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A B S T R A C T

Three-dimensional reconstruction based on stereo vision technology is an important research direction in the
field of computer vision, and has a wide range of applications in industrial measurement, medical image
reconstruction, cultural relic preservation, robot navigation, virtual reality and other fields. However, the three-
dimensional reconstruction of moving objects usually has poor accuracy, low efficiency and poor visualization
effect due to the image noise, motion blur, complex and time-consuming calculation etc. In this article, a
disparity optimization method based on depth change constraint is proposed, which utilizes the correlation of
the adjacent frames in the continuous video sequence to eliminate mismatches and correct the wrong disparity
values by introducing a depth change constraint threshold. The experiments on the video images which are
taken by a binocular stereo vision system demonstrate that our method of removing incorrect matches bears
satisfactory results and it can greatly improve the effect of the three-dimensional reconstruction of the moving
objects.
1. Introduction

Three-dimensional (3D) reconstruction is the process of obtaining
the shape and appearance of real objects. With the help of relevant
instruments, it can complete the digital reproduction of the 3D in-
formation of a specific target or scene. With the rapid development
of reconstruction technology and computer software and hardware,
the scale, quality and efficiency of 3D reconstruction have also been
greatly improved. It has become an important means for humans to
obtain spatial information, and has been widely applied in industrial
measurement [1,2], medical image reconstruction [3], cultural relic
preservation [4,5], robot navigation [6,7], augmented reality [8,9] and
other fields [10–12].

Laser scanning is a common method of 3D reconstruction [13,14],
which uses laser scanning equipment to obtain the point cloud and
color information of the object surface. This kind of method is accu-
rate and efficient, and can effectively obtain high-precision 3D model.
However, laser scanning requires the use of professional measuring
equipment, which is susceptible to various restrictions such as the use
environment, the object to be measured, and the cost.
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Vision-based 3D reconstruction [15,16] methods use computer vi-
sion technology to recover 3D scenes from 2D images, which hold
extension applications of 2D image processing such as face recogni-
tion [17,18], face editing [19], person re-identification [20,21], gender
recognition [22] and so on. This method has the characteristics of non-
contact, strong flexibility and low cost, and does not require a large
amount of hardware support. Therefore, vision-based 3D reconstruction
is gradually being valued.

Using binocular or multi cameras for 3D reconstruction is a repre-
sentative vision-based reconstruction method. By simulating the prin-
ciple of human vision, this method observes the same scene from two
(or more) viewpoints to obtain images under different perspectives,
finds the corresponding points between the images through the stereo
matching algorithm, and then uses the triangulation principle to cal-
culate the position deviation (i.e. disparity) between the pixels of the
corresponding points to restore the 3D information of the image scene,
so as to achieve the 3D reconstruction of the target.

In recent decades, 3D reconstruction based on binocular stereo
vision technology has received much attention and research of many
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scholars, and has been continuously improved and perfected on the
basis of predecessors, and has gradually been applied in real life [23–
25]. However, there are still many difficulties and shortcomings that
need to be solved urgently. For example, since this kind of method
involves the matching of corresponding points between images in the
process of point cloud restoration, the reconstructed object is often
required to have certain texture information. How to better deal with
the input image sequence containing weakly textured objects affects
the robustness and applicability of the algorithm. In addition, the
3D reconstruction of moving objects usually has poor accuracy, low
efficiency and poor visualization effect due to the image noise, motion
blur, complex and time-consuming calculation etc.

This article is dedicated to studying how to optimize the disparity
map obtained by stereo matching for the 3D reconstruction of moving
objects. A method of using the inter-frame relationship of continuous
video to eliminate the mismatches and correct the false disparity values
by adding a depth change constraint is proposed. The experimental
results indicate that our method effectively improves the effect of 3D
reconstruction of moving objects.

The rest of this article is organized as follows. In Section 2, we
discuss the previous work about 3D reconstruction. Section 3 intro-
duces the principle and specific implementation steps of the proposed
method. And Section 4 provides the experimental platform and the
visualized experimental results. At last, the conclusions and future work
are given in Section 5.

