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Wenceslao Villegas Marset a,*, Diego Sebastián Pérez a, Carlos Ariel Díaz a, Facundo Bromberg a,b 

a Universidad Tecnológica Nacional, Dpto. de Sistemas de la Información, Grupo de Inteligencia Artificial DHARMa, Mendoza, Argentina 
b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina   

A R T I C L E  I N F O   

Keywords: 
Computer vision 
Fully convolutional network 
Grapevine bud detection 
Precision viticulture 

A B S T R A C T   

In Viticulture, visual inspection of the plant is a necessary task for measuring relevant variables. In many cases, 
these visual inspections are susceptible to automation through computer vision methods. Bud detection is one 
such visual task, central for the measurement of important variables such as: measurement of bud sunlight 
exposure, autonomous pruning, bud counting, type-of-bud classification, bud geometric characterization, 
internode length, bud area, and bud development stage, among others. This paper presents a computer method 
for grapevine bud detection based on a Fully Convolutional Networks MobileNet architecture (FCN-MN). To 
validate its performance, this architecture was compared in the detection task with a strong method for bud 
detection, Scanning Windows (SW) based on a patch classifier, showing improvements over three aspects of 
detection: segmentation, correspondence identification and localization. The best version of FCN-MN showed a 
detection F1-measure of 88.6% (for true positives defined as detected components whose intersection-over-union 
with the true bud is above 0.5), and false positives that are small and near the true bud. Splits –false positives 
overlapping the true bud– showed a mean segmentation precision of 89.3%(21.7), while false alarms –false 
positives not overlapping the true bud– showed a mean pixel area of only 8% the area of a true bud, and a 
distance (between mass centers) of 1.1 true bud diameters. The paper concludes by discussing how these results 
for FCN-MN would produce sufficiently accurate measurements of bud variables such as bud number, bud area, 
and internode length, suggesting a good performance in a practical setup.   

1. Introduction 

For decades, viticulturists have been producing models of the most 
relevant plant processes for determining fruit quality and yield, soil 
profiling, or vine health, and have been gathering a wealth of infor-
mation to feed into these models. Better and more efficient measuring 
procedures have resulted in more information, with its corresponding 
impact on the quality of model outcomes. Such information corresponds 
to a long list of variables for assessing the state of different parts of the 
plant, as the one found in the manual published by The Australian Wine 
Research Institute (2020a,b). Most of these variables of interest, how-
ever, are still being measured with manual instruments and visual in-
spection. This results in high labor costs that limit measurement 

campaigns to only small data samples which, even with the use of sta-
tistical inference or spatial interpolation techniques (Whelan et al., 
1996), restrict the quality of the decisions that agronomists can conduct 
from them. 

Precision viticulture in general (Bramley, 2009), and computer 
vision algorithms in particular, have been growing in the last couple of 
decades mostly due to their potential for mitigating these limitations 
(Seng et al., 2018; Matese and Di Gennaro, 2015). These algorithms 
come along with the promise of an unprecedented boost in the pro-
duction of vineyard information as well as many expectations not only 
about possible improvements in the quality of the measurements, but in 
its potential to produce better models by feeding all this information to 
big data algorithms. 
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(C.A. Díaz), fbromberg@frm.utn.edu.ar (F. Bromberg).  

Contents lists available at ScienceDirect 

Computers and Electronics in Agriculture 

journal homepage: www.elsevier.com/locate/compag 

https://doi.org/10.1016/j.compag.2020.105947 
Received 26 August 2020; Received in revised form 13 November 2020; Accepted 7 December 2020   

mailto:diego.villegas@alumnos.frm.utn.edu.ar
mailto:sebastian.perez@frm.utn.edu.ar
mailto:carlos.diaz@frm.utn.edu.ar
mailto:fbromberg@frm.utn.edu.ar
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2020.105947
https://doi.org/10.1016/j.compag.2020.105947
https://doi.org/10.1016/j.compag.2020.105947
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2020.105947&domain=pdf


Computers and Electronics in Agriculture 182 (2021) 105947

2

The present work contributes to this general endeavor with FCN-MN 
1 (Long et al., 2015; Shelhamer et al., 2017), an algorithm for measuring 
variables related to one specific plant part: the bud, an organ of major 
importance as it is the growing point of the fruits, containing all the 
plant’s productive potential (May, 2000). The present contribution of 
autonomous bud detection not only enables the autonomous measure-
ment of bud-related variables currently measured by agronomists (see 
Table 1 for a non-exhaustive list of bud-related variables), but it also has 
the potential to enable the measurement of novel, yet important, vari-
ables that at present cannot be measured manually. One example is the 
total sunlight captured by buds, which depends on the unfeasible 
manual task of determining the exact location of buds in 3D space. 
Although the present work focuses on 2D detection, it could be easily 
upgraded to 3D by, for instance, integrating 2D detection into the 
workflow proposed by Díaz et al. (2018). 

Table 1 shows a non-exhaustive list of the main bud-related variables 
currently measured by vineyard managers (Sánchez and Dokoozlian, 
2005; Noyce et al., 2016; Collins et al., 2020), together with an assess-
ment of the extent to which detection contributes to their measurement. 
The right-most column (other required operations) indicates the infor-
mation beyond detection, necessary to complete the measurement, 
while the middle columns labeled (i), (ii), and (iii) indicate the specific 
aspects of detection required for that variable: (i) whether it requires a 
good segmentation, i.e., the discrimination of which pixels in the scene 
correspond to buds and which correspond to non-bud; (ii) a good cor-
respondence identification, i.e., discrimination of bud pixels as belonging 
to different buds; or (iii) a good localization, i.e., the localization of the 
bud within the scene. For instance, regarding the bud number variable, 
for it to coincide with the detection count, different components 
detected for the same bud must be bundled together as a single detec-
tion. For the type-of-bud classification, in addition to correctly identifying 
components with buds, the segmentation of the part of the image cor-
responding to the bud must minimize the noise produced by background 
pixels. Lastly, to measure the incidence of sunlight on the bud, localization 
rather than segmentation is necessary, plus the leaf 3D surface 
geometry. 

A good detector, therefore, should be evaluated on all three aspects 

of segmentation, correspondence identification and localization. This is 
easy for our detector as its implementation first produces a segmentation 
mask, which is then post-processed to produce correspondence identi-
fication and localization. The specific aspects of this approach are 
detailed in Section 2. The analysis of detection results presented in 
Section 3 shows that this approach is superior to state-of-the-art algo-
rithms for grapevine bud detection. Finally, Section 4 discusses the 
scope, limitations of the results obtained for bud detection, sufficiency of 
the performance achieved for the measurement of a selection of vari-
ables in Table 3, as well as the most important conclusions, future work 
and potential improvements. 

1.1. Related work 

A wide variety of research using computer vision and machine 
learning algorithms to acquire information about vineyards (Seng et al., 
2018) can be found in the literature, such as berry and bunch detection 
(Nuske et al., 2011), fruit size and weight estimation (Tardaguila et al., 
2012), leaf area indices and yield estimation (Diago et al., 2012), plant 
phenotyping (Herzog et al., 2014a,b), autonomous selective spraying 
(Berenstein et al., 2010), and more (Tardáguila et al., 2012; Whalley and 
Shanmuganathan, 2013). Among the outstanding computer algorithms 
in recent years, artificial neural networks have aroused great interest in 
the industry as a means to carry out various visual recognition tasks 
(Hirano et al., 2006; Kahng et al., 2017; Tilgner et al., 2019). In 
particular, Convolutional Neural Networks (CNN) have become the 
dominant machine learning approach to visual object recognition (Ning 
et al., 2017). Two recent studies have successfully applied visual 
recognition techniques based on deep learning networks to identify viti-
cultural variables to estimate production in vineyards. One of them, 
Grimm et al. (2019), uses an FCN to carry out segmentation of grapevine 
plant organs such as young shoots, pedicels, flowers or grapes. The 
other, Rudolph et al. (2018), uses images of grapevines under field 
conditions that are segmented using a CNN to detect inflorescences as 
regions of interest, and over these regions, the circle Hough Transform 
algorithm is applied to detect flowers. 

