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L. Carvalho a, T. Pérez-Palacios b, D. Caballero c, T. Antequera b, M.S. Madruga a, M. Estévez b,* 
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A B S T R A C T   

This study was designed to assess the capability of MRI-computer vision algorithms, as a non-destructive tech-
nique, to classify and predict quality characteristics of chicken breast affected by White-Striping (WS) myopathy. 
Samples showing moderate and severe degrees of the myopathy were analyzed together with normal samples (no 
WS symptoms). The influence of the computational algorithms to analyze the MRI images and the techniques of 
data analysis on the classification and prediction results was aimed. Computational features from both texture 
(GLCM) and fractal (OPFTA) algorithms were useful to i) classify WS chicken breast by means of different 
classification technique, Principal Component Analysis and Decision Tree, and ii) predict physico-chemical 
characteristics of these chicken breast with high accuracy, applying Multiple Linear Regression. The results 
show the feasibility of objectively classifying chicken breasts without sample destruction into two degrees of 
severity. This is of remarkable relevance in large processing plants where WS incidence is high and a quick 
decision-making is required for the fate of affected samples.   

1. Introduction 

White Striping (WS) is a clinical disorder that mainly affects the 
breast muscles of modern broiler and turkey strains (Soglia et al., 2018). 
This condition is characterized by the presence of white striation 
following the same direction of the muscle fibers (Petracci and Cavani, 
2012). The occurrence of stretch marks in poultry breasts is associated 
with the current intensive and fast animal production systems. In an 
attempt to optimize meat production, human intervention in genetic 
selection, feeding and management of birds, has seriously affected 
chickens’ physiology and eventually, meat quality (Petracci et al., 
2019). 

A fast body weight gain in broilers results in a remarkable increase of 
the breast muscle size that may lead to drastic histopathological 
changes, such as the necrosis and lyses of the fibers, inflammatory cell 
infiltration, vacuolar and hyaline degeneration and replacement of 
muscle damaged with connective tissue (fibrosis) and adipocytes (lip-
idosis) (Baldi et al., 2018; Kuttappan et al., 2013). As a consequence, 
there is a loss of nutritional and technological value of chicken meat 

affected by WS myopathy. Compared to meat from animals unaffected 
by the myopathy, WS meat commonly contains higher lipid and lower 
protein content (Baldi et al., 2018; Soglia et al., 2016) and display 
impaired water holding capacity (WHC) during cooking (Alnahhas et al., 
2016; Petracci et al., 2013). 

The identification of WS myopathy is usually performed by visual 
examination of the Pectoralis major muscle (Kuttappan et al., 2013). 
However, this traditional detection technique has some limitations as it 
requires a high number of trained evaluators and may be affected by the 
abilities of each individual (Geronimo et al., 2019). Although visual 
examination is the traditional and most widely used method for iden-
tification of WS meats, other non-destructive techniques have been 
studied to increase objectivity and accuracy. On this regard, the appli-
cation of radiofrequency spectra (Traffano-Schiffo et al., 2017), image 
acquisition and computer vision system (Kato et al., 2019) and visible 
and near-infrared hyperspectral imaging (Jiang et al., 2019) presented 
successful results for the classification of WS samples. 

Magnetic Resonance Imaging (MRI) has been widely used for food 
evaluation, as it is an innocuous, non-invasive, non-ionizing technique 
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and it does not require the destruction of the samples (Bonny et al., 
2000; Ebrahimnejad et al., 2018). The application of MRI in foods is 
based on the fact that differences in the chemical properties of samples 
can generate differences in the absorption and emission of energy in the 
electromagnetic spectrum (Xiong et al., 2017). Several studies have been 
made in order to evaluate the quality characteristics of meat and meat 
products by MRI, allowing to prove the efficiency of this technique in 
predicting of moisture, salt, water activity (Torres et al., 2019), weight, 
lipid content (Pérez-Palacios et al., 2014) and sensory attributes (Ca-
ballero et al., 2018a), monitoring the quality of hams during the 
ripening process (Antequera et al., 2007), and in the classification of 
different samples (Pérez-Palacios et al., 2011). These goals were ach-
ieved by means of MRI in combination to computer vision algorithms 
and data mining techniques, to analyze the MRI images and the obtained 
data, respectively. In most of these studies, computational texture 
feature algorithms have been mainly applied for the analysis of MRI. 
Nowadays, the analysis of MRI with fractal algorithms is taking interest, 
because the classical texture algorithms seeks to compress image in-
formation while the use of fractals allows the identification of recurring 
patterns, removing the possibility of image compression (Caballero 
et al., 2018a). 

Davanel et al. (2000) have applied MRI on chickens, to estimate the 
volume and the size of the carcasses and breasts, but, among the sci-
entific literature, no more studies have been found focused on the use of 
MRI to classify chicken samples and/or determined the quality charac-
teristics of this type of meat and/or its derived meat products. 

This study firstly aims the objective and non-destructive classifica-
tion and quality prediction of WS breast meat by means of MRI – com-
puter vision algorithms – data mining techniques. The influence of the 
computational algorithms to analyze the MRI images and the techniques 
of data analysis on the classification and prediction results is also aimed. 

