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A B S T R A C T

With the onset of autonomous spacecraft formation flying missions, the ability of satellites to autonomously
navigate relatively to other space objects has become essential. To implement spacecraft relative navigation,
relative measurements should be taken, and processed using relative state estimation. An efficient way to
generate such information is by using vision-based measurements. Cameras are passive, low-energy, and
information-rich sensors that do not actively interact with other space objects. However, pointing cameras
with a conventional field-of-view to other space objects requires much a-priori initialization data; in particular,
dedicated attitude maneuvers are needed, which may interfere with the satellite’s main mission. One way to
overcome these difficulties is to use an omnidirectional vision sensor, which has a 360-degree horizontal field
of view. In this work, we present the development of an omnidirectional vision sensor for satellites, which
can be used for spacecraft relative navigation, formation flying, and space situational awareness. The study
includes the development of the measurement equations, dynamical models, and state estimation algorithms,
as well as a numerical study, an experimental investigation, and a space scalability analysis.
1. Introduction

Autonomous spacecraft navigation relative to other space objects is
becoming a common requirement in space missions. A distributed space
system mission such as spacecraft formation flying [1] is an example
of using several cooperating spacecraft, achieving mission redundancy,
adaptability to variable conditions and the ability to replace a failing
agent instead of the whole system.

Other missions require navigating relatively to non-cooperative ob-
jects. This includes on-orbit satellite servicing, where one of the space-
craft was not designed to be repaired or maintained in-orbit and, hence,
it does not support interaction with the other vehicle. Space situational
awareness is also an example in which a spacecraft is designed to avoid
collisions with non-cooperative resident space objects such as space
debris [2,3].

For the missions involving non-cooperative interactions, the afore-
mentioned ability to navigate autonomously becomes more challeng-
ing. This is because there might be little or no a priori information
about the structure or motion of the other object. Thus, an information-
rich sensor will be useful. In addition, considering space conditions, in
which energy efficiency is important, it is desired to use passive sens-
ing. Therefore, solutions like 3-D laser-based sensors [4] may be infea-
sible, because they require considerable computational effort, and con-
sume much energy. Thus, solutions such as vision-based sensors, which
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reconstruct the relative state by applying computer vision algorithms
on passively acquired image pixels, are advantageous.

A single camera projects the 3-D environment onto 2-D, which
yields partial state observability. To obtain the entire relative state,
stereoscopic vision or N-ocular vision can be used [5,6]. Nevertheless,
using a monocular vision sensor combined with a dynamical model,
could lead to a sufficient reconstruction of the relative state. Addition-
ally, in order to generate more information, a wide field of view (FOV)
sensing is beneficial.

An omnidirectional vision sensor (ODVS), also referred to as
panoramic catadioptric camera, provides a wide FOV. It enables sensing
in 360 ◦ horizontally and about 45 ◦–80 ◦ vertically. Usually, it comprises
of a mirror which is axially symmetric, an apparatus which supports the
mirror, a lens and a camera.

The original idea of an omnidirectional camera was proposed by
Rees [7], in a patent submitted to the US government in 1967. It used a
hyperboloidal mirror in combination with a conventional imaging sys-
tem for acquiring an omnidirectional image (ODI), which has a single
center of projection. Later, Nayar and Baker [8,9] have geometrically
analyzed the complete class of single-lens single-mirror catadioptric
imaging systems, which satisfy the fixed viewpoint constraint (i.e. has
a single center of projection), and developed an ideal omnidirectional
vision sensor (ODVS) using a paraboloidal mirror and a telecentric
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lens. Nevertheless, using a hyperboloidal mirror shape as done by Svo-
boda [10], saves cost, and the added volume of an expensive telecentric
lens.

ODVS are classified into four general types by their mirror shape:
Conical Mirror - the easiest to manufacture, has a relatively small ver-
tical viewing angle, lacking a single center of projection, and possesses
large astigmatism; Spherical Mirror - superior for making small ODVS,
has a large vertical viewing angle, lacking a single center of projection,
which causes astigmatism that gradually eliminates as it gets near the
ODI center; Paraboloidal Mirror - ideally realized with an expensive
and large telecentric lens, which enables flexible mirror-lens distance
design (since the projection is orthogonal to the vertical direction), has
a single center of projection, with astigmatism that correlates to the size
of the curvature; Hyperboloidal Mirror - challenging design (since the
focal point of the hyperboloid needs to be set on the camera’s focal
point), can be combined with a normal lens, has a single center of
projection, with astigmatism that correlates to the size of the curvature.
In this work, an ODVS constructed of a hyperboloidal mirror and a close
focusing lens (macro lens) was used. The motivation was to acquire a
wide vertical viewing range with small astigmatism, using a smaller
and less expensive system.

Using ODVS for navigation applications requires calibrating the sen-
sor based on a nonlinear measurement model. Furthermore, inversion
of the model can be used for initial state estimation. Puig compared
different calibration methods based on different measurement mod-
els [11]. One of the main models is the spherical camera model which
was used in this work. This model gives some calibration information
about the constructed mirror and provides the theoretical projection
function which enables inversion of the model; other models are based
on distortion functions which are more complicated for inversion.

The sphere projection model, also called the unified projection
model, was given by Geyer [12], and extended by Barreto [13].
Mei [14], expanded this model and added practical factors of radial and
tangential distortions introduced by misalignment of telecentric lenses
to the ideal theoretical model. This model is a compromise between
a generic theory and over-parametrization, and is based on an exact
theoretical projection function to which well-identified parameters are
added, to model real-world errors.

An example for a different model is the simple model suggested by
Svoboda et al. [15], wherein the projection of a space point onto the im-
age plane can be modeled by a composition of two central projections.
The first projects a space point onto the mirror, and the second projects
the mirror point into the image. The geometry of various catadioptric
cameras depends mostly on the first projection. The second projection
is not as important, as long as it is a one-to-one mapping. If the first
projection is a central projection, the catadioptric camera has the same
mathematical model as any conventional perspective camera, and all
the theories developed for conventional cameras can be used.

ODVS are used in a variety of applications such as robotics, au-
tonomous vehicles, surveillance, navigation, and more. Tahri and
Araujo simulated a catadioptric image-based visual servoing method
for mobile robots [16]. Voigtländer et al. present methods for ball
recognition and tracking using the catadioptric camera of a RoboCup
robot [17]. Ehlgen et al. used catadioptric cameras to survey the
surrounding area of vehicles [18]. Scaramuzza and Siegwart computed
the ego-motion of a vehicle relative to the road using images from a
single omnidirectional camera [19]. Rituerto et al. performed visual si-
multaneous localization and mapping (SLAM) with an omnidirectional
camera [20]. Scotti et al. used an ODVS in conjunction with a pan–tilt
zoom camera for surveillance [21]. Chahl and Srinivasan simulated 3D
navigation based on panoramic imaging using an ODVS [22]. Lhuillier
performed 3D reconstruction of indoor and outdoor scenes from a
catadioptric image sequence [23]. Das et al. described a vision-based
formation control framework and performed experiments of robot
335

formation-keeping using ODVS [24].
Tracking a target captured by a vision sensor requires detecting
and differentiating it from other targets first. This could be done by
computer vision (CV) algorithms, processing the acquired video frames
on a digital computing hardware. Yilmaz [25] conducted a survey
of such object detection methods. Optical correlator (OC) [26,27]
is another target detection method, performed by dedicated optical
hardware. Therein, target recognition is realized by optical refraction,
interference, and diffraction. OC has the advantages of inherent parallel
processing due to optical Fourier Transform, and fast operation regard-
less of image size. Among its demerits are additional volume and mass
due to electro-optical construction and additional power consumption
for a laser diode. CV algorithms are superior by being easy to program
and realized on a computer. They operate on chip size hardware which
nowadays is very fast and can perform parallel computation, e.g., using
a graphics processing unit (GPU). In this work we focus on CV to make
the ODVS tracking sensor more versatile and easily implementable.