2. Related work

Recovering 3D structures from 2D images is a notoriously complex
process that requires expertise with often limited results. In the liter-
ature, many methods have been proposed to solve the problem of 3D
reconstruction, which can be divided into two classes: active methods
and passive methods. Active methods [26–28] retrieve 3D point coordi-
nates on the surface of objects/scenes by projecting a controlled light
source (laser, structured light, etc.). While passive methods only use
images or videos captured from multiple viewpoints by one or more
digital cameras as sufficient input data to start the 3D reconstruction
process.

Structure from motion (SFM) is one of the typical passive methods.
In [29], the authors proposed a novel global calibration approach based
on the fusion of relative motions between image pairs. They defined
an efficient Contrarious trifocal tensor estimation method to extract
translation directions, and then used an efficient translation registration
method to recover accurate camera positions. In [30], the authors
proposed a Hybrid SFM for 3D reconstruction, which adopted Global
SFM to compute the camera’s parameters and utilized Incremental
SFM to compute sparse point clouds. In [31], the authors presented
a SFM system for multi-scale objects/scenes 3D reconstruction from
uncalibrated images/video taken by a moving camera characterized
by variable parameters. To reduce computation time, the authors [32]
proposed an algorithm for the good choice of image pairs that would be
used by the Modified Match Propagation (MMP) to improve the sparse
3D reconstruction. These image pairs would be selected on the basis
of the result already achieved by SFM, and the MMP algorithm would
be applied for each image pair to retrieve new matches and their 3D
coordinates. The final 3D point cloud was achieved by fusion of results
obtained from the image pairs selected.

Another typical passive method is multi-view stereo (MVS). An
open-source MVS implementation named COLMAP proposed by Schon-
berger and Frahm [33] offers a wide range of features for the re-
construction of ordered and unordered image collections. And Open
Multiple View Geometry (OpenMVG) [34] is a well-known open-source
library that deals with multi-view solid geometry, providing feature
extraction and matching methods and a complete toolchain for struc-
ture from motion. In [35], the authors presented a new method for
large-scale MVS based on dense matching between very high-resolution
2

images, which allowed to obtain a very dense 3D point cloud of
high quality at a relatively low computational cost. However, this
method required the use of rich texture images to avoid making use
of costly optimization algorithms. In [36], the authors employed a
Particle Swarm Optimization (PSO) method in the patched expansion
process for the avoidance of possible local traps. To accelerate high-
quality multi-view matching, the authors [37] presented a massively
parallel method named Gipuma based on the patch-match idea, which
can obtain more accurate depth maps and implement parallelization.
The approaches based on MVS are often used to get high-quality dense
3D reconstruction results, but they require in input calibrated stereo
images as well as a long computation time.

Recently, convolutional neural networks (CNNs) are increasingly
introduced into these typical methods [38,39]. In [40], the authors
presented a learning framework for surface reconstruction in passive
multi-view scenarios. Their solution consisted in a N-view volume
sweeping, trained on static scenes from a small scale dataset equipped
with ground truth. In [41], the authors presented an end-to-end 3D
reconstruction system that could produce high-quality 3D models from
a set of unordered image collections. Their workflow was a typical 3D
reconstruction architecture that consisted of SFM, MVS, and surface
reconstruction, and could automatically recover desirable 3D models
without any interactive operations. In [42], the authors presented
a method for 3D face reconstruction from multi-view images with
different expressions. They optimized the 3D face shape by explicitly
enforcing multi-view appearance consistency and used a CNN network
to regularize the non-rigid 3D face according to the input image and
preliminary optimization results. In [43], the authors proposed a new
MVS network which exploits the attention mechanism for the multi-
scale feature pyramid to capture larger receptive fields and richer
information.

3. Proposed method

In the real scene, since the position of the moving object in the
three-dimensional space changes continuously, the change in the spa-
tial position of the object is relatively small during the two consecutive
frames of the video, and the change of the corresponding disparity
value is also limited. Therefore, according to the measurement scene,
we utilize some prior knowledge to restrict the change of the disparity
value between the previous and next frames, and judge whether the
matching is correct or not. Then the wrong disparity value would be
corrected to achieve disparity optimization.