2. Material and methods 

2.1. Samples, identification and classification 

For the present study, chicken breasts were purchased at four local 
supermarkets in Caceres, Spain. Samples were allocated to one of the 
following three groups based on the criteria described by Kuttappan 
et al. (2012): Normal ([N] did not show white striation on breast sur-
face), WS-moderate ([WS-M] exhibited white striations with <1 mm 
thickness), and WS-severe ([WS-S] exhibited white striations with >1 
mm thickness). Sixty chicken breasts (n = 20 of each type) were 
collected and used for the present study. 

2.2. Physico-chemical properties 

Protein, moisture, ash and collagen contents were analyzed in 
Normal, WS-moderate and WS-severe meats, according to the Associa-
tion of Official Analytical Chemists (AOAC, 2000; ref. 923.03 ref. 
935.29, ref. 971.19 and ref. 981.10, respectively). The fat content was 
determined according to the methodology described by Folch et al. 
(1957). pH was determined by direct electrode insertion on the cranial 
surface of each Pectoralis major muscle using a meat pH meter system (HI 
99163, Hanna Instruments, Woonsocket, Rhode Island, USA). Color was 
measured in three different areas at the dorsal surface of the breast 
muscle using a Minolta colorimeter (Chroma Meter CR-300, Minolta Co., 
Osaka, Japan) in the CIELAB system (L* = lightness; a* = redness, and 
b* = yellowness) according to Carvalho et al. (2018). WHC was 
measured as percentage of cooking loss as described by Carvalho et al. 
(2018). Texture profile analysis (TPA) was performed in raw meat 
samples cut into parallelepiped (perpendicular to the muscle surface) 
with dimensions of 25 × 25 × 10 mm (length x width x thickness, 
respectively) and analyzed on a texturemeter (TA.TXplus texturemeter, 
Stable Micro Systems, Godalming, Surrey, UK). The samples were 
compressed twice to 50% of their original height with compression flat 

cylindrical aluminum probe (50 mm diameter) at a test-speed of 50 
mm/min. The results were expressed in Newtons (N). 

2.3. Oxidative stability 

Lipid oxidation was determined in breast meat by the thiobarbituric 
acid-reactive substances (TBARS) assay using the method of Ganhão, 
Estévez & Morcuende (2011). The results from the samples were plotted 
against a standard curve prepared with known concentrations of tet-
raethoxypropane (TEP). The results were expressed as mg malondial-
dehyde (MDA) kg− 1 breast meat. Protein oxidation was assessed through 
the quantification of total protein carbonyls using dinitrophenylhy-
drazine as described by Armenteros et al. (2009). The results were 
expressed as nmol carbonyls/mg protein. 

2.4. MRI analysis 

2.4.1. Image acquisition 
MRI images were generated at the ‘‘Animal Source Foodstuffs Inno-

vation Services” (SiPA) of the University of Extremadura (Cáceres, 
Spain). A low field MRI scanner (ESAOTE VET-MR E-SCAN XQ 0.18 T) 
with a hand/wrist coil was used. Each chicken breast (length: 178 ± 9 
mm; width: 91 ± 5 mm; height: 24 ± 3 mm) was scanned one at a time. 
The Spin Echo (SE) T1-weighted sequence was used. The following pa-
rameters were used: field of view (FOV): 150 × 150 mm; echo time (TE): 
26 ms; slice thickness: 4 mm; flip angle: 90◦; repetition time (TR): 630 
ms; matrix size: 256 × 204; phase encode: 204; number of acquisition: 
five per sample. The MRI acquisition was done at 23 ◦C. All the images 
were in DICOM format, with a 256 × 256 resolution, and 256 gray 
levels. Eleven slices per chicken breast were obtained across, and the 
acquisition took 30 min for each sample. 

2.4.2. Image analysis 
Once the MRI images of the chicken breast were obtained, they were 

analyzed by two computer vision algorithms, one based on texture (Gray 
Level Co-occurrence Matrix -GLCM-) (Haralick and Shapiro, 1993) and 
the other based on fractal (One Point of Fractal curve Texture Algorithm 
-OPFTA-) (Caballero et al., 2018b). The application of these algorithms 
allows extracting values for several features of the MRI images. In this 
way, numerical data are obtained from the images. 

In the case of GLCM, firstly, the maximum rectangular area was 
selected in the image (Molano et al., 2012). Then, the selected areas 
were analyzed by applying the computational texture algorithm GLCM. 
It was computed by counting the number of times that each pair of gray 
levels occurs at a given distance d and for all directions. In this matrix, 
each item p(i, j) denotes the times that two neighboring pixels separated 
by distance d occur on the image, one with gray level i and the other with 
gray level j. In this way, GLCM was constructed with information of the 
complete ROI and includes 10 features: ENE (energy), ENT (entropy), 
COR (correlation), HC (Haralick’s correlation), IDM (inverse difference 
moment), INE (inertia), CS (cluster shade), CP (cluster prominence), 
CON (contrast), and DIS (dissimilarity) (Haralick and Shapiro, 1993). 