Capturing a target’s position using a camera gives a 2D measure-
ment, which is degenerated with respect to the 3D space. Therefore,
the distance to the target is not directly observable. As a result, it is
only possible to obtain a unit vector pointing at the target’s relative
position, which is equivalent to measuring the azimuth and elevation of
the line-of-sight (LOS). For rendering the system observable, this work
pursued a fusion of additional sensor, and a relative state estimation
algorithm.

Relative motion measurements, which contain noise and various
inaccuracies, are usually not accurate enough for target tracking. There-
fore, filtering techniques are being used for relative state estimation.
Many systems for target tracking are based on a Kalman Filter (KF).
Kalman filtering utilizes a state prediction, based on a dynamical
model, together with a measurement likelihood, based on an obser-
vation model. Those are conjugated with a series of measurements
observed over time, to estimate the evolving state. In case the physics or
sensors are described by nonlinear models, the Extended Kalman Filter
(EKF) may be used. Other techniques, such as the stochastic algorithm
presented in [28], can also be used.

For spacecraft formation flying, Segal et al. solved the non-
cooperative satellite tracking problem, using a stereovision sensor, and
an EKF [5]. Lichter used range images, and a KF [4]. There exist
numerous additional applications such as people tracking [6], and
vehicles tracking [29]. Nevertheless, an ODVS-based non-cooperative
target tracking in space, has not been examined yet. Consequently, the
main innovation of this paper is a thorough study of the integration and
fine-tuning of various methods which enable the development of this
important application.

With the main goal of having an autonomous spacecraft, navigat-
ing relatively to other space objects, the system is required to make
autonomous decisions based on relative information. Contributing to
that goal, the purpose of this paper is to present a method for utilizing
ODVSs as relative navigation sensors. An emphasis is given on devel-
oping algorithms for navigating relatively to non-cooperative targets,
achieving reliable relative information based on an ODVS as a tracking
sensor.

This work presents models, simulations, and experimental results
for spacecraft relative state estimation, using tracking by an onboard
ODVS. The fundamental estimation algorithm is presented first. Then,
the dynamical model, and the measurement model are described, fol-
lowed by the computer vision detection algorithm. Finally, the sim-
ulation and experimental results are shown, and a space scalability
analysis is described.

2. Methods

2.1. Relative state estimation

A space vehicle which is orbiting Earth and has an ODVS, will be
referred to as the camera satellite. A different space object which is

orbiting Earth at a nearby orbit, will be referred to as target.
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Fig. 1. Relative motion frame, originating at the camera satellite.

To formulate a state vector describing the relative state between
he camera and the target, let us define the following reference frames:

is an Earth-Centered Inertial (ECI) reference frame, denoted by the
nit vectors {𝐱̂𝑒, 𝐲̂𝑒, 𝐳̂𝑒};  is a Local-Vertical Local-Horizontal (LVLH)
uler–Hill reference frame fixed to the camera’s center of mass (CM),
ith 𝐱̂ being a unit vector directed from the spacecraft radially out-
ard, 𝐳̂ normal to the camera orbital plane, positive in the direction of

he angular momentum vector, and 𝐲̂ completes the triad, see Fig. 1.
n addition, for simplicity, we assume that the CM of the camera is
oincident with , a Cartesian right-hand body-fixed reference frame
ttached to the ODVS’s viewpoint (further elaborated in Section 2.3).

For relative navigation, information about the target’s state, relative
o the camera, is required. Focusing on relative translation solely, the
ectors 𝝆 = [𝑥, 𝑦, 𝑧]𝑇 ∈ R3, and 𝝆̇ = [𝑥̇, 𝑦̇, 𝑧̇]𝑇 ∈ R3 denote respectively

the position and velocity of the target’s CM relative to the camera’s CM,
resolved in frame . The vector 𝐱, which contains the relative position
nd velocity between the target and the camera, will be used as the
tate vector:

=
[

𝝆
𝝆̇

]

∈ R6 (1)

btaining such information using a monocular vision sensor is chal-
enging, because the measurements are dimensionally sparse and noisy.
herefore, a filtering algorithm is required to estimate the relative state.
he fact that the ODVS is a nonlinear sensor, as will be elaborated in
ection 2.3, has led to choosing the EKF as the estimator. An explicit
orm of the EKF can be found in many textbooks, e.g. Ref. [1].

.2. Dynamical model

The Clohessy-Wiltshire (CW) equations [30] can be used as a lin-
arized dynamical model describing the relative motion between orbit-
ng point-mass satellites, assumed to be rigid bodies:

⎧

⎪

⎨

⎪

⎩

𝑥̈ − 2𝑛𝑦̇ − 3𝑛2𝑥 = 𝑓𝑥
𝑦̈ + 2𝑛𝑥̇ = 𝑓𝑦
𝑧̈ + 𝑛2𝑧 = 𝑓𝑧

(2)

his system of linear differential equations, where {𝑥, 𝑦, 𝑧} are the
omponents of the relative translation vector 𝝆, describes the relative
ynamics between closely-flying satellites, affected by differential per-
urbations, 𝐮(𝑡) = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧]𝑇 , where 𝑛 is the orbital angular velocity
f the camera satellite, which is assumed to fly on a circular orbit, and
s given by

= 2𝜋
𝑇

=
√

𝜇
𝑎3

(3)

here 𝑇 is the orbital period, 𝜇 is Earth’s gravitational parameter,
nd 𝑎 is the semimajor axis of the camera orbit. CW equations are
erived by linearization under the condition that the distance between
he satellites is small relative to their orbital radius.

This dynamical model was used to formulate the state-space equa-
ions for the prediction phase in the EKF. The continuous equations can
e written in linear form as

̇
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(𝑡) = 𝐅𝐱(𝑡) +𝐆𝐮(𝑡) + 𝜻(𝑡) (4)
here 𝐱(𝑡) is the state vector, 𝐮(𝑡) represents the external forces, 𝜻(𝑡) is
white Gaussian process noise vector, and

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3𝑛2 0 0 0 2𝑛 0
0 0 0 −2𝑛 0 0
0 0 −𝑛2 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

The discrete transition matrix can be approximated by a Taylor-
eries expansion for 𝑒𝐅𝛥𝑡, and is calculated for relatively frequent sam-
ling by

𝑘 ≈ 𝐈 + 𝐅𝛥𝑡 (6)

hich gives

𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 𝛥𝑡 0 0
0 1 0 0 𝛥𝑡 0
0 0 1 0 0 𝛥𝑡

3𝑛2𝛥𝑡 0 0 1 2𝑛𝛥𝑡 0
0 0 0 −2𝑛𝛥𝑡 1 0
0 0 −𝑛2𝛥𝑡 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)

here 𝛥𝑡 is the sampling time, and 𝐈 is the identity matrix. The discrete
nput matrix is calculated by

𝑘 = ∫

𝛥𝑡

0
Φ(𝜏)𝐆 𝑑𝜏 (8)

hich gives

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑡2

2 0 0

0 𝛥𝑡2

2 0

0 0 𝛥𝑡2

2
𝛥𝑡 𝑛𝛥𝑡2 0

−𝑛𝛥𝑡2 𝛥𝑡 0
0 0 𝛥𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

The process noise covariance matrix is 𝐐 = 𝐸(𝜻𝜻𝑇 ). Assuming the
process noise 𝜻(𝑡) represents acceleration uncertainty which is equal for
all axes, and the noises of the different degrees-of-freedom (DOF) are
assumed to be uncorrelated, the covariance matrix is given by

𝐐(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝛷𝑠 0 0
0 0 0 0 𝛷𝑠 0
0 0 0 0 0 𝛷𝑠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(10)

where 𝛷𝑠 is the power spectral density. The discrete process noise
covariance matrix is calculated by