3.1. Depth change constraint threshold estimation

A depth change constraint threshold is introduced to represent the
maximum change in the disparity value between the previous and next
frames, which is denoted as 𝐷𝐶𝐶𝑇 .

First, suppose that the moving speed of the object is 𝑣 and the frame
rate of the camera is 𝑟, and the amount of change in the actual height
of the object during the two consecutive frames of the shooting video
can be obtained as:

𝛥ℎ = 𝑣
𝑟

(1)

Then, through analyzing the distance resolution of the used binoc-
ular stereo vision system in different positions, it can be known how
much the distance changes in the 3D space would cause the change
of imaging position on the image plane. It should be noted that here
we only discuss the single-pixel accuracy of the camera itself, without
considering the sub-pixels obtained by pixel interpolation. According
to the principle of stereo disparity, binocular stereo vision system can
achieve 3D space coordinates of an object from its two different view
pictures captured at one time. The schematic diagram of the distance
measurement model is illustrated in Fig. 1, 𝑂𝐿 and 𝑂𝑅 are the optical

centers of the left and right camera. The two cameras have the same
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Fig. 1. Schematic diagram of the distance measurement model of binocular stereo
vision system.

Fig. 2. Projection model of the binocular stereo vision system on the 𝑂𝐿−𝑋𝐿𝑍𝐿 plane.

focal length 𝐹 . The distance between optical center 𝑂𝐿 and 𝑂𝑅 is
baseline denoted by 𝐵. 𝑂𝐿𝑂𝑙 and 𝑂𝑅𝑂𝑟 individually express the optical
axes of the left and right camera which are parallel to each other.
𝑃 (𝑋, 𝑌 ,𝑍) is an object point in the world coordinate system. It is pro-
jected through the projection center of the lens to the points 𝑃𝐿(𝑥𝑙 , 𝑦𝑙)
and 𝑃𝑅(𝑥𝑟, 𝑦𝑟) in the image plane, where two image coordinates of the
cameras are denoted by 𝑂𝑙 − 𝑥𝑙𝑦𝑙 and 𝑂𝑟 − 𝑥𝑟𝑦𝑟. Set the original point
of the world coordinates in the optical center 𝑂𝐿. Then through this
simple mathematical model we can get the expression of 3D world
coordinates: 𝑂𝐿(0, 0, 0), 𝑂𝑅(𝐵, 0, 0), 𝑃𝐿(𝑥𝑙 , 𝑦𝑙 , 𝐹 ), 𝑃𝑅(𝑥𝑟 +𝐵, 𝑦𝑟, 𝐹 ). If the
binocular system is projected onto the 𝑂𝐿 −𝑋𝐿𝑍𝐿 plane as illustrated
in Fig. 2, the coordinates of the points 𝑃 ′, 𝑃 ′

𝐿, 𝑃 ′
𝑅 are (𝑋,𝑍), (𝑥𝑙 , 𝐹 ),

(𝑥𝑟 + 𝐵, 𝐹 ), which 𝑃 ′, 𝑃 ′
𝐿, 𝑃 ′

𝑅 represent the projection points of 𝑃 , 𝑃𝐿,
𝑃𝑅 on the 𝑂𝐿 −𝑋𝐿𝑍𝐿 plane respectively. Therefore, It can be obtained
from the triangle similarity theorem as follows.
𝑥𝑙
𝑋

= 𝐹
𝑍

(2)

−𝑥𝑟
𝐵 −𝑋

= 𝐹
𝑍

(3)

From Eq. (2), we can get:

𝑍 = 𝐹𝑋
𝑥𝑙

(4)

𝑍 is the coordinate value of the object point P along 𝑍𝐿 axis in the
world coordinates, expressing the distance between object and camera.
After the object moves, when its projection point on the image plane
3

Fig. 3. The change of the range resolution in the horizontal direction.

differs by one pixel, the distance between object and camera becomes
𝑍′:

𝑍′ = 𝐹𝑋
𝑥𝑙 + 𝑎

(5)

here, 𝑎 represents the actual physical size of a pixel. So for the left
camera, the change of the distance in the 3D space is 𝛥𝑍𝐿, which
represents the spatial resolution of the left camera.