Several works aim at detecting and locating buds in different types of 
crops by means of autonomous visual recognition systems. For instance, 
Tarry et al. (2014) presents an integrated system for chrysanthemum 
bud detection that can be used to automate labour intensive tasks in 
floriculture greenhouses. More recently, Zhao et al. (2018) presented a 
computer vision system used to identify the internodes and buds of stalk 
crops. To the best of our knowledge and research efforts, there are at 
least four works that specifically address the problem of bud detection in 
the grapevine by using autonomous visual recognition systems. The 
research work by Xu et al. (2014),Herzog et al. (2014b) and Pérez et al. 
(2017) apply different techniques to perform 2D image detection 
involving different computer and machine learning algorithms. In 
addition, Díaz et al. (2018) introduces a workflow to localize buds in 3D 
space. The most relevant details of each are presented below. 

Xu et al. (2014)’s study presents a bud detection algorithm using 
indoor captured RGB images and controlled lighting and background 
conditions specifically to establish a groundwork for an autonomous 
pruning system in winter. The authors apply a threshold filter to 
discriminate the background of the plant skeleton, resulting in a binary 
image. They assume that the shape of buds resembles corners and apply 
the Harris corner detector algorithm over the binary image to detect 
them. This process obtains a recall of 0.702, i.e., 70.2% of the buds were 
detected. 

Herzog et al. (2014b)’s work presents three methods for the detec-
tion of buds in very advanced stages of development when the buds have 
already burst and the first leaves are emerging. All methods are semi- 
automatic and require human intervention to validate the quality of 
the results. The best result is obtained using an RGB image with an 
artificial black background and corresponds to a recall of 94%. The 
authors argue that this recall is enough to solve the problem of 

Table 1 
A non-exhaustive list of important bud-related variables accompanied by an 
assessment of the extent to which detection contributes to their measurement. 
The right-most column indicates the information beyond detection necessary to 
complete the measurement, while the middle columns labeled (i), (ii), and (iii) 
indicate the three aspects of detection required: segmentation, correspondence 
identification, or localization, respectively.  

Variable (i) (ii) (iii) Other required operations 

Bud number  x  none 
Bud area x x  none 
Type-of-bud classification x x  plant structure (trunk and canes) 
Bud development stage x x  classifier over bud mask 
Internode length (by bud 

detection)  
x x plant structure (trunk and canes) 

Bud volume    3D reconstruction 
Bud development 

monitoring 
x x x none 

Incidence of sunlight on 
the bud  

x x 3D reconstruction, leaves 3D 
surface geometry  

1 Both code and data have been made available online at https://github. 
com/WencesVillegasMarset/DL4BudDetection. The shared repository includes 
both the corpus of images used for training and testing, as well as runnable code 
for inspecting and visualizing the complete set of results of our experiments, 
embedding the various models of the FCN-MN detector in variable measure-
ment systems, or re-training the FCN-MN on user provided images. 
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phenotyping vines. They also argue that these good results can be 
explained by the particular green color and the morphology of the 
already sprouting buds of approximately 2 cm. 

Pérez et al. (2017) outlines an approach for the classification of bud 
images in winter, using SVM as a classifier and Bag of Features to 
compute visual descriptors. They report a recall of over 90% and an 
accuracy of 86% when sorting images containing at least 60% of a bud 
and a ratio of 20–80% of bud vs. non-bud pixels. They argue that this 
classifier can be used in algorithms for 2D localization of the sliding 
windows type due to its robustness to variation in window size and po-
sition. It is precisely this idea that has been reproduced in the present 
work to implement the baseline competitor to our approach. 

Finally, Díaz et al. (2018) introduces a workflow for the localization 
of buds in 3D space. The workflow consists of five steps. The first one 
reconstructs a 3D point cloud corresponding to the grapevine structure 
from several RGB images. The second step applies a 2D detection 
method using the sliding window and patch classification technique of 
Pérez et al. (2017). The next step uses a voting scheme to classify each 
point in the cloud as a bud or non-bud. The fourth step applies the 
DBSCAN clustering algorithm to group points in the cloud that corre-
spond to a bud. Finally, in the fifth step, the localization is performed, 
obtaining the center of mass coordinates of each 3D point cluster. They 
report a recall of 45% and a precision of 100% and a localization error of 
approximately 1.5 cm, or 3 bud diameters. 

Although these research studies represent a great advance in relation 
to the problem of detecting and localizing buds, they still show at least 
one of the following limitations: (i) use of artificial background out-
doors; (ii) controlled lighting indoors; (iii) need for user interaction; (iv) 
bud detection in very advanced stages of development; (v) low bud 
detection/classification recall, and (vi) although some of these works 
perform some kind of segmentation process as part of the approach, 
none of them aim to segment the bud or report metrics of the quality of 
the segmentation performed. These limitations represent a major barrier 
to the effective development of tools for measuring bud-related 
variables. 

2. Materials and methods 

2.1. Fully Convolutional Network with MobileNet (FCN-MN) 

As outlined in the introduction, the approach proposes the use of 
computer vision algorithms to: (i) segment buds by classifying which 
pixels in the scene correspond to buds and which correspond to back-
ground (non-buds), (ii) identify bud correspondences by discriminating 
those pixels that belong to different buds in the observed scene, and (iii) 
localize each bud in the scene. 

For the segmentation operation, i.e., pixel classification, the fully 
convolutional network introduced in Long et al. (2015) is taken as a 
basis and trained for the specific problem of grapevine bud segmenta-
tion. The following Section 2.1.1 describes in detail the architecture 
considered for these networks. The resulting fully convolutional 
network returns a probability map on the same scale as the original 
image, where the value of one pixel represents the probability that the 
corresponding pixel in the input image belongs to a bud. To obtain a 
binary mask, a binarization threshold τ with values {0.1,0.2,…,0.9} is 
applied to each pixel, classifying the pixel as bud (non-bud) if its 
probability is higher (lower) than τ. To identify bud correspondences, 
post-processing of this binary mask is performed to determine that two 
bud pixels correspond to the same bud, as long as they belong to the 
same connected component, i.e., joined by some sequence of contiguous 
bud pixels. Finally, there are several alternatives for the localization of 
objects among which are bounding box, pixel-wise segmentation, contour 
and center of mass of the object (Lampert et al., 2008). In this work the 
last one was considered, choosing to localize buds by the center of mass 
of the connected component. 

2.1.1. Encoder-decoder architecture 
For the pixel classifier, the three versions –32s, 16s and 8s– of the 

fully convolutional networks originally introduced by Long et al. (2015) 
were considered, mainly due to their promising results in many image 
segmentation applications (Litjens et al., 2017; Garcia-Garcia et al., 
2018; Kaymak and Uçar, 2019). These networks have characteristic 
architectures with two distinct parts: encoder and decoder (see Fig. 1). 