𝐐𝑘 = ∫

𝛥𝑡

0
Φ(𝜏)𝐐Φ𝑇 (𝜏) 𝑑𝜏 (11)

which gives

𝐐𝑘 = 𝛷𝑠

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑡3

3 0 0 𝛥𝑡2

2 −2𝑛 𝛥𝑡
3

3 0

0 𝛥𝑡3

3 0 2𝑛 𝛥𝑡
3

3
𝛥𝑡2

2 0

0 0 𝛥𝑡3

3 0 0 𝛥𝑡2

2
𝛥𝑡2

2 2𝑛 𝛥𝑡
3

3 0 𝛥𝑡 + 4𝑛2 𝛥𝑡
3

3 0 0

−2𝑛 𝛥𝑡
3

3
𝛥𝑡2

2 0 0 𝛥𝑡 + 4𝑛2 𝛥𝑡
3

3 0

0 0 𝛥𝑡2

2 0 0 𝛥𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(12)

After discretization, we write the prediction equations for the state
and the estimation error covariance matrix:
{

𝐱−𝑘 = Φ𝑘𝐱̂𝑘−1 +Ψ𝑘𝐮𝑘−1
− ̂ 𝑇

(13)

𝐏𝑘 = Φ𝑘𝐏𝑘−1Φ𝑘 +𝐐𝑘
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where 𝐱−𝑘 denotes the predicted state vector at sample 𝑘, 𝐱̂𝑘−1 denotes
he estimated state vector from the previous sample 𝑘−1, 𝐮𝑘−1 denotes
he external forces vector from the previous sample 𝑘−1, 𝐏−

𝑘 is the pre-
icted covariance matrix at sample 𝑘, 𝐏̂𝑘−1 is the estimated covariance

matrix from the previous sample 𝑘−1, and Φ𝑘,Ψ𝑘,𝐐𝑘 are the discrete
transition matrix, the discrete input matrix, and the discrete process
noise covariance matrix at sample 𝑘 as described above.

.3. Measurement model

A measurement model is needed for both calibration of the ODVS
nd the estimation process. For the estimation, the measurement model
s used for calculating the measurement likelihood and the Kalman
ain. Image sensors capture discrete measurements every frame; hence,
he nonlinear measurement equation is written using the discrete form

𝑘 = 𝐡(𝐱𝑘) + 𝝂𝑘 (14)

here 𝝂𝑘 is a white Gaussian noise vector. The discrete measurement-
oise covariance matrix 𝐑𝑘 consists of variances representing each
easurement-noise source and is given by 𝐑𝑘 = 𝐸(𝝂𝑘𝝂𝑇𝑘 ). The lin-

earized measurement equations are related to the nonlinear equations
through the Jacobian

𝐇 =
𝜕𝐡(𝐱)
𝜕𝐱

|

|

|

|𝐱=𝐱̂𝑘
(15)

where 𝐱̂𝑘 is the estimated state vector at sample 𝑘. The discrete
measurement likelihood equations take the following form:
{

𝐳−𝑘 = 𝐇𝑘𝐱−𝑘
𝐒𝑘 = 𝐇𝑘𝐏−

𝑘𝐇
𝑇
𝑘 + 𝐑𝑘

(16)

here 𝐳−𝑘 denotes the measurement likelihood vector at sample 𝑘, 𝐇𝑘
s the discrete measurement model matrix at sample 𝑘, and 𝐒𝑘 is the

measurement likelihood covariance matrix at sample 𝑘.
The Kalman gain of an EKF cannot be computed off-line, as possible

with a KF, because 𝐇𝑘 results from linearization of nonlinear functions,
and it changes its values according to the current estimated state.
Furthermore, the 𝐇𝑘 matrix is required mainly for the calculations
of the Kalman gain, whereas for the measurement likelihood, the
nonlinear function 𝐡(𝐱𝑘) will give more accurate results [31].

2.3.1. Unified projection model
Axis convention is chosen as depicted in Fig. 2. Based on Mei [14],

the projection of 3D points onto the 2D image plane can be described
as follows:

1. World points in the mirror frame  are projected onto the unit
sphere,

{𝝆} → {𝝆𝑠} =
𝝆

‖𝝆‖
=
[

𝑥𝑠 𝑦𝑠 𝑧𝑠
]𝑇 (17)

2. The points are transformed to a new reference frame  , trans-
lated by 𝐭𝑛 =

[

0 0 𝜉
]𝑇 where 𝜉 is a mirror parameter which

varies between 0, for a planar mirror and 1, for a parabolic
mirror:

{𝝆𝑠} → {𝝆𝑠} =
[

𝑥𝑠 𝑦𝑠 𝑧𝑠 + 𝜉
]𝑇 (18)

For a hyperbolic mirror 𝜉 = 2𝑐
√

(2𝑐)2+(2𝑝)2
, where 2𝑝 is the semi-

latus rectum and 2𝑐 is the distance between focal points. The
relationship to the semimajor axis 𝑎, and the semiminor axis 𝑏 is

⎧

⎪

⎨

⎪

⎩

𝑎 =
√

(2𝑐)2+(2𝑝)2−2𝑝
2

𝑏 =
√

𝑝(
√

(2𝑐)2 + (2𝑝)2 − 2𝑝)
(19)

Considering the mirror parameter 𝐯𝑠 = {𝜉}, both steps above
could be unified as

𝐬(𝐱−𝑘 , 𝐯𝑠) =
[

𝑥
‖𝝆‖

𝑦
‖𝝆‖

𝑧
‖𝝆‖ + 𝜉

]𝑇
(20)
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3. The points are then projected onto the normalized image plane,

𝐦𝑢 = 𝐧(𝝆𝑠) =
[ 𝑥𝑠
𝑧𝑠+𝜉

𝑦𝑠
𝑧𝑠+𝜉

1
]𝑇

=
[

𝑥𝑢 𝑦𝑢 1
]𝑇 (21)

The vector-valued function 𝐧(⋅) is bijective from {𝝆𝑠|𝑧𝑠 > −𝜉} to
R2.

4. The undistorted points are projected onto the distorted normal-
ized plane, modeling radial and tangential distortions using the
𝐯𝑑 = {𝑘1, 𝑘2, 𝑝1, 𝑝2} parameters. Imperfection of the lens shape
is modeled by radial distortion, while an improper lens and
camera assembly (e.g. misalignment) generates both radial and
tangential distortions. Radial distortion can be modeled by

𝐦𝑢𝐿(𝑟𝑢) = 𝐦𝑢(𝑘1𝑟2𝑢 + 𝑘2𝑟
4
𝑢)

𝑟𝑢 =
√

𝑥2𝑢 + 𝑦2𝑢
(22)

Tangential distortion can be modeled by

𝑑𝐭 =
[

2𝑝1𝑥𝑢𝑦𝑢 + 𝑝2(𝑟2𝑢 + 2𝑥2𝑢)
2𝑝2𝑥𝑢𝑦𝑢 + 𝑝1(𝑟2𝑢 + 2𝑦2𝑢)

]

(23)

The total distortion is then written as

𝐞(𝐦𝑢, 𝐯𝑑 ) = 𝐦𝑢𝐿(𝑟𝑢) + 𝑑𝐭 (24)

where

𝐞(𝐦𝑢, 𝐯𝑑 ) =
[

𝑥𝑢(𝑘1𝑟2𝑢 + 𝑘2𝑟
4
𝑢) + 2𝑝1𝑥𝑢𝑦𝑢 + 𝑝2(𝑟2𝑢 + 2𝑥2𝑢)

𝑦𝑢(𝑘1𝑟2𝑢 + 𝑘2𝑟
4
𝑢) + 2𝑝2𝑥𝑢𝑦𝑢 + 𝑝1(𝑟2𝑢 + 2𝑦2𝑢)

]

(25)

The distorted points can be written by adding the total
distortion,

𝐦𝑑 = 𝐝(𝐦𝑢, 𝐯𝑑 ) = 𝐦𝑢 + 𝐞(𝐦𝑢, 𝐯𝑑 ) (26)