The fractal algorithm, OPFTA, (Caballero et al., 2018b), is a novel 
texture algorithm based on features obtained from fractal values. Before 
applying this algorithm, the largest area rectangle inscribed in the 
contour of the chicken was also selected (Molano et al., 2012). Later, 
each rectangle was divided into smaller rectangles of 32 × 32 pixels, so 
called, region of interests (ROI). Then, a two-dimensional variation of 
the Minkowski-Bouligand algorithm (Mandelbrot, 1982) was applied on 
each ROI in order to achieve the local exponents with the different box 
sizes (powers of 2). From all local exponent, the local exponent with the 
box size equal to eight was selected, this is the most representative one 
(Caballero et al., 2018b). After that, a matrix with the values of the most 
representative local exponent of each ROI was gathered. Finally, seven 
texture features were computed on each matrix: Uniformity (UNI), En-
tropy (ENT), Correlation (COR), Homogeneity (HOM), Inertia (INE), 
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Contrast (CON) and Efficiency (EFI) (Aggarwal and Agrawal, 2012). 

2.4.3. Data mining analyses 
The free software WEKA (Waikato Environment for Knowledge 

Analysis) (http://cs.waikato.ac.nz/ml/weka - last accessed: September 
2020) was used to carry out the classification and predictive techniques 
of data mining. The advantages of using data mining tools as WEKA is 
that calibration and validation are achieved by using the same data sets, 
not being necessary to perform the validation with a different data set, 
allowing the development of the prediction model (Caballero et al., 
2016a). 

2.4.3.1. Classification techniques. A classical Principal Component 
Analysis (PCA) (Bro and Smilde, 2014) was applied to evaluate the 
distribution of samples. This technique also analyses the relationships 
between the computational texture characteristics obtained and the 
physico-chemical parameters of the groups of samples. 

The J48 decision tree (DT) algorithm was also applied as classifica-
tion technique in this study. DT is a decision modelling tool that 
graphically displays the classification process of a given input for given 
output class labels (Safavian and Landgrebe, 1991). This method is one 
of the learning algorithms that generate classification models in the form 
of a tree structure. It is based on the “divide and conquer” strategy 
(Safavian and Landgrebe, 1991). Data subsets were created by decom-
posing the whole dataset into smaller datasets. The final model is a tree 
structure with decision and leaf nodes. 

A confidence factor of 0.5 and minimum bucket size of 3 were 
applied (Safavian and Landgrebe, 1991), being the bucket size, the 
minimum number of samples that can be classified in any leaf of the DT. 

The statistical assessment of the classification performance can be 
carried out by using different classifiers (Demsar, 2006; Hand, 2012). In 
our case, the model was statistically evaluated by using the sensitivity 
(SENS), specificity (SPEC), positive predictive value (PPV), negative 
predictive value (NPV), error rate, fall-out rate, false discovery rate 
(FDR), false omission rate (FOR), the critical success index (CSI), the 
accuracy and the F1 score. These parameters are given by the following 
equations: 

SENS=
TP

TP + FN  

SPEC =
TN

FP + TN  

PPV =
TP

TP + FP  

NPV =
TN

TN + FN  

Error rate=
FN

TP + FN  

Fall out rate=
FP

FP + TN  

FDR=
FP

TP + FP  

FOR=
FN

TN + FN  

CSI =
TP

TP + FN + FP  

Accuracy=
TP + TN

TP + TN + FP + FN  

F1 Score=
2⋅TP

2⋅TP + FP + FN  

where, TP and TN stand for True Positive and True Negative, respec-
tively, accounting for the samples that have been correctly assigned as 
belonging (TP) or not belonging (TN) to a specific class. FP and FN stand 
for False Positive and False Negative, respectively, accounting for the 
samples that have been wrongly assigned as belonging (FP) or not 
belonging (FN), to a specific class. 

2.5. Prediction techniques 

Predictive techniques allow creating future models that can be pre-
dicted from current data by trend analysis (Witten and Frank, 2005; Wu 
et al., 2008). 

Multiple Linear Regression (MLR) is used to represent linear rela-
tionship between a dependent variable and several independent vari-
ables. This technique obtains a linear regression equation, which can be 
used to predict future values (Hastie et al., 2001). 

y= ω0 +
∑n

1
ωixi 

The M5 method of attribute selection was applied in our experi-
ments. This method steps through the attributes removing the one with 
the smallest standardized coefficient until no improvement is observed 
in the estimation of the error (Kira and Rendell, 1992). A ridge value of 
1.0 × 10− 4 was applied too. The estimation procedure was 10-fold cross 
validation, where the data is divided into 10 partitions of equal size. One 
subset is tested each time and the remaining data are used for fitting the 
model. The process is repeated sequentially until all subset have been 
tested. Therefore, all data are used for training and testing. However, 
although this method requires 10 repetition analysis, this is a robust 
method (Dietterich, 1998). 

Isotonic Regression (IR) provides a set of values from the information 
stored on a database. It is based on estimating the ordered values for an 
independent variable as a function of one of the input parameters. Only 
the input parameters providing better adjustment results will be 
selected. Finally, an interpolation was established (polynomial trend 
line) to compare the predicted data set with the original values in the 
database, obtaining the prediction equation (Barlow et al., 1972). 

y=
∑n

0
ωixi 

The correlation coefficient (r) was used to evaluate the goodness of 
fit the prediction and for its validation, according to the rules given by 
Colton (1974). This author considered r from 0 to 0.25 as little to no 
relationship; from 0.25 to 0.50 indicates a weak degree of relationship; 
from 0.50 to 0.75, indicates a moderate to good relationship and from 
0.75 to 1 indicates a very good to excellent relationship. 

r=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(fi − y)2

∑n
i=1(yi − y)2

√

where fi is the predicted value, yi is the real value and y is the average 
value. 