The encoder consists of a convolutional neural network that per-
forms a downsampling of an input image into a feature set, by means of 
convolution operations to produce a set of feature maps, i.e., an abstract 
representation of the image that captures semantic and contextual in-
formation, but discards fine-grained spatial information. These opera-
tions reduce the spatial dimensions of the image as one goes deeper into 
the network, resulting in feature maps 1/n the size of the input image, 
where n is the downsampling factor. The decoder is an upsampling sub-
net, which takes the low-resolution feature map and projects it back into 
pixel space, increasing the resolution to produce a segmentation mask 
(or dense pixel classification) with the same dimensions as the input 
image. This operation is implemented as a network of transposed con-
volutions with trainable parameters, also known as upsampling convo-
lutions (Shelhamer et al., 2017). 

To refine the segmentation quality, connections that go beyond at 
least one layer of the network, called skip connections, are often used to 
transfer local spatial information from the internal encoder layers 
directly to the decoder. In general, these connections improve segmen-
tation results, since they mitigate the loss of spatial information by 
allowing the decoder to incorporate information from internal feature 
maps. Their impact may vary depending on the proposed skip archi-
tecture. In Long et al. (2015), three skip architectures are proposed: 32s 
without information from internal encoder layers; 16s that adds spatial 
information from deep encoder layers; and 8s that adds spatial infor-
mation from deep and less deep encoder layers. The details of these 
architectures are beyond the scope of this paper, but can be found in 
Long et al. (2015) and Shelhamer et al. (2017). Since the results reported 
in the literature are not conclusive regarding which architecture is 
better, in this work all three alternatives are considered. 

In spite of having achieved excellent results in practice, these ar-
chitectures carry a significant load of computational resources. With this 
in mind, in this work the VGG encoder of Simonyan and Zisserman 
(2015), originally proposed by Long for fully convolutional networks, 
was replaced by the MobileNet network of Howard et al. (2017), thus 
the suffix MN in the name of the FCN-MN algorithm. This network 
stands out for having only 4.2 million parameters against the 138 
million parameters of VGG, allowing the training and testing process to 
be considerably faster, with a much lower memory requirement. This 
situation was verified by preliminary experimentation, in which indeed 
MobileNet ended as the fastest, less memory intensive option for our 
training specification and hardware available. This experimentation is 
outside the scope of this manuscript and thus further details have been 
omitted. The use of MobileNet as an encoder in the fully convolutional 
networks of Long et al. (2015) is not new, but had already been proposed 
for the 8s architecture by Siam et al. (2018) in his SkipNet architecture. 
Technically, Siam et al. (2018)’s proposal is extremely simple; moti-
vating us to extend it to the 16s and 32s architectures originally pro-
posed by Long et al. (2015). 

2.2. Sliding windows detector 

This section describes both, the approach proposed by Pérez et al. 
(2017) for the classification of bud images, and our implementation for 
detection based on the sliding windows outlined in the original paper, 
denoted hereon by SW. Details of the six steps of the proposed SW 
detection procedure are shown in Fig. 2. 

In the present work, different variations of the SW algorithm are 
contemplated, considering squared windows of the 10 sizes 100, 200, 
300, 400, 500, 600, 700, 800, 900 and 1000 pixels, and the four values 
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{1,2, 3,4} for the voting threshold ν. These window sizes were chosen 
on the basis of the robustness analysis of the classifier presented by Pérez 
et al. (2017) for the window geometry. This analysis shows that the 
classifier is robust for patches that contain at least 60% of the pixels of a 
bud, and whose area is composed of at least 20% bud pixels. If we 
consider extreme cases, i.e., the smallest bud diameter of 100px and the 
largest of 1600px, window sizes of 100px and 1000px could contain at 
least 60% of the pixels of a bud. In addition, using a 50% displacement, it 
is guaranteed that at least one patch will contain more than 20% bud 
pixels, 50px and 500px, respectively. The authors argue that a sliding 
window detection algorithm could easily propose a scheme for choosing 
window size and displacement to ensure that at some point in the scan 
the window meets the robustness requirements. However, no details are 
given on how to implement it, so in this paper we only report results for 
fixed window sizes and 50% vertical and horizontal displacement. As a 
result, each pixel of the image simultaneously belongs to 4 patches, 
which justifies the maximum threshold value of 4. 

For all remaining parameters we considered a single value. The 
parameter values chosen for the Bag of Features and SVM algorithms 
(step c) are those of the original publication of Pérez et al. (2017), and 
are discussed in Section 2.3.3 together with details of the algorithms’ 
training. 

2.3. Model training 

This section provides details of the training process for each 
approach. In order to contrast both approaches they have been designed 
to receive the same type of input, i.e., an image of a viticultural scene, 
and to produce the same outputs, i.e., a binary mask of the same size as 
the original image whose positive pixels represent bud-type pixels. This 
allows both algorithms to be trained with the same image collection, 
which is described in the following section, followed by model-specific 
training details. 

2.3.1. Image collection 
The image collection used in this study is the same collection origi-

nally used in Pérez et al. (2017), which has been downloaded from 
http://dharma.frm.utn.edu.ar/vise/bc as indicated by the authors. The 
collection corresponds to bud images captured in winter in natural field 
conditions, on approximately a hundred Vitis Vinifera plants from 10 
different varieties, all driven by a trellis system. The complete collection 
consists of 760 images. However, in this work, only images containing 
exactly one bud were kept from the original dataset, resulting in a corpus 
of 698 images. Cases with more than one bud were scarce for a proper 
training of the FCN-MN architecture. This may restrict the practical 
applications of the trained detection model by forcing them to use 

Fig. 1. Diagram of the FCN-MN network architecture proposed in this work, based on the fully convolutional network proposed by Shelhamer et al. (2017), replacing 
its feature extraction encoder with the MobileNet network Howard et al. (2017), which produces feature maps with a downsampling factor of n. As a decoder for the 
production of the segmentation map, the SkipNet network Siam et al. (2018) is used, implementing variants 32s, 16s and 8s. 

Fig. 2. Diagram of the SW bud detection 
approach based on Pérez et al. (2017). Mul-
tiple patches from the input image shown in 
(a) are extracted via the Sliding Windows 
algorithm (b). Then, in step (c) a SIFT + BoF 
descriptor is computed for each patch. These 
descriptors are classified by an SVM binary 
classifier (d) in order to determine whether a 
bud is present on each patch. Finally, the 
generation of a binary segmentation mask is 
achieved in two steps. First, in step (e) a 
voting scheme is applied to each pixel, 
assigning it one vote for each positive patch 
it belongs to. Then, the pixel is incorporated 
in the output segmentation mask if the 
number of votes it obtained is more or equal 
to a user given threshold ν. Finally, step (f) 
shows the output mask corresponding to ν =

3 (black) together the ground truth segmen-
tation (white).   
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frames with only one bud. However, training and evaluating a one-bud 
model lays a strong groundwork for any future work, both academic or 
technological, that could overcome this limitation by producing the 
necessary multi-bud training corpus. Each image in the corpus is 
accompanied by the ground truth, that is, a mask of the manual seg-
mentation of the bud. These images and their masks were used during 
the training and evaluation of the detection models. For this purpose, the 
image collection was separated into two disjoint subsets: the train set 
with 80% of the images and the test set with the remaining 20%. This 
resulted in a train set of 558 images and a test set of 140 images, both 
with their respective ground truth masks. 

2.3.2. FCN-MN training 
The 558 images reserved for this purpose were used to train this 

approach. These images have different resolutions; however, the three 
proposed FCN-MNs require a fixed size entry. Therefore, all images 
(including their masks) were scaled to a resolution of 1024 × 1024 
pixels using a bilinear interpolation method (Han, 2013). In addition, for 
the train set images, the pixel RGB intensity values were scaled from [0; 
255] to [− 1; 1]. 