5. The final projection is given by

𝐳 = 𝐤(𝐦𝑑 , 𝐯𝑘) = 𝐊𝐼𝐦𝑑 (27)

where 𝐊𝐼 is the intrinsic camera parameter matrix, constructed
from the focal length divided by the pixel size {𝛾𝑢 = 𝑓∕𝑃𝑢 , 𝛾𝑣 =
𝑓∕𝑃𝑣}, the skew coefficient 𝑆 = 𝛾𝑣 tan 𝛽 between 𝐮̂ and 𝐯̂, and
the principal point, i.e. the translation from the optical center
[𝑢0 , 𝑣0]:

𝐊𝐼 =
⎡

⎢

⎢

⎣

𝛾𝑢 𝑆 𝑢0
0 𝛾𝑣 𝑣0
0 0 1

⎤

⎥

⎥

⎦

(28)

Finally, the measurement model of Eq. (14) can be written as

𝐳𝑘 = 𝐡(𝐱−𝑘 , 𝐯𝑡) (29)

where 𝐱−𝑘 is the predicted state and

𝐡 = 𝐤◦𝐝◦𝐧◦𝐬, 𝐯𝑡 = {𝐯𝑠, 𝐯𝑑 , 𝐯𝑘} (30)

The linearized measurement model 𝐇2×6 is calculated using the Jaco-
bian

𝐇𝑘 =
𝜕𝐡(𝐱, 𝐯𝑡)
𝜕𝐱

|

|

|

|𝐱=𝐱−𝑘
= 𝜕𝐳
𝜕𝐦𝑑 2×2

⋅
𝜕𝐦𝑑
𝜕𝐦𝑢 2×2

⋅
𝜕𝐦𝑢
𝜕𝝆𝑠 2×3

⋅
𝜕𝝆𝑠
𝜕𝐱−𝑘 3×6

(31)

The discrete measurement-noise covariance matrix 𝐑𝑘 consists of
ariances representing each measurement-noise source. Assuming that
he most significant noise is introduced by the non-observability of the
epth, which could affect the different axes, depending on the target’s
ocation in space, the noise was assumed to be equal for both axes. The
oises at 𝐮̂ and 𝐯̂ are assumed to be uncorrelated because the camera
s calibrated and errors introduced by the computer vision algorithms
re assumed to be uncorrelated. Thus,

𝑘 =
[

𝑅𝑠 0
0 𝑅𝑠

]

pixels2 (32)
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Fig. 2. Unified projection model.

.3.2. Inverted unified projection model
In order to initialize the estimation process, an a-priori information

bout the initial state is required. It can be achieved by applying the
nverted unified projection model on the first measurement.

For inverting the measurement model of Eq. (29), inversion of the
ntrinsic camera projection matrix is required,

𝑑 = 𝐤−1(𝐳, 𝐯𝑘) = 𝐊−1
𝐼 𝐳 (33)

ecause the distortion model of Eq. (26) is not analytically invertible,
ei [32] inverted the model using a recursive function,

⎧

⎪

⎨

⎪

⎩

𝐦𝑢 = 𝐦𝑑 − 𝐞𝑔

𝐞𝑔 = 𝐞(𝐦𝑑 − 𝐞𝑔−1, 𝐯𝑑 )
𝐞1 = 𝐞(𝐦𝑑 , 𝐯𝑑 )

(34)

where 𝑔 is the number of recursive iterations. Mei showed that 𝑔 = 4
ives a reprojection error of less than a pixel. The recursive function
onverges towards the correct inverse if the distortion parameters 𝐯𝑑
re strictly smaller than 1. Applying this method is computationally
xpensive; however, once obtained, the transformation of each image
oint can be pre-calculated and saved in a lookup table. Next, lifting is
equired, which is the inverse function 𝐧−1(⋅) of calculating point {𝝆𝑠}
rom a given point {𝐦𝑢} :

𝑠 = 𝐧−1(𝐦𝑢, 𝐯𝑠) =
𝜉 +

√

1 + (1 − 𝜉2)(𝑥2𝑢 + 𝑦2𝑢)

𝑥2 + 𝑦2 + 1

⎡

⎢

⎢

𝑥𝑢
𝑦𝑢
⎤

⎥

⎥

+
⎡

⎢

⎢

0
0
⎤

⎥

⎥

(35)
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𝑢 𝑢
⎣ 1 ⎦ ⎣𝜉⎦
As explained, the vector-valued function 𝐧(⋅) is bijective for 𝑧𝑠 > −𝜉.
ext, The points are transformed from frame  to ,

𝝆𝑠} → {𝝆𝑠} =
[

𝑥𝑠 𝑦𝑠 𝑧𝑠 − 𝜉
]𝑇 (36)

o finalize, Eqs. (33)–(36) were used to obtain the inverted measure-
ent model,
𝝆

‖𝝆‖
= 𝐡−1(𝐳𝑘, 𝐯𝑡) (37)

.3.3. Catadioptric camera calibration
In this work, Mei’s catadioptric camera calibration toolbox [14] was

sed to calibrate the sensor before the experiments, while utilizing a
hessboard pattern. ODVS parameters in the form of

𝐯𝑡}1×10 =
{

𝜉 𝑘1 𝑘2 𝑝1 𝑝2 𝑆 𝛾1 𝛾2 𝑢0 𝑣0
}

were obtained. These parameters describe the specific catadioptric
camera properties due to its mirror’s conical shape, structure, assembly
misalignment, camera-lens distortion and image sensor. They were used
in the measurement model for creating artificial simulation measure-
ments and throughout the experiments. Based on the unified projection
model, the toolbox finds the intrinsic camera parameters when the user
denotes the ODVS’s mirror boundaries, and marks a straight line on the
ODI. Next, an automatic process of grid marking is done for several
images of a known chessboard pattern, placed at different positions.
This is used for global minimization to find all the ODVS parameters,
𝐯𝑡.

.3.4. Ground station measurements
Since the depth realized from a vision sensor such as the ODVS is

on-observable, a second data source is introduced, in order to check
f sensor fusion improves the relative state estimation results.

Every time the camera and target pass above a ground station which
easures their positions, the relative distance between them is used

s another measurement (at a different sampling rate than the ODVS
easurement). This can occur several times per orbit, depending on the

rbit and the number of ground stations. Nevertheless, for evaluating
he sensor fusion compared to using just the ODVS, we assume this
ccurs once every orbital period, and expand the measurement model
f Eq. (14) to:

𝑘 =
[

𝐳1,𝑘 𝐳2,𝑘
]𝑇 (38)

where 𝐳1,𝑘, the ODVS measurement, is given by Eq. (29), and 𝐳2,𝑘, the
ground station measurement, is modeled as the Euclidean norm of the
relative distance, 𝝆:
{

𝑧2,𝑘 = ℎ2(𝐱−𝑘 )
ℎ2(𝐱−𝑘 ) =

‖

‖

‖

𝝆−
𝑘
‖

‖

‖

(39)

When fusion occurs, the measurement-noise covariance matrix 𝐑𝑘 is
extended by the noise variance 𝑅𝑠2 of the ground station measurement,
assumed to be uncorrelated. Thus,

𝐑𝑘 =
⎡

⎢

⎢

⎣

𝑅𝑠1 0 0
0 𝑅𝑠1 0
0 0 𝑅𝑠2

⎤

⎥

⎥

⎦

(40)

where 𝑅𝑠1 is in pixels2, and 𝑅𝑠2 is in km2. In this work, the ground
station measurement is assumed to be accurate, in order to check the
sensor fusion effect on the non-observable distance between the objects,
i.e. 𝑅𝑠2 is small relative to 𝑅𝑠1.

2.4. Computer vision algorithms

As opposed to the simulation, wherein artificial measurements were
created for the EKF, in a realistic scenario a detection method is
required to obtain such measurements. In general, a detection method
could be designed by different computer vision (CV) algorithms, while
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Fig. 3. Robot detection and marking using gray-scale thresholding and morphological operations.
different physical environments could require different solutions. As
a consequence, a different algorithm should be designed for space
operation and lab experiments.

