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A B S T R A C T

Stress due to nutrients deficiency in plants can reduce the agricultural yield significantly. Nitrogen, an essential
nutrient, is a crucial growth-limiting factor and is the prime component of amino acids, proteins, nucleic
acids, and chlorophyll. Nitrogen deficiency affects certain visible plant traits such as area, color, the number of
leaves and plant height, etc. With the recent advancements in imaging technology, computer vision-based plant
phenomics has become a promising field of plant research and management. Such imaging-based techniques are
non-destructive and much faster with higher levels of automation. In this work, we have proposed an automatic
image-based plant phenotyping approach for stress classification in plant shoot images. In this proposed
phenotyping approach, a 23-layered deep learning technique is proposed and compared with traditional
Machine Learning techniques and few other deep architectures. Results reveal that a simple 23-layered deep
learning architecture is comparable to the established state of art deep learning architectures like ResNet18
and NasNet Large (having millions of trainable parameters) in yielding ceiling level stress classification from
plant shoot images. In addition, the proposed model also outperforms traditional Machine Learning techniques
by achieving an average of 8.25% better accuracy.
. Introduction

The world is expected to touch a population of 8.6 billion by 2030,
nd thus, being able to cultivate enough crops plays a crucial role in
anaging food and health security [1]. To feed the world’s rapidly

rowing population, the process of agriculture needs to be evolved
or precision farming. This method of farming employs a wide variety
f Internet of Things (IoT) sensors that measure soil characteristics
nd imaging devices that keep track of certain plant traits like color,
ize, shape, etc. Being able to study these observable traits of a plant
sing different sensors and imaging devices plays a vital role in this
ransformation and is known as plant phenomics [2].

Using traits of plants for detecting physiological changes in response
o abiotic stresses such as lack of water, nutrients, poor lightning con-
ition, etc., has a significant role in plant and crop management. After
oisture induced stress, nutrient induced stress in plants is the most

ritical factor and can significantly reduce the agricultural yield [3].
utrients induced stress can result from either low level or excess level
f minerals in the plant system. Understanding and measuring nutrient
nduced stress is a complicated process as various aspects such as
oil science, plant physiology, biochemistry, agronomy, and molecular
iology need to be considered. The early detection and quantification of
tress levels in plants has an important role in the final yield. Nitrogen
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is one of the most important nutrient required by plants and is a
crucial growth-limiting factor as it is an essential component in amino
acids, proteins, nucleic acids, and chlorophyll. Nitrogen deficiency
can results in disturbed root–shoot ratio, short lateral branches, small
leaves, Chloroplast disintegration, and even death. Different levels of
nitrogen deficiency effect certain visually accessible plant traits such
as leaf color, leaf area, number of leaves, and plant height.

Most traditional phenotyping techniques are destructive and time-
consuming with intensive labor requirements, and hence, smart auto-
mated plant phenotyping techniques that can help identify the stress
level in less time without disturbing the plant are needed. With the
recent advances in computer vision and object recognition, it has
become quite straightforward to capture high resolution images in both
the visible as well as the infrared spectrum [4,5]. Thanks to these
developments, image-based plant phenotyping can now be done on a
small scale (controlled laboratory), in the greenhouse, or in the field [6–
8], and has become a promising field of plant research and man-
agement. Such imaging-based techniques are not only non-destructive
but are also much faster, with high levels of automation. However,
Using high-throughput imaging and computer vision methods for plant
phenotyping presents challenges such as data acquisition and analysis
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that require an expertise in the fields of biology, engineering, and
mathematics [9].

Machine Learning (ML) methods offer many advantages in the
analysis of big data in different fields of research, such as health-
care,industries, agriculture, etc. However, in agriculture, obtaining
stress information using images is challenging due to lack of texture in
multivariate plant images, occlusion, complicated and invisible part of
plants [10,11]. Out of various ML techniques available at our disposal,
Deep Learning (DL) method that uses different convolutions to presents
the data hierarchically is gaining ground [12].

The raw images that arise in imaging based phenotyping applica-
tions generally contain too much information for a traditional ML tech-
niques to work efficiently. To tackle this, plenty of work in traditional
ML research has focused on pre-computation of domain-specific image
keypoints and features and then train a classifier in the corresponding
representation space [13–17]. Some of the popular classification meth-
ods that have been used in plant phenomics application include Support
Vector Machines (SVM) [18], Decision trees (DT) [19], and K-Nearest
Neighbors (KNN) [20]. For example, the use of a linear SVM classifier
for assessing water stress in the early growth stages of maize has been
considered in [21], while the authors in [22] used SVM on the extracted
features for a hierarchical classification of soybean plants. The main
limitation of these traditional ML techniques is the fact that the hand-
crafted features suit a particular kind of data, and thus, applications of
the algorithm are limited to specific tasks. This means that an approach
that works well for one task may fail to perform for a different task.
This kind of specificity associated with these traditional approaches
severely limits the applicability in situations that demand a certain level
of generality and has motivated researchers to look for methods that are
quite generic in terms of applicability. This has further strengthened the
focus on CNN, which is a much general ML approach.