The mean absolute error (MAE) and weighted absolute percentage 
error (WAPE) were used to evaluate the prediction results too (Ávila 
et al., 2019). The MAE measures the difference between real and pre-
dicted values and WAPE measures the same difference but expressed as a 
percentage of the attribute mean. They are given by the following 
equations: 

MAE=
1
n
∑n

i=1
|fi − yi|
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WAPE (%)=
100⋅

∑n
i=1|fi − yi|

∑n
i=1fi  

where fi is the predicted and yi is the real value. 

3. Results and discussion 

3.1. Characterization of chicken breast 

3.1.1. Physico-chemical analysis 
The physico-chemical properties of N chicken breasts and those 

affected by the WS myopathy, are shown in Table 1. The WS myopathy 
was manifested as variations in the chemical composition, pH, color and 
texture properties and oxidative stability of chicken breasts. Total pro-
tein content was significantly lower in chicken breasts affected by the 
WS condition. This result is in line with previous reports and may be 
regarded as a reflection of the myodegeneration process that leads to a 
depletion of muscle proteins, and loss of several essential amino acids 
(Adabi and Soncu, 2019). The accretion of lipids and collagen is also a 
typical feature of the WS myopathy owing to the lipidosis and fibrosis 
processes (Petracci et al., 2019). These effects have also been observed 
in this study, with significant higher lipid and collagen percentages in N 
chicken breast than in WS ones. In chicken breasts affected by the WS 
condition, muscle tissue is replaced by degenerative lesions in which 
adipocytes and connective tissue are deposited (Petracci et al., 2019). 
WS breasts displayed higher final pH value than N counterparts which is 
a reflection of a reduced glycogen content or impaired post-mortem 
acidification process (Carvalho et al., 2017). 

Instrumental color of chicken breasts was also significantly affected 
by the WS condition. WS-S muscles were darker (lower L* values) than N 
breasts while WS-M displayed intermediate values. On the contrary, WS- 
S samples were redder (higher a* values) than N chicken breasts. The b* 
values (yellowness) were significantly lower in WS-S than in N and WS- 
M chicken breasts. These outcomes are consistent with those reported by 
other authors such as Petracci et al. (2013) or Kuttappan et al. (2017) 
who attributed these changes to the lipid accumulation (increased yel-
lowness) and the occurrence of congestion and inflammation in the WS 
muscles (decreased lightness and increased redness). 

In regards to the texture properties, overall, WS-M samples displayed 
the most affected profile as compared to N chicken breasts. Hardness 
and related parameters such as gumminess and chewiness were found to 
be higher in WS-M samples than in N samples while WS-S displayed 
intermediate values. These results could be ascribed to the increased 
fibrosis and greater collagen content in WS chicken breast. The decrease 
in hardness in the WS-S samples compared to the WS-M counterparts, 
already described elsewhere (Carvalho et al., 2020) was attributed to a 
severe protein degradation that in WS-S, could have a greater impact on 
texture properties than collagen accretion. Oxidative instability is 
actually a typical feature in chicken breasts affected by the WS myop-
athy (Petracci et al., 2019; Carvalho et al., 2020). In the present samples, 
in fact, the concentration of TBARS was affected by the WS conditions as 
a clear effect of the degree of severity was observed. As already 

Table 1 
Chemical and physical properties of normal chicken breast (N) and those 
affected by the white striping myopathy in the moderate (WS-M) and severe 
(WS–S) degrees (mean ± standard deviation).   

N WS-M WS-S p value 

MoistureA 75.75 ± 0.66 75.70 ± 1.04 75.75 ± 1.07 0.989 
ProteinsA 21.65a ±0.70 20.65b ± 1.00 20.28b ± 0.83 0.004 
LipidsA 2.56b ± 0.54 4.03a ±0.66 4.10a ±0.81 <0.001 
AshA 1.06 ± 0.09 1.01 ± 0.11 1.11 ± 0.10 0.175 
CollagenA 0.38b ± 0.03 0.49a ±0.11 0.48a ±0.06 0.008 
pH 5.60b ± 0.18 5.92a±0.18 5.88a ±0.15 <0.001 
Color L* 60.55a±1.87 58.24ab ± 2.16 58.09b ± 2.24 0.025 
Color a* 0.70b ± 0.25 0.72b ± 0.31 2.25a ±0.76 0.030 
Color b* 7.21a ±2.40 7.93a ±1.99 5.29b ± 1.96 0.041 
HardnessB 63.46c±8.98 98.10a ±10.58 71.80b ± 7.51 0.024 
AdhesivenessC − 0.25 ± 0.06 − 0.22 ± 0.04 − 0.24 ± 0.07 0.473 
SpringinessD 0.79ab ± 0.08 0.76b ± 0.11 0.88a±0.03 0.014 
CohesivinessE 0.64 ± 0.05 0.60 ± 0.11 0.59 ± 0.04 0.365 
GumminessB 41.21c±8.56 74.58a ±6.67 47.25b ± 5.06 0.023 
ChewinessC 37.82c±7.54 65.25a ±4.98 43.08b ± 6.18 0.036 
ResilienceE 0.36 ± 0.09 0.39 ± 0.11 0.38 ± 0.03 0.758 
TBARsF 0.22c ±0.08 0.37b ± 0.09 0.64a ±0.19 0.018 

Some of the results displayed in the present table were partially shown else-
where (Carvalho et al., 2020). 
a-c Mean values within the same parameter followed by different superscript 
letters significantly differ by the Tukey test (p < 0.05). 