In space, the observed scene usually has dark background with
glare from the planet, the moon, and the sun. The image could include
regions of the planet or the moon, but it will most likely avoid scenarios
in which the sun will enter the FOV. In the lab, planar experiments in-
cluded non-cooperative robots moving on a flat rectangular air-table, as
described in Section 3.2. To emulate the space environment and render
the experiment detections more realistic, the background outside the
table was detected and masked. This was done in order to remove noise
and make the observed scene clear from objects, as expected in space.
Next, targets realized by robots, were detected from the ODI frames,
overcoming different illumination conditions and reflections, which
cause noisy images. This was done by developing the CV algorithms
that were used throughout the experiments. These algorithms can be
manipulated or changed to account for the conditions in space missions.

2.4.1. Target detection
Considering an object in the space environment, the following

assumptions are used. The object has an unknown size and shape,
some illumination is assumed to exist, and this illumination emphasizes
foreground targets on top of a dark background. For object tracking
in this research and for estimating the relative state, the target is
represented by the object’s center of area. Hence, target representation
is given by a single point, located at the center of the detected image
area, assuming it represents the physical center of mass (CM). The CM
location is assumed to have a normally distributed noise, with zero
mean and error boundaries determined by the detected shape’s contour.
A gray-scale thresholding was chosen to detect the bright robots on
top the dark table, followed by morphological filtering. This solution
enabled the detection of target properties such as CM and shape.

For simplification, we assume a single target. Hence, a general
large shape can be searched for and marked as a target, by masking
all surrounding pixels. A gray-scale threshold was calibrated for the
conditions of the experiments (illumination, object colors, etc.). All
pixels possessing a value above that threshold were marked as true.
Thus, a noisy logical black and white mask was obtained, containing
different connected areas, as seen in Fig. 3(a) (for extended methods,
refer to [33]). Then, morphological operations were performed in order
to connect robot regions with bad detection and create solid convex
regions while removing the noise. As shown in Fig. 3(b), in order to
erase small regions, which most likely represent noise or non-accurately
detected regions, a small disk-shaped structural element was used, posi-
tioning its center on a peripheral pixel of each of the connected regions,
marked as true, and moving that element along the circumference of
those regions while eroding the shape. This was followed by a similar
339

operation of dilation using the same disk size structural element to
preserve the detection area. At the next step, Fig. 3(c), a dilation was
performed, followed by an erosion using a larger disk-shaped structural
element, to connect separated regions and make the regions rounder.
Then, the remaining holes were filled to remove noise from the detected
regions themselves.

For the final object detection, connected regions of a certain cal-
ibrated size (number of pixels) were searched for, and the following
information was collected: center of region; bounding box of the region;
major axis and minor axis of the correlated ellipse, possessing the same
second area moments as those of the detected region; orientation of
the major axis relative to the 𝐮̂ axis, which is the horizontal axis of the
image plane’s reference frame . In order to display the detected robots,
a segmentation of their region in the frame was done by marking it with
a transparent red color, Fig. 3(d).

3. Results

3.1. Simulations

Simulating the filtering algorithm enabled comparing the usage of
simulated ODVS measurements versus ground station measurements
and a fusion thereof. Fig. 4 describes the general structure of the
simulation.

The reference data is defined by assuming an ODVS is orbiting at
Low-Earth Orbit (LEO), at an altitude of ℎ𝐶 = 550 km, and a target
object is orbiting earth in a nearby orbit. The target’s relative position
can be described by the solution to the CW equations (2):

⎧

⎪

⎨

⎪

⎩

𝑥(𝑡) = (−3𝑥0 −
2
𝑛 𝑦̇0) cos 𝑛𝑡 +

𝑥̇0
𝑛 sin 𝑛𝑡 + 4𝑥0 +

2
𝑛 𝑦̇0

𝑦(𝑡) = 2
𝑛 𝑥̇0 cos 𝑛𝑡 + (6𝑥0 + 4 𝑦̇0𝑛 ) sin 𝑛𝑡 + 𝑦0 −

2𝑥̇0
𝑛 − 3𝑡(2𝑛𝑥0 + 𝑦̇0)

𝑧(𝑡) = 𝑧0 cos 𝑛𝑡 +
𝑧̇0
𝑛 sin 𝑛𝑡

(41)

together with the following initial conditions:

𝑥0 = 0.1 km 𝑥̇0 = 0 km
s

𝑦0 = 0 km 𝑦̇0 = −2𝑛𝑥0
km
s

𝑧0 = 0 km 𝑧̇0 = 0 km
s

(42)

The constraint 𝑦̇0 = −2𝑛𝑥0 creates a periodic relative orbit by elim-
inating the drift from the solution. The orbit’s angular velocity can
be calculated from Eq. (3) while the semimajor axis 𝑎 equals the
sum of Earth’s radius 𝑅𝐸 , and the camera’s height ℎ𝐶 . Propagating
Eq. (41) gives the relative orbit, which is shown in Fig. 5. The target
is tracked by the ODVS, and then projected onto the camera’s image
plane as the main measurement 𝐳1,𝑘, using the measurement model of
Eq. (29). To emulate a real ODVS, the model calibration parameters
(of Section 2.3.3) were taken from the lab system. To create realistic
detections, white noise was added to the ODI projection. In accordance
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with the experiments of the following section and a space scalability
analysis, an average number of 90 pixels which represent a target at
the image plane, was used as 3𝜎 of the measurement noise normal
probability distribution. Simulated detections are presented in Fig. 6.

Ground station measurements of relative position 𝐳2,𝑘 were artifi-
cially created from the reference data. To that end, we assume that
a pass above a ground station occurs once every orbital period. The
orbital period is

𝑇 = 2𝜋
𝑛

= 5739 s (43)

he simulation was executed for 6.2𝑇 , and enabled 6 measurement
pdates.

A comparison was made between relative state estimation using
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nly ODVS, only ground station measurements and fusion thereof. The
esults are shown in Figs. 7, 8. The estimation errors are presented on a
ogarithmic scale, and the time is given in orbital periods. The errors in
ll 6 components of the relative state are represented in the Cartesian
oordinate system .

Using only ground station measurements yields large estimation
rrors. For the 𝑥 and 𝑦 components of the relative position error, using
nly ODVS measurements gives results with an error of up to 70 m,
hile using fusion of both measurements gives results with an error
s small as 0.3 m. Considering the absolute reference values range
etween 0–200 m, the sensors fusion gives the best relative position
stimation with an error of approximately 1% with respect to the
eference. For the 𝑧 and 𝑧̇ components of the relative error, using only
DVS seems as good as using fusion. This is assumed to be because the
on-observable depth affected less the 𝑧 axis, as the relative motion was

within the 𝑥𝑦 plane. To summarize, it is observed that the best results
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Fig. 5. Reference data given as the relative orbit of the target object with respect to
the camera satellite, given at the camera’s body-fixed coordinate system, .

Fig. 6. All Target detections, projected to the omnidirectional image.

and highest accuracy were achieved when the estimation utilized fusion
of ODVS measurements with ground station measurements. Estimating
the relative state using ODVS only is a good option, if the depth can be
bounded by calibration of the filter or by other means.

3.2. Experiments

Planar experiments conducted in the Distributed Space Systems Lab
(DSSL) at Technion, included estimating the state of non-cooperative
robots, relative to a robot equipped with an ODVS, observing 360 ◦

horizontally, without additional sensors. The lab setup is shown in
Fig. 9(a). It includes robots moving on a frictionless air-bearing table.
The circumference of the table was marked by a red tape in order to
delineate the table as the zone for the CV detection algorithm.

Reference data of the actual position of each robot was recorded
using an overhead camera with a fisheye lens, observing the complete
surface of the air-table. For reference, the robots were detected using
different CV algorithms, designed to identify the different robots. In
addition, the detections by the fisheye camera were used for controlling
the robot motion in closed loop. The structure of the ODVS used in the
lab is shown in Fig. 9(b).

