
a wide range of tissue and pathology types.

Pix2Pix-Base Image-to-Image Translation
Pix2Pix21 is an extension of conditional GANs, which, like
other image-to-image translation models, learns the map-
ping from one image domain to another. The difference with
Pix2Pix is that it also learns a loss function to train the
translation model. This means that models based on Pix2Pix
can be trained to translate between different domains
without the need to specify a specific loss function for that
translation, something that is hard to do. Like conditional
GANs for image-to-image translation, Pix2Pix requires
image pairs, one from each domain, as example translations.
Salehi and Chalechale25 applied this approach successfully
to the stain normalization using five different H&E data sets.
The method involves destaining the patches by reducing
them to grayscale, before synthetically restaining them in a
way that ensures that the color is consistent. This is similar
to the artificial staining proposed by Rana et al,26 discussed
under data adaptation, and has been shown to perform well
across a range of statistical measurements comparing
ground-truth stained images against those restained using
the GAN. This indicates that they may improve downstream
ajp.amjpathol.org - The American Journal of Pathology
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Generative Models in Digital Pathology
assessment tasks, such as tumor classification and segmen-
tation, in a similar way to the stain-style transfer
techniques.19,24

CycleGAN-Based Image-to-Image Translation
One of the key disadvantages of Pix2Pix is the need for
paired images from the source and target domain (eg, cor-
egistered images before and after staining). CycleGAN20

bypasses this requirement, allowing models to be trained
to translate from a source to a target domain without the
need for paired examples. This is done by training an in-
verse mapping from the source to target domain, at the same
time as training the translation. By comparing the original
image with one that has had the forward and inverse
transformation applied to it, a loss called cycle-consistency
loss is derived. When the generator is trained, cycle-
consistency loss is minimized, as is the conventional
adversarial loss derived from trying to fool the
discriminator.

de Bel et al27 showed that modifying the original
CycleGAN20 to use a U-Net28 style architecture made it
more suitable for use with pathology images. This system
can be used to artificially stain images to a high quality. The
technique was applied to two data sets of renal tissue sec-
tions stained with periodic acid-Schiff from different stain-
ing centers. Models trained using the normalized data had
increased accuracy when segmenting various objects of in-
terest within the renal slides, such as arteries, tubuli, and
glomeruli. However, the system was able to generate
changes in texture, something that breaks the constraint that
the transform should preserve noncolor tissue features and
potentially introduces unwanted bias into the generated data
sets.

Data Adaptation

Data adaptation is the task of taking the data in one domain,
such as H&E WSIs, and translating them into images that
resemble those in a different domain, such as immunoflu-
orescence WSIs. This can be useful as a data augmentation
technique, allowing for images labeled in one domain to be
used effectively for learning in another domain. Doing this
relies on the image translation process retaining the correct
labels. For example, if something is labeled as a cell nu-
cleus, it has to still look like a cell nucleus once it has been
translated.

One possible use of this data adaptation is to enrich
patches with additional channels showing different fluores-
cence labels that highlight different kinds of information.
This is called multiplexing and has traditionally been ach-
ieved though relabeling the same tissue multiple times and
scanning in each fluorophore separately. There are two is-
sues with this: after multiple relabeling, the tissue quality
begins to degrade; and scanning requires the slides to be
precisely aligned to allow the tissue to be coregistered. By
doing virtual staining, the tissue is not degraded, and
The American Journal of Pathology - ajp.amjpathol.org
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because a single scan is used, there are no issues related to
alignment.

A histopathologic-to-immunofluorescence translation
model that uses Pix2Pix21 has been introduced by Burlin-
game et al.29 They adapt Pix2Pix by adding an adaptive
regularization term during training that changes based on
the prevalence of stained tissue in the patch. Patches with a
low amount of stained tissue are penalized. This composites
for the relative ease of translating patches with low amounts
of tissue. The system’s ability to generate realistic immu-
nofluorescence stains from H&E stains opens up the pos-
sibility of quickly providing information about cellular
complexity when only a standard H&E stain is available.

Another possible application of image translation is arti-
ficial staining, in which the source domain is an unstained
image and the target is stained ones. If it is possible to do
this in a consistent way, it can remove the need for
laboratory-based staining with its associated variations,
requiring stain normalization, and for the potential of human
error. Rana et al26 apply a modified Pix2Pix21 model in
which the generator made use of a U-Net architecture28 to
translate between an unstained WSI taken from a prostrate
core biopsy and virtual H&E stains of the same image.
Examination of the virtually stained images by pathologists
showed that the system correctly stained many different
histologic structures, including glands, stroma, nerve, and
vascular spaces.