𝛥𝑍𝐿 =∣ 𝑍′ −𝑍 ∣

=∣ 𝐹𝑋
𝑥𝑙 + 𝑎

− 𝐹𝑋
𝑥𝑙

∣

=∣ 𝑎𝑍2

𝐹𝑋 +𝑍𝑎
∣

(6)

Similarly, according to Eq. (3), the spatial resolution of the right
camera 𝛥𝑍𝑅 can be obtained as follows.

𝑍 =
𝐹 (𝐵 −𝑋)

−𝑥𝑟
(7)

𝛥𝑍𝑅 =∣ 𝑍′ −𝑍 ∣

=∣
𝐹 (𝐵 −𝑋)
−𝑥𝑟 + 𝑎

−
𝐹 (𝐵 −𝑋)

−𝑥𝑟
∣

=∣ 𝑎𝑍2

𝐹 (𝐵 −𝑋) +𝑍𝑎
∣

(8)

Fig. 3 shows the relationship between the range resolution and
the X-coordinate of the spatial point P under the same measurement
distance when setting 𝑎 = 0.003 mm, 𝐵 = 1.2 mm, 𝐹 = 2 mm, 𝑍 = 10
mm. The dotted line and the dash-dotted line respectively represent
the curves of the distance resolution 𝛥𝑍𝐿 and 𝛥𝑍𝑅 of the left and right
cameras changing with the X-coordinate of the point P in space. We
believe that as long as one of the two cameras can distinguish a certain
amount of change in distance, the entire system can distinguish the
amount of change. So the distance resolution 𝛥𝑍 of the entire system
should take the smaller value of 𝛥𝑍𝐿 and 𝛥𝑍𝑅. The red solid line in the
figure represents the curve of the distance resolution 𝛥𝑍 of the entire
system varying with the X-coordinate of the spatial point P. It can be
seen that when 𝛥𝑍𝐿 = 𝛥𝑍𝑅, i.e. 𝑋 = 𝐵∕2, the distance resolution of
the system takes the largest value, which means the distance resolution
is lowest at this location. So taking the distance resolution value of
this position for subsequent estimation as Eq. (9), the result will be
relatively more reliable.

𝛥𝑍 =∣ 𝑎𝑍2

𝐹 ⋅ 𝐵
2 +𝑍𝑎

∣= 2𝑎𝑍2

𝐹𝐵 + 2𝑍𝑎
(9)

After that, according to Eqs. (1) and (9), we can further estimate
the real range of the variation in the disparity value caused by the
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Fig. 4. Starting from the reference frame of the disparity map, perform a two-way
comparison with adjacent frames in positive and reverse order respectively.

movement of the object during the time of shooting two consecutive
frames. And in this way, 𝐷𝐶𝐶𝑇 can be set as:

𝐷𝐶𝐶𝑇 = ⌈

𝛥ℎ
𝛥𝑍

⌉ = ⌈

𝑣(𝐹𝐵 + 2𝑍𝑎)
2𝑎𝑍2𝑟

⌉ (10)

3.2. Mismatch elimination

For each frame of stereo images in the continuous video, a corre-
sponding disparity map can be obtained. After determining the depth
change constraint threshold, perform differential processing on the
disparity maps corresponding to two consecutive frames of images in
the video. And for each disparity value in the disparity map, we can
get a corresponding change value which will be compared with the
depth change constraint threshold. If the change value of the disparity
is less than the depth change constraint threshold, it means that the
corresponding disparity value is reasonable. Otherwise, if the variation
of a disparity value exceeds the depth change constraint threshold,
it indicates that the corresponding disparity value is incorrect, and
accordingly it can be judged that the corresponding matching is a
mismatch and needs to be eliminated.

Suppose there are 𝑁 frames of disparity map in a video in total,
and 𝐷[𝑖] is used to represent the disparity value in the 𝑖th frame
disparity map, 𝑖 ∈ (1, 𝑁]. Similarly, the disparity value at the same
image coordinate position in the disparity map of the adjacent frame,
i.e. (𝑖−1)th frame is expressed as 𝐷[𝑖−1]. Then the disparity difference
between two adjacent frames which is denoted as 𝑐ℎ𝑎𝑛𝑔𝑒[𝑖] can be
obtained.