Two scenarios are shown in Fig. 10: The target is moving in a linear
motion on a straight line; and in a circular motion orbiting the camera.
341
The results are the estimated 6 dimensional relative state vector 𝐱
represented in the camera frame . Note that having a state vector
represented by a Cartesian coordinate system incorporates the depth
projection into each axis. But, as mentioned before, the depth is not
observable. Therefore, some of the comparisons were made using a
spherical coordinate system, attached to the camera’s CM, referred to
as , to isolate the depth into a single axis. The spherical axes of 
are range 𝝆̂, azimuth 𝜽̂, and elevation 𝝓̂. The transformation from the
Cartesian frame  to the spherical frame  is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌𝑘 =
√

𝑥2𝑘 + 𝑦
2
𝑘 + 𝑧

2
𝑘

𝜃𝑘 = arctan
(

𝑦𝑘
𝑥𝑘

)

𝜙𝑘 = arctan

(

𝑧𝑘
√

𝑥2𝑘+𝑦
2
𝑘

)
(44)

The covariance matrix represented in Cartesian frame 𝑐𝐏 is rotated to
the spherical frame 𝑠𝐏 according to
𝑠𝐏𝑘 = 𝐑𝑠,𝑘 𝑐𝐏𝑘 𝐑𝑇𝑠,𝑘 (45)

The rotation matrix 𝐑𝑠 is given by

𝐑𝑠,𝑘 =
⎡

⎢

⎢

⎣

cos𝜙𝑘 cos 𝜃𝑘 cos𝜙𝑘 sin 𝜃𝑘 sin𝜙𝑘
− sin 𝜃𝑘 cos 𝜃𝑘 0

− sin𝜙𝑘 cos 𝜃𝑘 − sin𝜙𝑘 sin 𝜃𝑘 cos𝜙𝑘

⎤

⎥

⎥

⎦

(46)

where at each time step 𝑡𝑘, the azimuth and elevation are calculated
according to Eq. (44).

3.2.1. Linear motion
Fig. 10(a) shows the experimental setup, in which the target robot

is moving on a straight line and the ODVS is mounted on the robot in
the center. The target robot moved from one corner of the table to the
adjacent corner.

State prediction is given by Eq. (13). In this experiment, we
assumed no external forces, hence 𝐮 = 𝟎. A constant linear velocity
motion model was used for the fundamental matrix,

Φ𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 𝛥𝑡 0 0
0 1 0 0 𝛥𝑡 0
0 0 1 0 0 𝛥𝑡
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(47)

where 𝛥𝑡 = 0.0939 s is the camera sampling rate. The process noise 𝜻 is
assumed to reflect only uncertainties in the accelerations of the robot,
which are equal for all axes. The noises of the different dimensions
are assumed to be uncorrelated. This yields the same process noise
covariance matrix as in Eq. (10) which is discretized according to
Eq. (11) to obtain

𝐐𝑘 = 𝛷𝑠

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑡3

3 0 0 𝛥𝑡2

2 0 0

0 𝛥𝑡3

3 0 0 𝛥𝑡2

2 0

0 0 𝛥𝑡3

3 0 0 𝛥𝑡2

2
𝛥𝑡2

2 0 0 𝛥𝑡 0 0

0 𝛥𝑡2

2 0 0 𝛥𝑡 0

0 0 𝛥𝑡2

2 0 0 𝛥𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(48)

while 𝛷𝑠 enables calibration of the filter.
Measurement likelihood is given by Eq. (16). For the measurement

model, the nonlinear unified projection model of Eq. (29) was used
together with the calibrated parameters of the ODVS. For calculating
the covariance matrix 𝐒𝑘, the linearized measurement model 𝐇𝑘 was
used, Eq. (31). The discrete measurement-noise covariance matrix 𝐑𝑘
is given by Eq. (32).

Fig. 11 depicts the estimated relative state error represented in the
coordinate system . As observed, errors in the position states are up
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o 0.3 m, errors in the velocity states are up to 0.1 m, and all errors are
ounded by the standard deviation (STD). Looking at the shape of the
TD of the 𝐱̂ and 𝐲̂ axes, the variance of the 𝐱̂ axis is maximal while
he target is crossing the 𝐱̂ axis, and the variance of the 𝐲̂ axis is larger
hile the robot is shifting farther on the 𝐲̂ direction. Having a target

rossing the scene horizontally is expected to cause larger variance, as
n effect of the non-observable depth, alternating between the 𝐱̂ and
̂ axes, according to the target’s azimuth relatively to the camera. STD
alues of the relative velocity states converge towards zero, indicating
hat using the constant velocity motion model was reasonable. A small
rror is observed in the 𝐳̂ direction because the motion was only in the
𝑦 plane.

Fig. 12 presents the estimated relative position states together with
he reference, all represented in the spherical coordinate system .

good tracking is observed for all states but a particularly accurate
342

u

esult is observed for the azimuth. Considering the planar motion of the
obots, the apparent elevation change requires a clarification. It results
rom a constant height difference between the camera and the target.
his height difference causes a change in the vertical viewing angle as
function of the varying range to the target. Furthermore, that is the

eason for the inverted behavior of the elevation and range axes. It can
e seen in the middle of the target’s motion, where the range is the
mallest and the elevation is the highest.

.2.2. Circular motion
Fig. 10(b) presents the experiment setup, in which the target robot

s moving on a circular orbit and the ODVS is mounted on the robot in
he center.

Here we used a constant angular velocity motion model which
tilizes the fundamental matrix of constant linear velocity motion,
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E

Fig. 8. Comparison between different measurements and their effect on the Cartesian relative velocity error components.
q. (47), with 𝛥𝑡 = 0.0939 s as before. In this scenario, the centripetal
acceleration is modeled as an external force; hence 𝐮 = 𝝎× (𝝎× 𝝆) and
the input matrix is given by:

Ψ𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝑡2

2 0 0

0 𝛥𝑡2

2 0

0 0 𝛥𝑡2

2
𝛥𝑡 0 0
0 𝛥𝑡 0
0 0 𝛥𝑡

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(49)

The process noise is assumed to be as in the former scenario. Hence, the
process noise covariance matrix of Eq. (48) was used. The measurement
model is the nonlinear unified projection model of Eq. (29), the same
as in the former scenario.
343
Fig. 13 presents the estimated relative states together with its
reference, represented in the spherical coordinate system . The results
contain the range, azimuth and their rate of change, because the motion
is evolving in the horizontal plane. As expected, the estimated range 𝜌
drifts while the estimated azimuth 𝜃, follows the reference accurately.
The estimated velocity graphs present similar results. The errors in
range cannot be compensated by the ODVS measurements. As those
are not informative in that direction. 𝜃̇ starts from zero and rises to an
approximately constant value. This is in accordance with the target’s
motion, which starts from rest and accelerates to orbit the camera at
an approximately constant angular velocity. The chosen motion model
adds to the presented errors because it is formed by a linearization of
a nonlinear motion. The centripetal acceleration linearly manipulates
each discrete step of the circular path, by rotating the direction of

motion. The accumulative error is expressed in the 𝜌 and 𝜌̇.
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Fig. 9. Lab setup.
Fig. 10. Two experimental scenarios.
Fig. 14 presents the estimated relative position error of the target,
represented by the spherical coordinate system, . These graphs are
presented to give another perspective on the non-observability of the
range. They show that the azimuth error is bounded by the STD for
more than 66% of the time, while the range error is not.

Fig. 15 presents the estimated relative state for calibrated EKF to-
gether with its reference, represented in the spherical coordinate system
344
. Optimal tuning of the EKF was performed under the consistency test
condition [34]. These graphs present the results of the same experiment
but using different values for the calibration of the EKF. As can be
seen, when the estimator is optimally calibrated, and there is a better
balance between the errors of the motion model and the errors of the
measurement model, it is possible to bound the non-observable depth.
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Fig. 11. Relative state estimation error, for the case of linear motion, represented in the Cartesian coordinate system, .
4. Space scalability analysis

The results of the simulation and lab experiments give an indication
of the suitability of the algorithms and hardware for implementation
in space. However, to that end, a scalability analysis is required. The
analysis defines a potentially real world scenario of an ODVS mounted
on a satellite, tracking a target at an adjacent orbit, within its FOV. The
ODVS in space should have compatible performance to its laboratory
prototype and more specifically, compatible resolution. System param-
eters are shown to fit the desired target size and range in the example,
and can be adjusted according to the scenario.