A Results expressed as g/100 g muscle. 
B Results expressed as N/cm.2. 
C Results expressed as N x sec. 
D Results expressed as cm. 
E Results are dimensionless. 
F Results expressed as mg MDA/kg muscle. 

Fig. 1. MRI of normal chicken breast (A) and those affected by the white striping myopathy in the moderate (B) and severe (C) degrees.  
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discussed in a previous paper (Carvalho et al., 2020) this increased 
susceptibility of lipids from WS chicken breasts to suffer oxidative 
damage during subsequent processing could affect the sensory and 
nutritional value of chicken meat. 

3.1.2. MRI analysis 
Fig. 1 shows MRI images of the three types of chicken breasts under 

study: N (Fig. 1A), WS-M (Fig. 1B) and WS-S (Fig. 1C). Visual differences 
can be appreciated among the images of the different groups. The 
chicken meat color can be defined as light gray. In the case of WS 
batches, the MRI images show white and raised lines, being bigger and 
more evident in WS-S samples than in WS-M ones. However, these marks 
are not relevant in the N batch. These findings agree with the classifi-
cation made following the criteria of Kuttappan et al. (2012). The white 
and raised lines observed in the MRI images of WS samples may be 
caused by the fibrosis and lipidosis that take place in chicken breast with 
this myopathy. Certainly, MRI acquisition by applying SE-T1 sequences 
allow the detection of hydrogen and other features like fat fluidity, 

which lengthen the T1 relaxation time (Lufkin, 1998). Thus, those ef-
fects influencing on lipids could modify T1 and lead to differing MRI. 
However, since fat has lower T1 values than muscle (around 90 vs 
around 450 ms, respectively) (Touissan et al., 2005), and chicken breast 
are very lean, the lipid signal is probably lower than those of lean in the 
samples of this study, with the fibrosis having a more plausible influ-
ence. In fact, in a previous study with cod fish, visual differences were 
appreciated in MRI from samples cooked at different temperatures, 
which was ascribed to denaturing collagen (Perez-Palacios et al., 
2017a). This is supported by results exposed in Table 1, with WS samples 
having higher percentage of collagen than N ones. These findings point 
out the capability of MRI to visually identify breast chicken affected by 
WS, which agrees with the results obtained by Perez-Palacios et al. 
(2011) in hams. These authors were able to perform a visual distinction 
of Iberian hams from pigs with different feeding background by using 
MRI. 

Table 2 shows the mean values of the computational texture features 
obtained from the MRI images of each type of breast chicken. Fourteen 

Table 2 
Average values of the computational featuresA from GLCM and OPFTA algorithms of MRI from normal chicken breast (N) and those affected by the white striping 
myopathy in the moderate (WS-M) and severe (WS–S) degrees.    

N WS-M WS-S p value 

GLCM ENE 0.23.10− 2a ± 0.10.10− 2 0.25.10− 2b ± 0.13.10− 2 0.30.10− 2c ± 0.10.10− 2 0.021 
ENT 2.53 ± 0.57 2.60 ± 0.42 2.66 ± 0.27 0.165 
COR 0.10.10− 2a ± 0.04.10− 2 0.15.10− 2c ± 0.11.10− 2 0.13.10− 2b ± 0.04.10− 2 0.026 
HC 14.77.103b ± 41.72.102 15.06.103c ± 53.09.102 13.71.103a ± 18.00.102 0.037 
IDM 0.54b ± 0.11 0.51a ± 0.10 0.56c ± 0.05 0.024 
INE 6.37b ± 5.83 7.14c ± 5.86 3.78a ± 3.28 0.048 
CS 0.04.10− 2 ± 0.03.10− 2 0.06.10− 2 ± 0.05.10− 2 0.06.10− 2 ± 0.04.10− 2 0.159 
CP 4.47.10− 6a ± 3.79.10− 6 9.74.10− 6c ± 5.95.10− 6 5.94.10− 6b ± 5.86.10− 6 0.046 
CON 0.20.10− 2a ± 0.07.10− 2 0.26.10− 2c ± 0.06.10− 2 0.23.10− 2b ± 0.05.10− 2 0.004 
DIS 1.39b ± 0.66 1.48c ± 0.74 1.17a ± 0.27 0.029 

OPFTA UNI 495.79b ± 351.83 478.28a ± 295.80 605.87c ± 240.99 0.039 
ENT 58.95a ± 52.52 58.14a ± 42.60 76.87b ± 37.41 0.037 
COR 17.11.102b ± 13.51.102 19.44.102c ± 14.69.102 15.69.102a ± 12.77.102 0.029 
HOM 36.87a ± 17.64 37.99a ± 19.96 48.57b ± 14.46 0.009 
INE 19.11.103 ± 17.23.103 16.52.103 ± 12.93.103 16.93.103 ± 10.59.103 0.383 
CON 33.80.103c ± 32.65.103 28.87.103a ± 22.15.103 31.09.103b ± 19.79.103 0.036 
EFI 1.91b ± 1.08 1.46a ± 0.83 1.92b ± 0.86 0.025 

a-c Mean values within the same parameter followed by different superscript letters significantly differ by the Tukey test (p < 0.05). 
A ENE: energy; ENT: entropy; COR: correlation; HC: Haralick’s correlation; IDM: inverse difference moment; INE: inertia; CS: cluster shade; CP: cluster prominence; 

CON: contrast; DIS: dissimilarity; UNI: Uniformity; ENT: Entropy; COR: correlation; HOM: homogeneity; INE: inertia; CON: contrast; EFI: Efficiency. 