Given the small number of images in the train set, two techniques 
widely used in practice were employed to achieve robust training: 
transfer learning (Pan and Yang, 2009) and data augmentation (Shorten 
and Khoshgoftaar, 2019). The transfer learning process was carried out 
as follows: (i) the original MobileNet network proposed by Howard et al. 
(2017) was implemented; (ii) the network was initialized with the pa-
rameters pre-trained on the ImageNet benchmark dataset (Kornblith 
et al., 2019); (iii) the MobileNet multi-class classification layer was 
replaced by a binary classification layer; (iv) the network was trained as 
a bud and non-bud patch classifier in an analogous way to SVM training 
using the same balanced patch train set used for training SW, after 
scaling all its images to 224 × 224 pixels; and (v) the parameters ob-
tained in the previous step were used to initialize the encoder of our 
FCN-MN. The data augmentation process was applied on the fly during 
training, meaning that at each iteration the trainer receives one trans-
formed version of the original image obtained by applying the following 
seven operations to the original image over parameter values chosen at 
random with uniform probability: rotation of up to 45◦; horizontal shifting 
of up to 40%; vertical shifting of up to 40%; shear of up to 10%; Zoom of up 
to 30%; horizontal flip and vertical flip. Given that there are 200 epochs, 
the trainer is presented with 200 transformed versions of each image in 
the corpus, equivalent to one large dataset of 111600 images. 

For the training of the three FCN-MN variants –8s, 16s, and 32s– it is 
required to specify the optimization method and dropout value, two pa-
rameters typically defined by the user. In this work, the optimization 
methods considered were: Adam with learning rate 0.001, beta1 = 0.9 
and beta2 = 0.999; RMSProp with learning rate 0.001 and ρ = 0.9; and 
Stochastic Gradient Descent with learning rate 0.0001 and momentum =

0.9. For the dropout case, two values were considered: 0.5 and 0.001. 
These values were pre-selected by preliminary experiments not dis-
cussed here. 

The best combination of optimization method and dropout was 
determined in training time over a validation set, using the 4-fold cross 
validation approach by 60 epochs and batchsize equal to 4, varying over 
the three optimization methods and the two dropout values. The values 
selected were those that maximize the mean of Jaccard’s Intersection- 
over-Union (IoU) (Jaccard, 1912), a typical assessment measure in seg-
mentation problems. For each combination of optimizer and dropout 
values the simple mean is reported over 12 IoUs corresponding to the 3 
variants considered in each of the 4 folds. It can be observed in Table 2 
that the combination of parameters with which the highest average IoU 
is reached is RMSProp with a dropout of 0.001. Using these parameters, 
the 8s, 16s, and 32s architectures were trained over 200 epochs and 
batch size of 4. 

2.3.3. SW training 
The training of SW is conducted in the same way as for the original 

workflow proposed in Pérez et al. (2017). This involves training a binary 
classifier to learn the concept of bud versus non-bud from a collection of 
rectangular patches that may or may not contain a bud. During the 
training, bud patches must be regions that perfectly circumscribe the 
bud while non-bud patches must be regions that contain not a single bud 
pixel (see Fig. 3). Therefore, to build the patch collection, the 558 im-
ages and their masks were processed following the same protocol as in 
Pérez et al. (2017), obtaining a total of 558 patches circumscribing each 
bud (one per image), and more than 25000 non-bud patches (the non- 
bud area is much larger than the area occupied by a bud in the 
image). The size of these patches is variable, with resolutions between 
0.1 and 2.6 megapixels for the 100 × 100 to 1600 × 1600 pixels patches. 

From this collection of patches, a balanced patch train set was 
created, with 558 patches for each class, where non-bud patches were 
taken at random from the collection of 25000 background patches. The 
training was performed as detailed in the pipeline proposed by Pérez 
et al. (2017): (i) all SIFT descriptors were extracted from the train set; 
(ii) BoF was applied with a vocabulary size equal to 25; and (iii) the SVM 
classifier was trained on the BoF descriptors of each patch using a Radial 
Basis Function kernel, where the value of the γ and C parameters was 
established by means of a 5-fold cross-validation on the same value 
ranges: γ = {2− 14,2− 13,…,2− 7} and C = {25,26,…,214}. 

3. Experimental results 

In this section we present a systematic evaluation of the quality of 
our proposed FCN-MN procedure for bud detection over all three aspects 
of detection required for the measurement of the relevant bud-related 
variables listed in Table 1: segmentation, correspondence identification, 
and localization. First, in the following subsection, we present metrics 
that quantify the quality of these aspects, followed by Section 3 that 
presents the results for the metric values obtained for different experi-
ments over the image test set. 

3.1. Performance metrics 

3.1.1. Correspondence identification metrics 
Detection of buds is the result of two steps: (i) thresholding of the 

output masks into a binary mask, and (ii) considering each connected 
component of the binary mask as exactly one detected bud. For FCN-MN, 
the thresholding is done by keeping all pixels of the probabilistic mask 
with values higher than τ, and for SW this is done through the voting 
mechanism that keeps all pixels that belong to at least ν positive patches. 
The correspondence identification metrics measure to what extent these 
detections are correct or incorrect. Detected components are considered 
to be correct when most of its mask coincides with the mask of the true 
bud. This condition is formalized by considering true positives as those 
whose intersection-over-union between their masks and the masks of true 
buds surpasses some threshold α. Denoted IoU, this coefficient is defined 
as the area of the intersection between the detected and true masks, 
normalized by the area of their union. The IoU coefficient has also 
appeared in the literature as the Jaccard’s coefficient (Jaccard, 1912), 
an alternative to the harmonic mean (a.k.a. F1-measure) of the pixel- 

Table 2 
For each combination of optimizer and dropout values the simple mean is re-
ported between 12 IoUs corresponding to the 3 variants considered in each of the 
4 folds.   

Mean IoU 

Optimizer Dropout ¼ 0.001 Dropout ¼ 0.5 

RMSprop 0.44253 0.3117 
Adam 0.240277 0.315714 
SGD 0.000886 0.00151  
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wise precision and recall between the detected components and the true 
mask. The IoU coefficient runs from 0 when the detection missed 
completely the true bud, to 1 when the masks coincide perfectly. Values 
in between correspond to some true buds missing in the detected mask, 
or non-buds showing in the detected mask. This definition of detection 
may result in confusion when some detected component correctly de-
tects more than one bud, i.e., some detected component overlaps with an 
IoU higher than 0.5 with more than one true bud. This, however, cannot 
occur in our experiments because the image collection contains only one 
bud per image. 

This results in the following metrics for correspondence identifica-
tion, defined for an arbitrary value of the threshold α:  

• True Positive (TP(α)): number of detected components with IoU⩾α.  
• False Positives (FP(α)): number of detected components with 

IoU < α.  
• False Negatives (FN(α)): number of true buds for which there is no 

true positive detected component, that is, no detected component 
with IoU⩾α. 

Rather than reporting these quantities individually, we combine 
them in the well known precision and recall metrics, denoted as PD(α)
and RD(α), referred to as detection-precision and detection-recall, and 
defined formally as 

PD(α) =
true positives

true positives + false positives
=

TP(α)
TP(α) + FP(α),

RD(α) =
true positives

true positives + false negatives
=

TP(α)
TP(α) + FN(α) .

Given these quantities, we also report the F1-measure, denoted F1(α), 
computed as their harmonic average F1(α) = 2×

PD(α)×RD(α)
PD(α)+RD(α)

. 
These correspondence identification metrics provide a strong sum-

marization of the merit of the detection, but may lack some refinements 
necessary for assessing aspects of the bud detection with impact on the 
different possible applications of bud related variable measurements. 
For that, it is paramount to understand the impact of the false positive 
components. To start then, we distinguish them between those that 
overlap a true bud on at least a single pixel, named hereon as splits, and 
those that do not overlap a true bud, named hereon as false alarms. 
Formally,:  

• Split (S(α)): number of detected components satisfying 0 < IoU < α, 
i.e., are false positives but overlap the true bud.  