Data adaptation can also be used as a form of data
augmentation. In DASGAN, Kapil et al30 use a Cycle-
GAN20 to generate virtual programmed death ligand 1 stains
from existing cytokeratin stain that has been marked up with
a costly segmentation label. These data were then used to
train an image segmentation model for the tumor epithelium
that outperformed the same model without the additional
data.

Data Synthesis

Data synthesis is perhaps the most exciting prospect for
generative models, especially in the field of artificial intel-
ligenceebased reporting of histopathology. In digital
pathology, generating a ground truth is expensive and
time-consuming. If accurately labeled synthetic samples
could be generated, then this problem would be alleviated.
The amount of data would only be limited by the resources
available to run the generative model. However, a conun-
drum exists here, and data synthesis is challenging. If there
is enough data to train a generative model to generate new
labeled data, then it is likely there is enough data to train an
accurate classifier. Useful data synthesis requires one or
both of two things: that the generative model is able to learn
different representations, more useful in generation, than a
possible classifier, or that extra information is somehow
added to the generative process (eg, using a guide image).

PathologyGAN31 is a study that undertakes the first of
these approaches. It uses BigGAN,32 a version of GANs that
5
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applies orthogonal regularization to the generator, allowing
for more control over the generator’s output. Pathology-
GAN uses a relativistic average discriminator,33 a modifi-
cation to the discriminator that estimates the probability that
a real sample is more realistic than a randomly sampled fake
data point. This addition was shown to improve the quality
of the generated images and converge faster. This system
enables the generation of large data sets suitable for training.

The generation of new images can also be achieved by
reformulating the problem as image translation, as shown by
Wei et al.34 They take normal colonic mucosa images and
generate synthetic colorectal polyp images on them. As with
many other image-to-image translation models, their system
is a variation on CycleGAN.20 They train the system on a
data set that is filtered to only include patches that can be
unambiguously classified using a ResNet35 classifier. Using
this approach enabled them to augment their existing colo-
rectal histology a classifier with a 10% improvement in area
under the curve. The field of data synthesis is still wide open
for follow-on work, as noted in both of these articles.
Future Directions

High-quality synthetic data sets with labels generated using
GANs31,36 improve the performance of discriminative
models trained on their data. Currently, these techniques are
applied to the synthesis of patches, rather than complete
whole slide images. When diagnosing, a human pathologist
mostly works at a low magnification (eg, �10) and relies on
architectural features that are lost when the image is broken
down into patches. There is potential to train on similar low-
magnification images to exploit these features. A single WSI
can be split into many thousands of patches, meaning that
the training sets for patch classifiers are many times larger
when the image is patched at high magnifications. At a
lower magnification, the number of images available for
training reduces dramatically, making such approaches less
feasible. This is where generative approaches, such as those
above, could be used to generate a large number of
low-magnification synthetic images, containing architectural
features. Using other kinds of image synthesis, such as
traditional computer graphics techniques, in combination
with generative models37 may provide a useful method in
this domain and is an exciting future direction.

Generative models have the potential to enable medical
data of all kinds, including pathology slides, to be used to
train machine learning models without them needing access
to the original patient-identifiable data set. Training a model
on nonanonymized data and then using the model to
generate a new artificial anonymous data set may provide a
way to overcome the clinical firewalls that, because of pa-
tient confidentiality, prohibit many researchers accessing the
original data. This topic is the subject a large amount of
research within the deep learning community.38e40 Suffi-
ciently deep generative models are capable of memorizing
6
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their training data in a way that can cause potentially
confidential information to leak into any synthetic data. This
has important implications for data governance going for-
ward. To make generative models public, it is critical to
ensure they are trained in such a way that removes the
possibility of confidential data being leaked into any syn-
thetic data set, and therefore, guidelines for doing this while
maintaining privacy are required and will need to be
adhered to.

Conclusion

This article reviews recent advances in the application of
generative models to digital pathology. Work in this domain
seeks to address issues of color and intensity artifacts, data
adaptation, and data synthesis, and how generative models
can address these. Generative models can assist with several
open challenges in the digital pathology workflow. Multi-
resolution WSI synthesis may provide a way to train deep
models that exploit architectural tissue features in a way that
is currently unpractical because of a lack of data. Addi-
tionally, differential privacy for WSI data sets may allow for
a much larger amount of useful data to be released publicly.
The application of generative models has proved useful in
improving digital pathology workflows, and this fast-
developing technology holds much promise in this field.
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