A full-frame format is a digital image sensor format that is the same
size as a 35 mm film format (24 mm × 36 mm). The image sensor
format of a digital camera determines the angle of view of a particular
lens when it is being used with that particular sensor. The format size
345
ratio (relative to the full-frame format) is known as the FOV crop-factor
or just Crop Factor (CF).

For a given number of pixels, the larger sensor allows for larger
pixels or photosites, that provide wider dynamic range and lower noise
at high ISO levels. As a consequence, full-frame format may produce
better quality images in certain high contrast or low light situations.

When designing an ODVS, the desired sensor should fit telephoto
photography (smaller sensor), while the wide angle photography is
achieved by the shaped mirror (hyperboloid in our case). On the other
hand, having the ODVS operating in space, is likely to cause high
contrast and low light in sun-hidden locations in the orbit. Hence,
both larger and smaller sensors could benefit the system at different
scenarios.

ODVS resolution, as a function of target size and distance, was in-
vestigated. Calculations are explained below, parameters are visualized
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Fig. 12. Estimated relative states, for the case of linear motion, represented in the spherical coordinate system, .
s
U

in Fig. 16, and numerical results are presented in Tables 1 and 2. The
following discussion answers two key questions:

First, using the same system parameters as in the laboratory but for
a different target distance, what will be the target size for which equiva-
lent resolution performance will be obtained? Second, for desired target
distance and size, how should the system parameters be changed, in
order to get equivalent resolution?

4.1. First scenario

At a range of 100 m, the corresponding target size can be calculated
from the ODVS parameters of the laboratory experiment. There, the
infinitesimal target area which corresponds to 1 pixel of the image
346

sensor, 𝑑𝑇 , is given by dividing the apparent target area, 𝑇𝑠, by the (
number of pixels representing the target in the image sensor, 𝑇𝑝:

𝑑𝑇 =
𝑇𝑠
𝑇𝑝

(50)

The corresponding infinitesimal solid angle1 𝑑𝜈 is given by dividing the
infinitesimal target size by the squared distance from the viewpoint to
the target, 𝑑:

𝑑𝜈 = 𝑑𝑇
𝑑2

(51)

1 In geometry, a solid angle is a measure of the amount of the FOV, from
ome particular point, that a given object covers. In the International System of
nits (SI), a solid angle is expressed in a dimensionless unit called a steradian

sr).
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Fig. 13. Estimated relative state, for the case of circular motion, represented by the spherical coordinate system, .
In this first examined scenario, an ODVS with the same parameters
as in the lab is considered. Thus, the space system has an infinitesimal
solid angle of 3.681 ⋅ 10−5 sr as the lab system has. Furthermore, the
target is considered to be represented by the same number of pixels in
both systems. The only difference is that the observed target is located
at a different distance of 𝑑𝑠𝑝𝑎𝑐𝑒 = 100 m. Substituting Eq. (50) in
(51) and considering both systems has the same parameters, yields the
following relation:

𝑇𝑠𝑝𝑎𝑐𝑒
𝑇𝑠

=
(𝑑𝑠𝑝𝑎𝑐𝑒

𝑑

)2
(52)

ere, the ratio between the target sizes equals the squared ratio be-
ween the distances.

As can be seen in Table 1, in order to obtain equivalent performance
n space, for a target 100 m away from the camera, the apparent target
rea should be at least 33.131 m2. For smaller targets, we refer to the
econd scenario.

.2. Second scenario

For space target sizes on the order of 1 m2 and a range of 150 m,
he ODVS parameters are presented in Table 2. In order to detect the
arget equivalently to the lab experiment, the target should be projected
o 90 pixels in the image sensor. According to Eq. (50), this means that

pixel should represent an infinitesimal target area of 0.0111 m2 and
he corresponding solid angle, given by Eq. (51), will be 4.938 ⋅ 10−7 sr.
he ODVS resolution can be described by the relation between 1 image
ensor pixel, to the infinitesimal solid angle to the target, 1

𝑑𝜈 [
1
sr ]. Thus,

he desired ODVS resolution is 2.025 ⋅ 106 1
sr . Comparing the ODVS

esolution of the lab experiment to the desired one, it can be seen in
able 2 that the desired resolution should be 74.54 times the resolution
347
of the lab system:
1
𝑑𝜈

|

|

|

|𝑑𝑒𝑠𝑖𝑟𝑒𝑑
= 1
𝑑𝜈

|

|

|

|𝑙𝑎𝑏
⋅ 74.54 (53)

As a consequence, the ODVS parameters should be changed to obtain
a higher ODVS resolution.

Mirror parameters are introduced by the Q factor, which is based
on Eq. (51) as follows: Considering the solid angle to the mirror surface
𝑑𝑆, the relation between the infinitesimal solid angles can be described
by the following squared distance ratio, which will be denoted as the
Q factor:

𝑑𝜔
𝑑𝜈

=
(

𝑑𝑣
𝑑𝑝

)2
≜ 𝑄 (54)

Expanding the ODVS resolution and substituting Eq. (54) gives:
1
𝑑𝜈

= 1
𝑑𝐴

𝑑𝐴
𝑑𝜔

𝑑𝜔
𝑑𝜈

= 1
𝑑𝐴

𝑑𝐴
𝑑𝜔

𝑄 (55)

Here, the resolution of the catadioptric camera equals the
multiplicative-inverse pixel area 1

𝑑𝐴 , multiplied by the resolution of the
camera 𝑑𝐴

𝑑𝜔 , and a function of the mirror parameters, represented by
the factor 𝑄. According to Eqs. (53) and (55), the desired resolution
can be achieved by changing the pixel area, the conventional camera
resolution, and the 𝑄 factor, to be 74.54 times larger than the lab
system’s values,

1
𝑑𝜈

|

|

|

|𝑑𝑒𝑠𝑖𝑟𝑒𝑑
=
[

1
𝑑𝐴

𝑑𝐴
𝑑𝜔

𝑄
]

𝑑𝑒𝑠𝑖𝑟𝑒𝑑
=
[

1
𝑑𝐴

𝑑𝐴
𝑑𝜔

𝑄
]

𝑙𝑎𝑏
⋅ 74.54 (56)

The infinitesimal solid angle to the sensor 𝑑𝜔, is given by dividing
the projected pixel area 𝑑𝐴, which is the infinitesimal sensor area,
by the squared distance to the pixel. According to Fig. 16 it can be
calculated by

𝑑𝜔 =
𝑑𝐴 cos𝜓

𝑓 2
(57)
( cos𝜓 )
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Fig. 14. Estimated relative state error, for the case of circular motion, represented by the spherical coordinate system, .
Table 1
Space scalability according to the first scenario.
Parameter Units Laboratory Equivalent

parameters
(first scenario)

Target surface dimensions (w × h) 𝑇𝑠 [m2] 0.206 × 0.042 = 8.652 ⋅ 10−3 33.131
Target distance 𝑑 [m] 1.616 100
Number of target pixels 𝑇𝑝 [pixels] 90 90
Infinitesimal target area 𝑑𝑇 [ m2

pixel ] 9.613 ⋅ 10−5 0.3681
Infinitesimal solid angle to target 𝑑𝜈 [sr] 3.681 ⋅ 10−5 3.681 ⋅ 10−5
Table 2
Space scalability according to the second scenario.
Parameter Units Laboratory Space desired

(second scenario)

Target surface dimensions (w × h) 𝑇𝑠 [m2] 0.206 × 0.042 = 8.652 ⋅ 10−3 1
Target distance 𝑑 [m] 1.616 150
Number of target pixels 𝑇𝑝 [pixels] 90 90
Infinitesimal target area 𝑑𝑇 [ m2

pixel ] 9.613 ⋅ 10−5 0.0111
Infinitesimal solid angle to target 𝑑𝜈 [sr] 3.681 ⋅ 10−5 4.938 ⋅ 10−7