• False Alarm (FA(α)): number of detected components with IoU = 0, 
i.e., are false positives and do not overlap a true bud. 

In the following sections, α is considered to be 0.5, the most common 
choice in the literature of detection algorithms, with some minor ex-
ceptions considered for a detailed and thorough analysis. To simplify the 
notation we drop (α) for the cases corresponding to α = 0.5. For 
instance, we replace PD(0.5),RD(0.5) and F1(0.5) with PD,RD and F1. 

3.1.2. Segmentation metrics 
All correspondence identification metrics, including S and FA, are 

based on the rather coarse binary assessment of correct or incorrect. This 
allows a simple and summarized evaluation but may miss some subtle, 
pixel-wise errors, and their resulting impact on the measurement of bud 
related variables. A true positive, for instance, could miss that some 
component may have an IoU much larger than 0.5, even 1.0, meaning 
that its mask is matching perfectly that of the true bud. For other non 
perfect cases, the same IoU can be obtained for many combinations of 
intersections and unions, with extreme cases of a small detected 
component completely contained within the true bud presenting the 
same IoU of a large detected component containing completely the true 
bud. 

A pixel-wise comparison of the masks could also help to assess the 
quality of false positive detections. For the case of splits, the best case 
would be one completely enclosed within the true mask, –i.e., presenting 
not a single false positive pixel–, while covering half minus one of the 
pixels of the true bud mask. For the case of false alarms, a correspon-
dence identification metric may miss how large or small are these false 
positives. 

The community has proposed several metrics to quantify segmen-
tation errors. The most obvious ones are those that report the fraction of 
the detected mask corresponding to true positive, false positive, and false 
negative pixels; denoted TPF,FPF, and FNF, respectively. Again, one can 
simplify the analysis by considering pixel-wise precision and recall, 
denoted as PS and RS and referred to as segmentation precision, segmen-
tation recall, defined formally as: 

PS = TPF/(TPF + FPF),
RS = TPF/(TPF + FNF),

which can be combined by their weighted harmonic mean, the well- 
known F1-measure or Dice coefficient. The IoU coefficient is, however, 
a more natural choice, both for its similarity with the Dice coefficient, 
and the fact that it was used in the definition of the correspondence 
identification metrics. 

One could further refine these metrics by applying them, not to the 
whole mask, but to the individual correspondence identification cases; 
for instance, by reporting the mean IoU over only true positive compo-
nents. Also, one could apply them only to splits to assess how bad or 
good splits are, meaning, how much extra area of the true bud is 

Fig. 3. A sample of the collection of patches used in this work. The first and second rows correspond to bud patches and non-bud patches, respectively. Image 
extracted from Pérez et al. (2017). 
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detected by them. The case of false alarm detections is rather monoto-
nous and not very informative as its precision and recall is always zero. 
Instead, these components can be better assessed by considering a 
normalization against bud size to measure their relative size, resulting in 
the normalized area, denoted as NA and defined formally as the area of the 
component normalized by the area of the (single) true bud in the image, with 
a component’s area corresponding to its total number of pixels. 

3.1.3. Localization metrics 
As a complement to the segmentation metrics we consider the 

localization of the detected components. Mostly useful for false alarms 
by noticing that false alarms at different distances of the true bud may 
affect differently the measurement of some bud related variables. In 
some cases, with proper post-processing (e.g. spatial clustering), the 
impact of near-by false alarms on the overall error in the measurement 
of bud related variables may be reduced or could even disappear. 

The selected metric for assessing the localization error of detected 
components is normalized distance, denoted as ND and formally defined 
as the distance between the center of mass of the component and the center of 
mass of the true bud, divided by the diameter of the true bud, with the bud’s 
diameter corresponding to the maximum distance between any two bud 
pixels. 

3.2. Results 

This section validates that FCN-MN is a better detector than its SW 
counterpart through a systematic assessment over each of the metrics 
defined in the previous section.. 

For a thorough comparison, several cases for each algorithm were 
considered: training 27 FCN-MN detectors and 40 SW detectors over the 
training set of 558 images, one for each combination of their respective 
hyper-parameters. For FCN-MN, these hyper-parameters are the three 
architectures –8s, 16s, and 32s– and the 9 values {0.1,0.2,…,0.9} for 
the binarization threshold τ. For SW, in turn, these hyper-parameters are 
the 10 patch sizes {100,200,…,1000} and the 4 values {1,2, 3,4} of the 
voting threshold ν. Once trained, each of these 67 models were evalu-
ated over the 140 images reserved for testing purposes, obtaining for 
each image the detection components. 

Table 3 shows the results for the best detectors of each algorithm, 
reporting all performance metrics of the three aspects of detection over 
all detected components over the 140 test images: correspondence 
identification, segmentation and localization. The first column shows 
the label of the selected detectors, with the subscript indicating the ar-
chitecture and patch size for the case of FCN-MN and SW, respectively; 
and the superscript indicating the thresholds τ and ν, respectively. 

The table includes all metrics defined in Section 3.1 required for a 
thorough comparison of FCN-MN against SW. First, four correspondence 
identification metrics are included: detection-precision PD, detection- 
recall RD, the F1-measure F1, and S, the total count split components, 
all corresponding to an α of 0.5. Also, seven segmentation metrics are 
included: the mean and standard deviation (in parenthesis) of the seg-
mentation precision, segmentation recall, and the IoU measure over the 
α = 0.5 true positives and splits, denoted in the table by PTP

S ,RTP
S and 

IoUTP and PS
S,R

S
S and IoUS for true positives and splits, respectively; plus 

the mean and standard deviation of the normalized area for α = 0.5 false 
alarms, titled NA. Finally, the table reports the normalized distance ND 
of the α = 0.5 false alarm components, and omits the ND for true posi-
tives and splits, assumed too close to the true bud to produce any results 
of interest. This is confirmed below when their minimum and maximum 
NDs are reported and discussed. 

The table is a summary, as it includes only a subset of all 27 FCN-MN 
cases and all 40 SW cases. A detector was considered for inclusion in the 
table if, when compared to its counterparts of the same algorithm, it 
resulted in the highest value for at least one of the metrics. The corre-
sponding cell was marked in bold in the table. For instance, the detector 
FCN-MN0.6

16s has been included because its detection-precision PD of 
88.6% is the largest among the detection-precision of all 27 FCN-MN 
detectors. Similarly, the detector SW3

700 has been included because its 
precision PD = 2.5% is the largest among all 40 SW detectors. Also, for 
all metrics, the best among the FCN-MN detectors (bolded) has been 
compared to the best among the SW detectors (bolded), and the larger of 
the two has been underlined. The table shows an overwhelming 
improvement of FCN-MN over SW. A first analysis of the table shows 
FCN-MN with larger metrics over SW in all cases, except for the seg-
mentation recall RS

S for splits, for which the SW case has a better (larger) 
mean of 98.1% compared to the 58.6% for FCN-MN. These improve-

Table 3 
Correspondence identification, segmentation and localization metrics for the best FCN-MN and SW detection models. Each column shows bolded cells corresponding to 
the cell with the best metric among all FCN-MN rows and the cell with the best metric among SW rows, and underlined cells corresponding to the best among all 
combined models, i.e., the best of the column. Columns PD,RD, F1 and S show results for the Correspondence identification metrics detection-precision, detection-recall, 
F1-measure and number of images with splits, respectively: Columns PTP

S ,RTP
S and IoUTP (resp. PS

S,R
S
S and IoUS) correspond to the segmentation metrics mean seg-

mentation precision, mean segmentation recall, and mean IoU measure over all true positive components (resp. split components), with standard deviations in 
parenthesis (undefined cases denoted by “-”); and Columns NA and ND show the mean NA and mean ND over all false alarm components.  