Fig. 2. Principal component analysis of physico-chemical parameters of normal chicken breast ( ) and those affected by the white striping myopathy in the moderate 
(▴) and severe ( ) degrees. 

L. Carvalho et al.                                                                                                                                                                                                                               



Journal of Food Engineering 306 (2021) 110633

6

(ENE, COR, HC, IDM, INE, CP, CON, DIS, UNI, ENT, COR, HOM, CON 
and EFI) of seventeen computational features showed statistical differ-
ences (p < 0.05) among groups. More specifically, in comparison to N 
and WS-M samples, WS-S ones obtained higher values for ENE, UNI, 
ENT, and HOM and lower for INE, DIS and COR; HC and CP were lower 
in N and WS-S than in WS-M chicken, while IDM, EFI and CON showed 
higher values in N and WS-S than in WS-M samples. The values of COR 
and CON were higher in WB samples than in C ones. Considering the 
meaning of the texture features (Ávila et al., 2015), WB-S chicken 
breasts can be described as quite uniform (high ENE), with a messy and 

complex texture (high ENT) a low difference in the gray levels (low INE 
and DIS), while WS-M samples could be characterized as not very ho-
mogeneous (low IDM) with scattered and symmetric gray levels (high 
HC and CP). Images of C samples are mainly characterized by a very low 
contrast (low CON). Previous studies have also noted significant dif-
ferences in the computational characteristics of MRI from hams, loins 
and cod as affected by feeding, processing and cooking (Perez-Palacios 
et al., 2017a; Caballero et al., 2018a, 2018b). 

Fig. 3. Principal component analysis of GLCM (A) and OPFTA (B) computational characteristics from MRI of normal chicken breast ( ) and those affected by the 
white striping myopathy in the moderate (▴) and severe ( ) degrees. 
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3.2. Classification of chicken breast based on physico-chemical and MRI 
analysis 

Fig. 2 exposes PCA of sample data as a function of the physico- 
chemical characteristics. The first two principal components (PC1 and 
PC2) accounted for 80.09% of the total variance (65.23% for PC1, and 
14.86% for PC2) accumulating more than 65% recommended (Bro and 
Smilde, 2014). The score plot shows the three group of chicken breasts 
clearly separated. The N group of chicken breasts was in the two upper 
quadrants, and positively related to lightness (L*) and the percentage of 
proteins. In fact, the highest values for these parameters have been 
found in the N group of samples (Table 1). WS-S group of chicken breast 

was positioned in the two bottom quadrants, near to the percentage of 
lipids, redness (a*) and TBARS, in concordance with results on Table 1 
that shows the highest values for these physico-chemical characteristics 
in the WS-S samples. WS-M chicken breasts were found in the central 
part of the score plot and close to most analyzed texture parameters 
(hardness, adhesively, gumminess or resilience). This agrees with the 
highest values of these characteristics in the WS-M samples as compared 
to those from the other groups (Table 1). 

Fig. 3 shows PCA biplots (variables and samples) of chicken breast 
samples affected by the WS condition as a function of MRI computa-
tional features from two computer vision algorithms, GLCM (Fig. 3A) 
and OPFTA (Fig. 3B). 

Fig. 4. Decision Tree classification model of normal chicken breast (N) and those affected by the white striping myopathy in the moderate (WS-M) and severe (WS–S) 
degrees based on the computational characteristics of the OPFTA algorithm. 

Table 3 
Results on classification of chicken breast with different affection of white striping myopathy by applying DTa as data mining technique.   

SENSb SPECc PPVd NPVe ERROR RATE FALL-OUT RATE FDRf FORg CSIh ACCURACY F1 SCORE 

GLCM N 0.9444 1 1 0.9730 0.0556 0 0 0.0270 0.9444 0.9815 1.8889 
WS-M 0.9444 0.9167 0.8500 0.9706 0.0556 0.0833 0.1500 0.0294 0.8095 0.9259 1.6190 
WS-S 0.8889 0.9722 0.9412 0.9459 0.1111 0.0278 0.0588 0.0540 0.8421 0.9444 1.6842 

OPFTA N 1 0.9722 0.9474 1 0 0.0278 0.0526 0 0.9474 0.9815 1.8947 
WS-M 0.8889 0.9167 0.8421 0.9429 0.1111 0.0833 0.1579 0.0571 0.7619 0.9074 1.5238 
WS-S 0.8333 0.9722 0.9375 0.9211 0.1667 0.0278 0.0625 0.0789 0.7895 0.9259 1.5789  