Resolution of ODVS 1
𝑑𝜈

[ 1
sr ] 27166.53 Desired: 2.025 ⋅ 106

Obtained: 2.222 ⋅ 106
Sensor dimensions (w × h) 𝐴 [mm2] 6.784 × 5.427 36 × 24
Sensor diagonal size 𝐷 [mm] 8.687 43.266
Sensor resolution 𝐴 [pixels] 640 × 512 = 307680 4096 × 2160

= 8847360
Conventional camera focal distance 𝑓 [mm] 1.0977 5.4885
Pixel area 𝑑𝐴 [μm2] 10.62 8.792

Mirror focal distance 2𝑐 [mm] 136.547 91.031
Crop Factor CF ≈5
Pixel Factor PF 1.2059
Mirror Focal Distance Factor MFDF 1.5
348



Acta Astronautica 188 (2021) 334–351O. Kaufman and P. Gurfil

c
i

Fig. 15. Estimated relative state, for the case of circular motion and calibrated Extended Kalman Filter, represented by the spherical coordinate system, .
Fig. 16. Resolution analysis of a catadioptric camera with a hyperbolic mirror.
F

where 𝑓 is the focal length and 𝜓 is the angle between the optical
axis and the line joining the pinhole to the center of the infinitesimal
sensor area, 𝑑𝐴. Based on Baker’s analysis of ODVS resolution [9],
onventional camera resolution is represented by the ratio between the
nfinitesimal sensor area 𝑑𝐴, and the infinitesimal solid angle to the

sensor 𝑑𝜔. Rewriting Eq. (57), the conventional camera resolution is
349

v

given by

𝑑𝐴
𝑑𝜔

=
𝑓 2

cos3 𝜓
(58)

or resolution calculations of the ODVS in the lab, calculate the con-
entional camera resolution first, according to Eq. (58). Here, 𝜓 angle
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is given by:

𝜓 = arctan
( 𝑥
𝑓

)

(59)

where 𝑓 is the focal length, and 𝑥 is the distance on the image sensor,
etween the infinitesimal sensor area 𝑑𝐴 and the optical axis. For the
esired catadioptric camera, consider to use a full-frame format sensor
or which the focal distance 𝑓 is multiplied by the CF, which is given
y the ratio between the sensors’ diagonal size, 𝐷:

𝐹 =
𝐷𝑓𝑢𝑙𝑙−𝑓𝑟𝑎𝑚𝑒

𝐷𝑙𝑎𝑏
(60)

The desired conventional camera resolution will be 𝐶𝐹 2 times the lab
conventional camera resolution, according to Eq. (58) and (59):

𝑑𝐴
𝑑𝜔

|

|

|

|𝑑𝑒𝑠𝑖𝑟𝑒𝑑
=

𝑓 2

cos3
[

arctan
( 𝑥
𝑓

)] ⋅ 𝐶𝐹 2 = 𝑑𝐴
𝑑𝜔

|

|

|

|𝑙𝑎𝑏
⋅ 𝐶𝐹 2 (61)

The square root of the ratio between the pixel sizes will be referred
to as a Pixel Factor (PF),

𝑃𝐹 =

√

𝑑𝐴𝑙𝑎𝑏
𝑑𝐴𝑑𝑒𝑠𝑖𝑟𝑒𝑑

= 1.2059 (62)

Now we can write the multiplicative-inverse of the desired pixel size as

1
𝑑𝐴

|

|

|

|𝑑𝑒𝑠𝑖𝑟𝑒𝑑
= 𝑃𝐹 2 1

𝑑𝐴
|

|

|

|𝑙𝑎𝑏
(63)

Based on Fig. 16, the squared distance ratio of Eq. (54) can be
xpressed explicitly considering the frame , which is a Cylindrical
ight-hand body-fixed reference frame attached to the catadioptric
amera’s mirror viewpoint:

=
𝑑2𝑣
𝑑2𝑝

=
[

𝑟2 + 𝑧2

(2𝑐 + 𝑧)2 + 𝑟2

]

(64)

where 𝑟 and 𝑧 are the coordinates of the center of the mirror surface
𝑑𝑆, expressed in the radial and axial axes respectively, and 2𝑐 is the
istance between the focal points of the hyperboloid mirror. For the
irror parameter adjustment, using a mirror with smaller distance

etween the two focal points of the hyperboloid, will make the 𝑄 factor
arger. To show this, we define a Mirror Focal Distance Factor (MFDF),
hich is the ratio between the focal distance of the mirror in the lab,
𝑐𝑙𝑎𝑏, and of the focal distance of the desired mirror, 2𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑 .

𝐹𝐷𝐹 =
2𝑐𝑙𝑎𝑏

2𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(65)

Next, we divide the focal distance of the lab mirror by 𝑀𝐹𝐷𝐹 = 1.5;
his will make the 𝑄 factor 1.52 times larger according to Eq. (64).

e assume that 2𝑐𝑙𝑎𝑏 = 136.547 mm is much larger than 𝑟 and 𝑧 of a
eripheral point on the mirror (𝑟𝑚𝑎𝑥|𝑙𝑎𝑏 = 14 mm, 𝑧𝑚𝑎𝑥|𝑙𝑎𝑏 = 2.481 mm).

𝑄|𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑟2 + 𝑧2

( 2𝑐𝑙𝑎𝑏
𝑀𝐹𝐷𝐹 + 𝑧)2 + 𝑟2

2𝑐𝑙𝑎𝑏≫𝑟,𝑧≈ 𝑟2 + 𝑧2

(2𝑐𝑙𝑎𝑏 + 𝑧)2 + 𝑟2
⋅𝑀𝐹𝐷𝐹 2

= 𝑄|𝑙𝑎𝑏 ⋅𝑀𝐹𝐷𝐹 2

(66)

smaller focal distance 2𝑐, can be achieved by keeping the same
emiminor axis 𝑏, and a smaller semimajor axis 𝑎, according to the
yperboloid parameters relation:

=
√

𝑎2 + 𝑏2 (67)

Thus, the vertical FOV will be narrower, meaning a lower mirror shape.
Consequently, according to Eqs. (56), (61), (63) and (66), the

obtained catadioptric camera resolution is
1
𝑑𝜈

|

|

|

|𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑
= 1
𝑑𝜈

|

|

|

|𝑙𝑎𝑏
⋅𝑀𝐹𝐷𝐹 2 ⋅ 𝑃𝐹 2 ⋅ 𝐶𝐹 2 (68)

or the current scenario, 𝑀𝐹𝐷𝐹 2 ⋅𝑃𝐹 2 ⋅𝐶𝐹 2 = 81.798, which is slightly
arger than the desired ratio of 74.54. Hence, for a resolution equivalent
o the lab experiment, and for desired target distance and size, a full-
rame sensor with higher resolution and a lower hyperboloid mirror
350

hape could be used.
5. Conclusions

This study shows that the spacecraft relative motion model bounds
the growth of the non-observable depth, inherited from the ODVS. Ad-
ditionally, this work compared between relative state estimation, based
on measurements from a single ODVS, and fusion of sensors. Fusing
ground station measurements improves the relative state estimation.

The experiments performed in the lab show that the relative state
can be estimated, under the conditions of frictionless dynamics and
visible target, using solely an ODVS. The non-observable depth effects,
resulting from the monocular vision sensor, can be bounded using
a good motion model and optimal filter tuning. The CV detection
algorithms are shown to work properly with an ODVS, as well as at
lab conditions, which resemble in some aspects the space conditions.
Space scenarios possessing piecewise linear motion or circular motion
dynamics, could be correlated to the corresponding experiments.

We conclude that an ODVS could be used as a tracking sensor for
spacecraft relative navigation, when it is accompanied by another sen-
sor, or by an accurate dynamical model. In various simulated scenarios,
it has shown superiority to other vision sensors by its ability to observe
the whole scene without the need to maneuver.
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