𝑐ℎ𝑎𝑛𝑔𝑒[𝑖] = 𝐷[𝑖] −𝐷[𝑖 − 1] (11)

The specific implementation of mismatch elimination is divided into
three steps.

The first step is to determine the starting reference disparity map
which is used for comparison. It needs to make the starting reference
frame of the disparity map meet the following condition as shown
in Eq. (12), with the purpose of ensuring that the starting reference
frame is reliable. If we just start from the first frame of the video and
compare the disparity maps sequentially, we cannot guarantee that
there are no mismatches in the disparity map of the first frame. The
starting reference disparity map is labeled as 𝑠𝑡𝑎𝑟𝑡.

𝐷[𝑖 − 2] = 𝐷[𝑖 − 1] = 𝐷[𝑖] = 𝐷[𝑖 + 1] = 𝐷[𝑖 + 2] (12)

The second step is that starting from the reference frame, perform a
two-way comparison with adjacent frames in positive and reverse order
respectively. As shown in Fig. 4, for the disparity maps corresponding to
each frame from 𝑠𝑡𝑎𝑟𝑡 to 𝑁 in the video sequence, compare the adjacent
frames one by one in positive order.

𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 + 1] = 𝐷[𝑖] −𝐷[𝑖 + 1] (13)

And at the same time, for the disparity maps corresponding to each
frame from 0 to 𝑠𝑡𝑎𝑟𝑡 in the video sequence, compare the adjacent
frames one by one in reverse order.

𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 − 1] = 𝐷[𝑖] −𝐷[𝑖 − 1] (14)
4

Algorithm 1 Disparity value correction
Input: 𝐷𝐶𝐶𝑇 ,𝐷, 𝑠𝑡𝑎𝑟𝑡
1: 𝐷𝐶𝐶𝑇 ← the depth change constraint threshold
2: 𝐷 ← the original disparity value obtained by stereo matching
3: 𝑠𝑡𝑎𝑟𝑡 ← the order of the starting reference frame in continuous video

4: for 𝑖 = 𝑠𝑡𝑎𝑟𝑡; 𝑖 < 𝑁 ; 𝑖 + + do
5: 𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 + 1] = 𝐷[𝑖] −𝐷[𝑖 + 1]
6: if |𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 + 1]| ≤ 𝐷𝐶𝐶𝑇 then
7: 𝐷[𝑖 + 1] = 𝐷[𝑖 + 1]
8: else
9: if |𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 + 1] + 𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 + 2]| ≤ 2𝐷𝐶𝐶𝑇 then

10: 𝐷[𝑖 + 1] = (𝐷[𝑖] +𝐷[𝑖 + 2])∕2
11: else
12: 𝐷[𝑖 + 1] = 𝐷[𝑖] + (𝐷[𝑖 + 3] −𝐷[𝑖])∕3
13: end if
14: end if
15: end for
16: for 𝑖 = 𝑠𝑡𝑎𝑟𝑡; 𝑖 > 0; 𝑖 − − do
17: 𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 − 1] = 𝐷[𝑖] −𝐷[𝑖 − 1]
18: if |𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 − 1]| ≤ 𝐷𝐶𝐶𝑇 then
19: 𝐷[𝑖 − 1] = 𝐷[𝑖 − 1]
20: else
21: if |𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 − 1] + 𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 − 2]| ≤ 2𝐷𝐶𝐶𝑇 then
22: 𝐷[𝑖 − 1] = (𝐷[𝑖] +𝐷[𝑖 − 2])∕2
23: else
24: 𝐷[𝑖 − 1] = 𝐷[𝑖] + (𝐷[𝑖 − 3] −𝐷[𝑖])∕3
25: end if
26: end if
27: end for
28: return the disparity value after correction

The third step is to compare all the disparity difference values with
the depth change constraint threshold 𝐷𝐶𝐶𝑇 individually to judge
whether they are mismatches. For the disparity maps from 𝑠𝑡𝑎𝑟𝑡 to 𝑁 ,

𝑃𝑖 =
{

1, |𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 + 1]| ≤ 𝐷𝐶𝐶𝑇
0, |𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 + 1]| > 𝐷𝐶𝐶𝑇