Detector PD  RD  F1  S PTP
S  RTP

S  IoUTP  PS
S  RS

S  IoUS  NA ND 

FCN0.1
8s  39.6 92.1 55.4 17 78.8(9.1) 97.6(6.8) 76.9(8.9) 63.0(32.3) 58.6(50.5) 22.3(21.1) 0.17(0.81) 7.61(7.54) 

FCN0.2
8s  59.4 95.0 73.1 13 83.5(9.5) 96.7(6.2) 80.8(9.3) 70.5(36.7) 36.1(44.7) 15.2(17.3) 0.29(0.88) 4.73(5.45) 

FCN0.3
8s  63.0 95.0 75.8 15 87.4(8.5) 95.0(7.8) 83.1(9.1) 75.2(36.1) 28.4(42.7) 11.8(16.9) 0.28(0.77) 3.98(4.74) 

FCN0.4
8s  69.3 93.6 79.6 9 90.1(7.9) 93.8(6.9) 84.7(8.2) 71.1(32.4) 54.2(38.7) 29.5(17.7) 0.29(0.76) 3.54(4.47) 

FCN0.9
8s  70.1 82.1 75.7 34 98.2(5.1) 75.1(11.3) 73.8(10.6) 98.8(7.2) 17.7(19.7) 17.1(18.4) 0.24(0.5) 3.80(5.66) 

FCN0.4
16s  80.6 89.3 84.7 10 88.6(8.2) 93.3(8.5) 82.8(8.7) 78.6(33.6) 32.0(33.5) 22.0(16.2) 0.04(0.09) 3.80(5.08) 

FCN0.6
16s  88.6 88.6 88.6 10 92.8(6.7) 89.3(10.2) 83.1(9.4) 89.3(21.7) 26.9(34.1) 18.6(19.5) 0.08(0.11) 1.10(0.65) 

FCN0.1
32s  30.1 88.6 44.9 32 71.5(10.1) 98.2(5.5) 70.2(9.1) 69.1(30.2) 46.1(48.1) 19.2(19.5) 0.14(0.66) 4.62(5.59)  

SW4.0
200  2.1 6.4 3.2 142 72.2(6.0) 75.1(8.3) 58.1(6.4) 44.5(31.9) 40.1(33.8) 17.6(14.0) 1.00(1.78) 8.68(6.58) 

SW4.0
100  0.3 1.4 0.5 196 59.5(4.6) 85.5(16.7) 53.4(2.9) 54.2(34.8) 17.1(22.3) 11.0(12.4) 0.23(0.59) 5.97(6.51) 

SW4.0
1000  1.4 2.1 1.7 82 65.6(5.1) 74.0(6.0) 53.1(3.1) 20.4(17.3) 67.0(32.1) 16.3(12.4) 13.87(21.8) 7.15(5.2) 

SW3.0
700  2.5 5.0 3.4 109 64.0(6.0) 85.1(7.7) 57.2(4.8) 15.8(14.0) 82.1(26.1) 13.6(9.1) 15.95(28.85) 8.10(4.79) 

SW2.0
600  0.3 0.7 0.4 135 54.3(–) 97.1(–) 53.4(–) 10.2(10.0) 91.6(21.0) 9.8(9.5) 20.63(38.89) 7.94(4.39) 

SW1.0
500  0.0 0.0 0.0 140 0.0(–) 0.0(–) 0.0(–) 8.4(9.6) 98.1(9.6) 8.3(9.5) 17.39(30.06) 7.22(4.04) 

SW4.0
500  0.4 0.7 0.5 119 94.1(–) 70.1(–) 67.2(–) 27.9(22.3) 60.2(31.1) 19.7(12.0) 5.90(8.43) 9.53(5.76)  
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ments are not statistically significant, however, as the large standard 
deviations of 50.5 for the FCN-MN cases results in (statistically) over-
lapping values. 

For the case of correspondence identification metrics PD,RD, F1 and 
S, FCN-MN values are overwhelmingly better to those of SW, with the 
best precisions and recalls of SW all below 6.4% against those of FCN- 
MN whose values surpass 30.1%. For the case of splits one can 
observe the same pattern, with SW showing the best case of 82 splits, 
much larger than the 9 splits of the best case of FCN-MN. Although not 
quite overwhelming, the segmentation metrics of FCN-MN are still 

larger than those of SW. For instance, for the segmentation precision of 
true positives PTP

S , and split PS
S, the FCN-MN over SW improvements are 

98.2% versus 94.1%, and 98.8% versus 54.2%, respectively. Finally, for 
NA and ND (of false alarms), where a smaller value is better, again FCN- 
MN shows large improvements over SW, with the best values of NA are 
0.04 versus 0.23, and the best values of ND are 1.10 versus 5.97, for FCN- 
MN versus SW, respectively. 

FCN-MN also shows improvements over the mean normalized dis-
tances of the true positives and splits. These have been computed but 
omitted in the table. For FCN-MN the minimum and maximum mean and 

Fig. 4. Scatterplots of detection-precision PD(α) versus detection-recall RD(α), with results for α = 0.5 and α = 0.1 shown in Figure (a) and (b), respectively. Results 
for FCN-MN and SW are shown in black and white dots, respectively. Each dot represents the detection-precision PD and detection-recall RD for some particular 
configurations of hyper-parameters among all models (27 for FCN-MN and 40 for SW). 
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standard deviations are 0.038(0.037) and 0.055(0.053), respectively. 
Similarly, the FCN-MN minimal and maximal pair for the split compo-
nents are 0.216(0.138) and 0.482(0.212), respectively. As predicted, all 
rather small, with both the minimum and maximum mean distance 
falling well within one diameter of a true bud, for all cases. For the SW 
detectors, the min/max pair of mean normalized distances for the true 
positive components is 0.045(0.023)/0.210(0.076), and for splits com-
ponents is 0.412(0.210))/3.250(5.961), respectively. As can be 
observed, again FCN-MN shows an improvement over SW, with a minor 
statistically significant overlap of their min/max intervals for both the 
true positives and split cases. 

3.2.1. Detailed analysis of correspondence identification metrics 
Graphically, one could expect a better combined analysis of 

detection-precision and detection-recall than could be obtained by 
comparing the F1-measure. This is shown as a scatter plot in Fig. 4a, a 
graphical representation of a non-summarized version of the second and 
third columns of Table 3. Each dot in the plot is located according to the 
detection-precision and detection-recall, and the color black or white, 
whether it corresponds to an FCN-MN or an SW detection model. 

The graph reinforces the clear and undisputed improvements of FCN- 
MN over SW already shown in the table, with overwhelmingly larger 
detection precisions and recalls. 