a DT: Decision Tree. 
b SENS: Sensitivity. 
c SPEC: Specificity. 
d PPV: Positive Predictive Value. 
e NPV: Negative Predictive Value. 
f FDR: False Discovery Rate. 
g FOR: False Omission Rate. 
h CSI: Critical Success Index. 
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As for GLCM results, the first two PC accounted for 81.10% of the 
total variance (46.70% for PC1, and 34.40% for PC2) accumulating 
more than 65% recommended (Bro and Smilde, 2014). Samples labelled 
as WS-M group (dark gray triangles) were correlated positively by PC1 
and were associated to the ENE, COR, HC, CON, CS and CP computa-
tional features. Samples of the WS-S group (gray squares) were located 
on the right bottom quadrant and were related to the ENT and IDM 
computational features. The N group of samples (light gray circles) were 
positioned on the left bottom quadrant of the PCA and these samples 
were correlated to the INE and computational features. In the PCA on 
OPTFA results (Fig. 3B), the first two principal components accounted 
for 80.10% of the total variance (45.75% for PC1, and 34.35% for PC2) 
accumulating more than 65% recommended (Bro and Smilde, 2014). 
The group of samples labelled as WS-M (dark gray triangles) were 
correlated negatively by PC2 and were related to the ENT computational 

features. The N group of samples (light gray circles) were located at the 
right upper quadrant and were correlated to the COR, INE and CON 
computational features. The WS-S group (gray squares) were found in 
the right bottom quadrant of the PCA. These samples are related to UNI, 
HOM and EFI. Thus, MRI computational features of GLCM and OPTFA 
algorithms achieved separating chicken breasts with moderate and se-
vere WS and without this clinical disorder. 

In previous studies, the use of computational texture features from 
MRI of meat products also reached to classify meat products as a func-
tion of different variables. Cernadas et al. (2001), for example, classified 
dry-cured Iberian loins as a function of the genotypes of the pigs. 
Pérez-Palacios et al. discriminated fresh (Pérez-Palacios et al., 2011) and 
dry-cured (Pérez-Palacios et al., 2010) Iberian hams as a function of the 
feeding of the pigs. 

Besides PCA, in this study, DT was also applied to evaluate the ability 

Fig. 5. Percentages of lipids (A) and collagen (B) determined by chemical analysis ( ) and prediction equations as a function of computational characteristics* of 
GLCM (◼) and OPFTA ( ) algorithms. 

L. Carvalho et al.                                                                                                                                                                                                                               



Journal of Food Engineering 306 (2021) 110633

9

of MRI-computational algorithms to classify chicken breast affected by 
the WS myopathy. As example, Fig. 4 shows the DT classification model 
based on the OPFTA algorithm. In this figure, red square on the leafs of 
the DT classification model shows the N group of samples, yellow ones 
represents the WS-M group of samples and green ones characterizes the 
WS-S group of samples. 

Table 3 shows the statistical results on this classification technique: 
SENS >0.8, SPEC >0.9, PPV >0.8, NPV >0.9, error rate <0.2, fall-out 
rate <0.1, FDR <0.2, FOR <0.1, CSI >0.75, accuracy >0.9 and F1 
score = 1.5–2 for the three batches, which indicate a very good classi-
fication according to Yerushalmy (1947). Besides, it is also noted that 
both computational algorithms obtained similar results, suggesting the 
possibility of application of J48 DT on GLCM or OPFTA features to 
classify chicken breasts with different WS affection degree. In fact, 
previous studies by applying DT on MRI computational characteristics 
from meat products have found accurate results. Caballero et al. (2016b) 
classified Iberian hams subjected to increasing post-salting processing 
time with an accuracy higher than 0.75. In other study, Iberian 
dry-cured shoulders were correctly classified as a function of the geno-
types (Caballero et al., 2018c) and the feeding background of the pigs 
(Caballero et al., 2019) by means of DT. Moreover, DT was applied in 
order to monitor the hazards caused by the chemical substances (Van 
Asselt et al., 2018) and for evaluating the sensory attributes of processed 
meat products with natural compounds (Hung and Verbeke, 2018). 

3.3. Prediction of physico-chemical parameters of chicken breast by 
means of MRI 

Two predictive techniques of data mining (IR and MLR) were applied 
for determining physico-chemical parameters of chicken breast in a non- 
destructive way by MRI, testing the computational characteristics ob-
tained by GLCM and OPFTA algorithms. In this way, four prediction 
equations were obtained for each physico-chemical characteristic, as a 
function of computational characteristics of both GLCM and OPFTA by 
means of MLR and IR. As example, Fig. 5 shows the prediction equations 
for the percentage of lipids and collagen of breast chicken when 
applying MLR. Table 4 shows values of R, MAE and WAPE of prediction 
equations for the physico-chemical characteristics of chicken breasts as a 
function of computational characteristics of GLCM and OPFTA by MLR 
and IR. Considering the data mining techniques, MLR reached higher 
correlation coefficients (r > 0.75 for all physico-chemical parameters) 
than IR. Moreover, lower MAE and WAPE values were obtained when 

applying MLR than IR. Thus, MLR should be selected for the prediction 
of physico-chemical parameters of chicken breast. This is in agreement 
with previous studies aimed to predict physico-chemical parameters of 
loins applying classical texture (Pérez-Palacios et al., 2017b) and fractal 
(Caballero et al., 2017) algorithms to analyze MRI images of loins. These 
authors pointed out the absence of lineal dependence between 
physico-chemical characteristics and computational features of MRI, 
because the use of MLR is indicated when there is not a high correlation 
between the data. Considering the computer vision algorithms, OPFTA 
achieved slightly better correlation coefficients than GLCM for thirteen 
of the seventeen physico-chemical characteristics. However, in the case 
of the error parameters (MAE and WAPE), GLCM achieved lower error 
values than OPFTA for twelve of the seventeen characteristics. Conse-
quently, both computational algorithms may be used for the MRI anal-
ysis of chicken breast with prediction purposes. 