(15)

where 𝑃𝑖 represents the probability that the disparity map of the 𝑖th
frame is correct, here 𝑖 ∈ [𝑠𝑡𝑎𝑟𝑡,𝑁). And for the disparity maps from 0
to 𝑠𝑡𝑎𝑟𝑡,

𝑃𝑖 =
{

1, |𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 − 1]| ≤ 𝐷𝐶𝐶𝑇
0, |𝑐ℎ𝑎𝑛𝑔𝑒[𝑖 − 1]| > 𝐷𝐶𝐶𝑇

(16)

here 𝑖 ∈ [0, 𝑠𝑡𝑎𝑟𝑡).
By repeating the above three steps for each element of all disparity

maps, we can realize the judgment of whether all the image points in
the continuous video are mismatched.

3.3. Disparity value correction

In order to obtain a complete disparity map, the wrong disparity
values need to be corrected.

The specific correction method is summarized in Algorithm 1. For
the disparity maps corresponding to each frame from 𝑠𝑡𝑎𝑟𝑡 to 𝑁 in the
video sequence, the adjacent frames are compared in positive order
starting from the reference frame. If the variation of the disparity value
of the next frame satisfies the depth change constraint condition which
means the stereo matching of the next frame is correct, the disparity
value of the next frame remains unchanged. Otherwise, it is necessary
to continue to judge whether the variation of the disparity value of the
frame after next is satisfied. And if it is satisfied, the disparity value
of the frame after next is used for correction, otherwise, the disparity
value of the second frame after next is used for correction. In addition,
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Fig. 5. Motor assembly and target object.

similar processing is performed on the disparity maps corresponding
to each frame from 0 to 𝑠𝑡𝑎𝑟𝑡 in the video sequence, while the main
difference is that the comparison is performed in reverse order starting
from the reference frame.

By correcting the wrong disparity value, the optimization of the
disparity is realized. And if the 3D reconstruction is performed based
on the optimized disparity maps, the effect of the 3D reconstruction of
the moving object can be improved.

4. Experiment

In order to verify the effectiveness of the proposed method of
mismatch elimination based on the depth change constraint, some
experiments have been done in this section. The experimental process
and results are introduced as below.

4.1. Experimental platform

In our experiment, the binocular stereo vision system proposed in
Ref. [44] is used to capture the video. The system utilizes a single CCD
camera as an image sensor and combines the CCD with a biprism, as a
result that stereo image pairs of the object can be obtained in a single
frame of the CCD from different views. After calibration by the Bouguet
camera calibration toolbox, the intrinsic and extrinsic parameters of
the stereo system can be obtained as 𝐵 = 1.253 mm, 𝐹 = 2.071 mm,
rotation vector 𝑅 = [−0.01137−0.37638−0.00810], and translation vector
𝑇 = [−1.09614 − 0.00663 − 0.32264].

Furthermore, the experiment employs the motor assembly as shown
in Fig. 5 as the motion carrier of the target object. As long as the motor
assembly is powered on, the motor can drive the inner ring to move and
the speed is adjustable. The grid image is used as the target object to
simulate the repeated texture area and the weak texture area, and it is
fixed on the inner ring of the motor assembly.

4.2. Experiment on 3D reconstruction of moving surface

We conducted a 3D reconstruction experiment on the moving sur-
face, the experimental workflow is shown in Fig. 6.

Firstly, use the binocular stereo vision system mentioned above to
shoot the target object, and control the speed of the target object to
be 1 mm/s. The distance between the target object and the system is
about 6 mm.

After recording a video, decompose the video into a sequence of
images and take 100 consecutive frames as experimental images. Fig. 7
shows the original image of the 97th frames. As we can see, two views
of the target object are obtained in a single frame of the camera.
5

Fig. 6. Experimental workflow of the 3D reconstruction.

Fig. 7. The original image of the 97th frame.

Fig. 8. The left images after rectification.

Then divide all the original images into left and right images and
rectify the stereo image pairs using the result of the camera calibration
by applying the perspective matrix. The effective region of the left
images of the 97th, 98th, 99th, 100th frames after rectification are
exhibited in Fig. 8.