One concern that may arise is the confidence one can ascribe to such 
overwhelmingly bad results of the SW correspondence identification 
metrics. One possible explanation may arise by noticing the large 
number of splits of SW. Splits are components that could not pass the 
IoU⩾0.5 condition but are overlapping the true bud. This suggests that 

Fig. 5. Segmentation Precision-Recall scatterplots 
reporting the results for FCN-MN and SW in black 
and white, respectively, with dots representing the 
segmentation precision and segmentation recall 
average over all images in the test set (and bars 
representing standard deviations) with one dot per 
hyper-parameter configuration (27 for FCN-MN and 
40 for SW). In (a) averages were computed over the 
segmentation precision and recall of all α = 0.5 true 
positive components, while in (b), averages were 
computed over the segmentation precision and 
recall of the α = 0.5 split components. Recall and 
precision standard deviations are represented by the 
horizontal and vertical grey error bars, respectively.   
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SW may be producing too many small detections of the bud, all of which 
could not make the cut for α = 0.5. This can be confirmed by observing 
in Table 3 the mean IoU of splits for the SW models, all of which are well 
below 50%, with the maximum at 19.7%. We complement this by also 
considering correspondence identification metrics with a smaller α of 
0.1, whose precision-recall scatterplot is shown in Fig. 4b. With similar 
results for FCN-MN, the graph shows clear improvements for SW, with 
precisions reaching almost 40% and recalls above 80%. The increase in 
the detection-precision proves that many of the α = 0.5 splits are true 
positives for α = 0.1. This may even result in some true buds with not a 
single true positive for the case of α = 0.5, may now have one, which 
explains the increase in detection-recall. 

3.2.2. Detailed analysis of segmentation metrics 
Figs. 5a and b show scatter plots for segmentation-precision and 

segmentation-recall for the α = 0.5 true positive and split components in 
all 140 masks of the test images, respectively. These correspond to their 
respective columns of (a non-summarized version of) Table 3 with black 
and white dots representing the values of FCN-MN and SW detection 
models, respectively. The position of each dot in the plot corresponds to 
the mean segmentation-precision and mean segmentation-recall over all 
the true positive components (splitted components, respectively) of the 
masks produced by the detection model associated to that dot. The 
standard deviation of the recall (precision) is shown as a horizontal 
(vertical) bar. 

In Fig. 5a (true positives), one can observe that all black dots (FCN- 
MN) are clustered in the upper-right corner of the graph, enclosed by a 
minimum precision and recall above 70%, while the white dots (SW), 
also clustered in the upper-right corner, are enclosed in a slightly smaller 
minimum precision and recall of 50% and 65%, respectively. 

In Fig. 5b (splits), one can observe a rather different scenario, with 
FCN-MN showing split components with precisions as large as 100% but 
small recalls spanning the range of 10% to a maximum 60%, while SW is 
showing the opposite trend recalls ranging from a low 15% to a 
maximum of 100% but small precisions all below 60%. When read 
properly, these results show, again, a better performance of FCN-MN 
against SW, with the former resulting in small splits (low recall) but 
mostly within the enclosure of the true bud (large precision), while the 
latter resulting in components reaching beyond the enclosure of the true 
bud (low precision). 

Fig. 6 show a graphical representation of the segmentation results for 
the false alarm components, the NA for each of the 27 models of FCN-MN 

and each of the 40 models of SW, i.e., for each cell in the one-before-last 
column of (a non-summarized version of) Table 3. results are grouped in 
two histograms, one for the FCN-MN detection models (black) and one 
for the SW models (white). Bars in the histogram represent the pro-
portion of detection models whose mean NA (over all false alarm com-
ponents of all images) falls within the bin interval. The more 
concentrated to the left the better the algorithm, as this indicates that 
more detection models for that algorithm resulted in smaller NA (on 
average). When compared to the histogram of SW, one can observe that 
the histogram for FCN-MN is considerably more concentrated towards 
the left, with all FCN-MN models concentrated in a single bar at the left- 
most interval of [0.0,1.0). For SW, the situation is rather different with 
bars at intervals as far to the right as [57.0, 58.0), that is, detection 
models with areas as large as 58 times the bud area. These high values 
correspond to SW models with large window sizes, e.g., 1000px, that for 
low thresholds are classified as bud patches, rendering all its pixels as 
bud pixels. 

3.2.3. Detailed analysis of localization metrics 
To conclude, this subsection presents a graphical representation of 

the localization results reported in Table 3, that is, the normalized dis-
tance (ND) only for the α = 0.5 false alarms. Fig. 7 summarizes the ND 
values reported in the corresponding column of the (non-summarized 
version of) Table 3 in the form of two histograms, one for FCN-MN 
(black) and one for SW (white). Bars in the histogram represent the 
proportion of detection models (27 for FCN-MN and 40 for SW) whose 
mean ND falls within the bin interval. The more concentrated to the left 
the better the algorithm, as this indicates that more detection models for 
that algorithm resulted in smaller ND (on average). Here, again, the 
advantage of FCN-MN over SW is clear, with the histogram for FCN-MN 
more concentrated in the left-most part than that of SW, with the FCN- 
MN histogram running from the (0, 1] to the (7, 8] bin, and the SW his-
togram running from the (5, 6] towards the (9, 10] bin; and their 
respective maximums are at (3,4] and (7,8], respectively, indicating that 
most FCN false alarms are at a distance of 3 to 4 bud diameters, while 
most SW’s false alarms are at 7 to 8 bud diameters. 

4. Discussion and conclusions 

This section discusses the results obtained by the proposed approach 
in the context of the problem of grapevine bud detection and its impact 
as a tool for measuring viticultural variables of interest. The discussion is 

Fig. 6. FCN-MN (black bars) and SW (white bars) histograms of the mean normalized area NA of false alarm components with bars representing the proportion of 
detection models whose mean NA falls within the bin interval. 
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complemented with some highlights of the most important conclusions 
together with some potential lines of future work. 

This work introduces FCN-MN, a Fully Convolutional Network with 
MobileNet architecture for the detection of grapevine buds in 2D images 
captured in natural field conditions in winter (i.e., no leaves or bunches) 
containing a maximum of one bud. 

The experimental results confirmed our main hypothesis: that the 
detection quality achieved by FCN-MN is improved over the sliding 
windows detector (SW) in all three detection aspects: segmentation, 
correspondence identification and localization. Being SW the best bud 
detector known to these authors, one can conclude that FCN-MN is a 
strong contender in the state-of-the-art for bud detectors. However, 
improving over SW is not enough to prove the practical impact of the 
proposed detection algorithm, as it may still result in a bud detector with 
limitations for addressing the quality requirements of practical mea-
surements of bud-related variables (c.f. in Table 1). 

Quality performance could be assessed by the metrics reported in 
Table 3. In the best case, when correct detections (true positives) are 
considered to be those that overlap true buds with an IoU of at least 0.5, 
FCN-MN shows a detection-precision and detection-recall of 88.6% and 
95.0%, respectively, a mean (and standard deviation) segmentation- 
precision and segmentation-recall for true positives of 98.2%(5.1) and 
98.2%(5.5), respectively; and for splits 98.8%(7.2) and 58.6%(50.5), 
respectively. For false alarms, it shows a minimum NA of 0.04(0.09) and 
a minimum ND of 1.10(0.65). However, each of these best cases occur 
for different FCN-MN detectors. A better assessment must be conducted 
for a single detector. A balanced choice is the detector FCN-MN0.6

16s. This 
detector reaches detection-precision and detection-recall of 88.6% and 
88.6%, respectively, meaning than only 11.4% of all the detected con-
nected components over all test images are false positives, and that only 
11.4% of all true buds could not be detected (i.e., are false negatives). As 
expected, for splits it resulted in small mean IoU of 18.6%(19.5), cor-
responding to a mean segmentation precision of 89.3%(21.7) and a 
mean segmentation recall of 26.9%(34.1). A small recall or small pre-
cision is expected for a small IoU, but a large precision and small recall is 
preferred as it corresponds to small components mostly within the true 
bud. True positives resulted in mean IoU of 83.1%(9.4), considerably 
larger than the minimum threshold of 0.5, with correspondingly large 
mean segmentation precision and recall of 92.8%(6.7) and recall of 
89.3%(10.2), respectively. The false alarm results for this detector 

showed an NA = 0.08 and ND = 1.1, showing that these components are 
rather small covering only an area that is 8% in size of the total bud area 
(on average) and distant to the true bud by only 1.1(0.65) diameters, on 
average. 