Taking a step forward, Fig. 5 shows the adjustment for percentage of 
lipids (Fig. 5A) and collagen (Fig. 5B) between the values obtained by 
means of physico-chemical analysis and predicted as a function of the 
MRI computational features from GLCM and OPFTA and applying MLR. 
A similar performance for real values and those predicted with both 
GLCM and OPFTA can be observed. These two algorithms have been also 
compared in terms of computational time and complexity. Both methods 
take less than 50 ms/image (42 ms for GLCM and 47 ms for OPFTA, 
computed using a usual laptop INTEL i7-9750H, 2.6 GHz, 16 GB RAM). 
Besides, GLCM and OPFTA have similar computational complexity (O 
[n2]) (Caballero et al., 2018b). Consequently, combinations of MLR with 
both GLCM and OPFTA may be used to determine physico-chemical 
characteristics of chicken breasts in a non-destructive way by MRI. 

4. Conclusions 

This is the first study to prove the capability of MRI-computer vision 
algorithms, as a non-destructive technique, to classify and predict 
quality characteristics of chicken breast affected by WS myopathy, 
evaluating the influence of the computational algorithms to analyze the 
MRI images and the techniques of data analysis on the classification and 
prediction results. Computational features from both texture (GLCM) 
and fractal (OPFTA) algorithms are useful to i) classify white striping 
chicken breast by means of different classification technique, Principal 
Component Analysis and Decision Tree, and ii) predict physico-chemical 
characteristics of these chicken breast with high accuracy, by means of 
Multiple Linear Regression. The objective and non-destructive 

Table 4 
Correlation Coefficient (R), Mean Absolute Error (MAE) and Weighted Absolute Percent Error (WAPE) of the prediction equations of physico-chemical parameters of 
chicken breast as a function of two computational texture algorithms (GLCM and OPFTA) and two data mining technique (multiple linear regression (MLR) and 
isotonic regression (IR).   

GLCM OPFTA 

MLR IR MLR IR 

R MAE WAPE R MAE WAPE R MAE WAPE R MAE WAPE 

Hardness 0.8036 6.335 0.112 0.6612 10.677 0.189 0.8056 9.233 0.166 0.2461 9.991 0.180 
Adhesivity 0.6582 18.170 0.078 0.6381 23.251 0.099 0.7998 15.295 0.065 0.3573 24.239 0.103 
Springiness 0.8373 0.023 0.029 0.6608 0.067 0.084 0.8309 0.035 0.044 0.6411 0.059 0.074 
Cohesiviness 0.8169 0.020 0.033 0.6021 0.053 0.077 0.8593 0.029 0.048 0.4356 0.066 0.089 
Gumminess 0.8117 540.508 0.153 0.6526 980.747 0.227 0.8143 635.050 0.180 0.5321 855.755 0.243 
Chewiness 0.8025 419.228 0.150 0.6392 770.759 0.276 0.8188 411.747 0.147 0.4236 700.681 0.250 
Resilence 0.8608 0.027 0.073 0.6214 0.063 0.110 0.7593 0.022 0.058 0.5459 0.050 0.081 
pH 0.7511 0.057 0.010 0.4252 0.090 0.016 0.8254 0.069 0.012 0.5857 0.108 0.019 
Color L 0.7655 0.649 0.011 0.5691 1.024 0.018 0.7525 0.839 0.014 0.4733 1.224 0.021 
Color a* 0.7899 0.399 0.031 0.4752 0.713 0.056 0.9187 0.401 0.031 0.6300 0.684 0.053 
Color b* 0.7997 0.467 0.065 0.3764 0.632 0.088 0.8463 0.311 0.043 0.5333 0.553 0.076 
Moisture 0.8091 0.167 0.002 0.5515 0.210 0.003 0.8539 0.167 0.002 0.5859 0.198 0.002 
Proteins 0.7972 0.198 0.009 0.4138 0.254 0.012 0.8451 0.182 0.008 0.6378 0.221 0.010 
Lipids 0.7718 0.192 0.054 0.4918 0.258 0.073 0.8335 0.217 0.061 0.4466 0.264 0.074 
Ash 0.7909 0.020 0.019 0.5706 0.035 0.032 0.8494 0.021 0.020 0.6957 0.043 0.039 
Collagen 0.8398 0.012 0.026 0.5936 0.033 0.061 0.7096 0.017 0.038 0.4895 0.041 0.082 
TBARs 0.8074 0.013 0.106 0.2138 0.022 0.179 0.8117 0.018 0.157 0.3476 0.028 0.214  
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classification of WS conditions by degrees of severity in chicken breasts 
may be feasibly applied in large processing plants where the incidence of 
the myopathy is high and a quick decision-making is required for the 
fate of affected samples. In this regard, future work will be focused on 
reducing the time for image acquisition and developing automatic and 
on-line image analysis. 

Author contribution 

L. Carvalho contributed to perform the collection of samples, 
physico-chemical analysis, analyzed and interpreted data, contributed 
to write the manuscript and approved the final version. T. Pérez-Palacios 
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