Next, the popular graph cut algorithm is chosen for stereo matching
of each rectified stereo image pair to obtain the corresponding disparity
map. And according to the method and implementation steps stated
in Section 3, the mismatches in the disparity map of each frame are
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Fig. 9. The disparity maps. (a), (b), (c), (d) are the initial disparity maps for frames
97 to 100, and (e), (f), (g), (h) are the disparity maps after optimization for frames 97
to 100.

eliminated. Fig. 9 lists the disparity maps before and after optimization
for frames 97 to 100.

Finally, 3D reconstruction is carried out based on the disparity maps
before and after optimization for intuitive comparison. As displayed
in Fig. 10, (a), (b), (c), (d) are the reconstruction results based on
the initial disparity maps for frames 97 to 100, while (e), (f), (g),
(h) are the reconstruction results based on the disparity maps after
optimization for frames 97 to 100. It can be clearly seen that the effect
of 3D reconstruction based on the optimized disparity maps has been
significantly improved, which proves that the method proposed in this
paper is effective to eliminate mismatches by controlling the depth
change based on the inter frame relationship of continuous video.
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4.3. Experiment on detection and matching of feature points

In order to more intuitively show the effect of using the proposed
method to eliminate mismatches, we also conduct a feature matching
experiment. The SURF algorithm is adopted to perform feature points
detection and matching on the rectified stereo image pairs obtained in
Section 4.2, and the feature matching point pairs are marked as shown
in Fig. 11. It can be seen from the figure that there are some obvious
mismatches in the matching results.

For the optimization, we carry out the following operations: Firstly,
SURF feature matching is performed on all the stereo image pairs
to obtain the disparity map, in which the disparity values obtained
by feature matching are some discrete points. Then traverse all the
points in the disparity map of the previous frame, and judge one by
one whether there is a corresponding point in the searching window
on the disparity map of the current frame. If there is, calculate the
disparity variation of the two corresponding points on the two adjacent
frames and determine whether it exceeds the depth change constraint
threshold. If it does not exceed, the disparity value represented by
the corresponding point will be retained as a correct match, otherwise
the disparity value will be removed as a false match. The experimen-
tal result shown in Fig. 12 indicates that through our approach the
mismatches in the stereo matching have been effectively eliminated.

5. Conclusion

Aiming at the 3D reconstruction of moving objects, this article
proposes a method to eliminate mismatches by taking advantage of
the inter-frame relationship of continuous video and taking the depth
change as the constraint condition. The method first decomposes the
captured video frame by frame, and obtains the corresponding disparity
map of each frame of image through stereo matching. Then utilize prior
knowledge such as the frame rate of the camera, the movement speed
of the object, and the approximate measurement distance to estimate
the change range of the real disparity value caused by the movement
of the object within the time of shooting two consecutive frames of
images, so as to set the depth change constraint threshold between
adjacent frames of the disparity map. After the disparity map of a
certain frame is determined as the starting reference disparity map, the
disparity maps of the adjacent frames are sequentially differentiated in
the positive order and the reverse order respectively. For the relative
Fig. 10. 3D reconstruction results. (a), (b), (c), (d) are based on the initial disparity maps for frames 97 to 100, and (e), (f), (g), (h) are based on the disparity maps after
optimization for frames 97 to 100.
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Fig. 11. Result of feature matching for the first frame.

Fig. 12. Result of feature matching after eliminating mismatches.

change of each disparity value in the disparity maps, compare it with
the depth change constraint threshold one by one. If the amount of
change exceeds the depth change constraint threshold, it is judged
that the stereo matching corresponding to the disparity value is a
mismatch which needs to be eliminated. Finally, the disparity maps are
optimized by correcting the wrong disparity values. In order to verify
the effectiveness of the proposed method, experiment on 3D reconstruc-
tion of moving surface and experiment on detection and matching of
feature points were carried out respectively. And it is proved that the
proposed method has superior performance in mismatch elimination
and disparity optimization.

In the future, we will explore the possibility of applying this method
to real-time 3D reconstruction of moving objects, and promote it to the
systems that require high real-time performance.
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