With one select best model it is now possible to assess the impact of 
its good metrics on the quality for the measurement of different bud 
related variables. For brevity, this point is discussed for three variables 
selected from Table 1: bud number, bud area, and internode length. 

The case of bud number, for example, requires identifying corre-
spondences for buds in the scene, so its quality will be impacted only by 
the metrics of detection precision and recall (88.6% and 88.6%, 
respectively). To evaluate this impact, it is considered that a plant has 
approximately 240 buds on average. The number of buds per plant de-
pends on many factors, such as training system, grape variety, type of 
treatment, time of year, among others, so this value is defined as 
indicative to achieve an approximate analysis. For this particular case, a 
detection-precision of 88.6% would result in 27 buds counted in excess 
per plant, while a recall of 88.6% would result in the omission of 27 buds 
in the count; resulting in a bud count that exactly matches the true 
count. This suggests that this particular hand-picked model may be the 
best for the specific task of measuring bud number, as long as these 
values of precision and recall remain similar. However, even if it is 
indeed the case that these good results generalize to practical situations, 
the approach still presents some practical limitations for the measure-
ment of bud number. Namely, it is incapable of associating counts of the 
same bud appearing in two different images, limiting the scalability to 
massive measurements of the bud count of a plant or plot. 

The second variable of interest considered is bud area, where, in 
addition to identifying correspondences for the buds of a scene, it is 
necessary to segment it to estimate its area in pixels. Correspondence 
identification analysis is analogous to bud counting, so now only seg-
mentation metrics are discussed. A thorough error analysis requires an 
estimation of both false negative pixels or fnx corresponding to unde-
tected bud pixels; and false positive pixels or fpx corresponding to non- 
bud detected pixels. These, however, are impossible to compute 
exactly from existing segmentation metrics. False negative pixels are 
encoded in the segmentation-recalls of true positives and splits, corre-
sponding to the sum of their complements. However, we have only their 
segmentation-recall means, RTP

S = 89.3% and RS
S = 26.9%, which adds 

to more than 100%. As an approximation we assume fnx = 0. False 

Fig. 7. FCN-MN (black bars) and SW (white bars) histograms of mean normalized distance ND over all false alarm components with bars representing the proportion 
of detection models whose mean ND falls within the bin interval. 
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positive pixels are encoded in the normalized area of false alarms and the 
segmentation-precisions of true positives and splits. Precision, however, is 
normalized by the detected area, not the true bud area. For the lack of a 
better solution, one can approximate fpx ignoring this distinction, 
computing fpx as the sum of 8%, the (mean) false alarms NA, with 7.2% 
and 10.7%, the complements of the mean segmentation-precision of true 
positives and splits (PTP

S = 92.8% and PS
S = 89.3%, respectively). This 

results in an approximate fpx equal to 25.9%, which given fnx = 0, 
corresponds to the total error. For illustrative purposes, we see that this 
error is equivalent to the precision error resulting from measuring the 
area of a bud with a caliper. If we assume that the shape of a bud fits a 
circle, and that the typical diameter of a bud is 5 mm, the resulting area 
is 19.63 mm2. Since a caliper has an accuracy of 0.1 mm, the area pre-
cision error would be ±1.7 mm2, equivalent to 8.6% of the total area, to 
which one should add the error of manual measurement resulting from 
assuming a circular bud shape. From these, one can conclude that, 
modulo the approximations, both the FCN-MN and caliper errors are 
equivalent. 

As in the case of counting, these good results in measurement pre-
cision are limited to achieve a practical use of this type of measurement 
because it is impossible to automatically associate area measurements of 
the same bud in two different images, making it difficult to systemati-
cally measure this variable for the buds of a plant or plot. Furthermore, 
in this case, the areas obtained are in pixels, which need to be converted 
into length or area magnitudes. 

Finally, the case of internode length is considered, estimated by the 
distance between buds of the same branch (by the closeness between 
buds and nodes), which involves the operations of correspondence 
identification and localization. Again, correspondence identification 
analysis is analogous to bud counting, which in this case will result in the 
reporting of more than one distance due to the detection of more than 
one component per bud. Among these distances, it is understood that the 
worst case can occur between two false alarms when they are at the 
farthest side to the other bud, at a distance ND. On average, ND is 1.1 
bud diameters, equivalent to 5.5mm after taking a typical vine bud 
diameter to be 5 mm, resulting in a 7.3% error in estimating the distance 
between buds/nodes by taking the typical bud distances to be approxi-
mately 15 cm. An important limitation of our approach for achieving a 
practical use of this measurement is the possibility of determining when 
two buds are on the same branch, which requires knowledge of the plant 
structure. Furthermore, with our method, only the distance projected in 
the image plane could be measured, which can arbitrarily differ from the 
actual distance in 3D. 

The greatest impact errors occur because of the excess or omission of 
connected components, with the excess error exacerbated by the fact of 
associating detected buds with individual connected components. A 
possible improvement to mitigate these errors would be to apply some 
post-processing. One such post-processing is spatial clustering of con-
nected components grouping them by proximity. One could expect this 
to improve the results based on the small areas of split and false alarm 
components. First, due to the closeness of the false alarms to the true bud 
(small ND) –as well as the splits and true positive components (over-
lapping with it)–, and the fact that true buds in real plants are typically 
tens or even hundreds of bud diameters apart, one could expect that a 
simple spatial clustering of the components would connect all of them 
together as a single, and correct, bud detection. Second, due to their 
small area –if clustered together– the false alarm components would 
only slightly reduce segmentation precision. 

Another possible post-processing would be to rule out small con-
nected components, for example, whose area in pixels normalized to the 
total detected area (sum of the areas of all connected components) is less 
than a certain threshold. Improvements could be expected with this 
post-processing, since the results in this work show that false alarms 
present small areas in relation to the true bud. Lastly, connected 
component filters could be considered based on plant structure, for 

example, ruling out connected components that are far away from (or do 
not overlap with) branches. 

One could also consider in future works some improvements to 
overcome the limitations for practical use mentioned above: (i) no as-
sociations between plant parts of different images, (ii) distance and area 
measurements in pixels, (iii) only 2D geometry, (iv) lack of knowledge of 
underlying plant structure, and (v) need of images with no leaves. 

One could also extend to buds the work of Santos et al. (2020) that 
addresses limitation (i) for grape bunches. Limitation (ii) could be easily 
addressed by adding to the visual scene some marker with known di-
mensions. This, however, requires such a marker in every image 
captured, a problem that could be overcome by first producing a cali-
brated 3D reconstruction of the scene, i.e., a 3D reconstruction cali-
brated with a single marker in one of its frames (Hartley and Zisserman, 
2003; Moons et al., 2009). In this way, every 2D image could be cali-
brated against the 3D model, omitting the need for a marker. In addition, 
a 3D reconstruction of the scene could address limitation (iii) by locating 
the detected buds in 3D space, following, for instance, the approach 
taken by Díaz et al. (2018). Finally, a solution to limitations (iv) and (v) 
would require an integrated approach involving the detection in 3D of 
branches and leaves, respectively. 

To end, future research could examine a comprehensive evaluation 
of the FCN-MN detector over images with multiple bud cases. This 
challenging task involves the creation of a new corpus, the training of 
new FCN-MN models, and the systematic evaluation of experiments. 
Such work may bring about a greater impact to FCN-MN, by being able 
to validate its performance over a broader range of practical cases that 
may take place in real vineyards. 
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