Convolutional Neural Network (CNN) is a DL method that special-
izes in image recognition and has been used in variety of computer
vision problems across different fields [23]. CNN’s have additional
feature-detecting convolution layers along with an artificial neural
networks (ANNs) layer that does the classification [24]. CNN’s have
been readily accepted by the computer vision community and have
been applied successfully in fields such as life sciences, medicine [25]
and agriculture [26]. CNN has been widely used for the classification
of plants and leaves in agriculture [27–29]. In [28], the authors have
represented leaf data by defining a way to quantify the features and
trained a CNN based on raw leaf data. This was followed by using a
Deconvolutional Network (DN) approach to understand how the CNN
specifies the leaf data. Their results showed the strength of detecting
features using CNN as compared to hand-crafted features. DL tech-
niques have also been used in applications such as counting the number
of seeds per pod for soybeans [30], counting the number of wheat ear
under field conditions [31], plant identification [29,32], identification
of plant diseases [33–37], etc. Some works have also concentrated on
finding out future parameters, including corn produce [38], amount
of soil moisture in the field [39], and weather [40]. An et al. [41]
has proposed a deep convolutional neural network (DCNN) for classi-
fication and identification of maize drought stress in the field. They
achieved 98.14 percent classification accuracy for drought stress. In
this paper, we have considered automated phenotyping of stress level
classification from Sorghum plant shoots due to nitrogen deficiency
using a 23-layered CNN architecture. Compared to the existing works,
the main contributions of this paper are as follows:

• We propose to use a 23-layered CNN architecture unlike other
works existing in the literature that mostly use classical ML
techniques for classification of nitrogen deficiency in plants.

• We also provide a thorough performance analysis of the classical
ML techniques using combinations of different keypoint detectors
2

and descriptors.
• A performance comparison of the DL model with reference to
the traditional ML methods and some of the well established
pre-trained DCNN models is also presented.

Interestingly, the computer vision based DL classification method for
early and fast detection of plant nitrogen content (as discussed in our
work) has many envisioned applications apart from increasing the crop
yield as summarized below:

• As we are suggesting the use of complete shoot images, our
method is independent of the lighting conditions, the time of the
day when the images are taken, and has the potential for a high
degree of automation.

• Such an identification system would be beneficial to the potential
farmers and researchers for timely intervention and mitigation of
the problems by applying the proper crop management strategies
that can effectively boost the crop yields.

• The image based nitrogen stress classification methods can not
only detect the lack of plant nitrogen, but also the access of it.
This helps in the optimization of nitrogen fertilization. This can
help farmers to avoid over fertilization which affects optimum
plant productivity, causing unnecessary expenditure on the part
of farmers, and negatively impacts the soil health.

• These methods can be useful not only for the people who are into
farming, but also for people who are going to consume the yield,
as the high-nitrate diet is an alarming factor in the development of
several human diseases such as methahemoglobinaemia, gastric
and bladder cancer. The approaches discussed in our paper can be
employed to detect the nitrogen content in the plants just before
the harvest and help in deciding whether the nitrogen levels are
in the safe range for human consumption.

• Several research works have been proposed to detect and clas-
sify plant stresses using image processing and Machine Learning
techniques. These approaches have attempted to build image
classifiers using the handcrafted shape, color, and texture features
extracted from the individual crop leaf images. The classifier
dependency on handcrafted features causes a lack of automation.
To overcome this, the present work proposes a computationally
simple deep convolutional neural networks (DCNN) architecture
that has shown impressive results for nitrogen stress classification
without using any handcrafted features. This brings the desire of
adopting deep learning in computer vision to develop a compre-
hensive nitrogen stress recognition system which could be used as
an effective tool in constructing high precision crop management
strategies.

The remainder of the paper is structured as follows. Section 2 de-
scribes the dataset and the proposed methodology. Section 3 provides
the results and discussions. Finally, in Section 4, we provide some
perspectives and conclude.

2. Materials and methods

This section gives an overview of the dataset and methodology that
we employ for finding the nitrogen stress level in a Sorghum plant
from the shoot images. At first, we explain the dataset used in our
experiments, after that, we briefly discuss the image preprocessing
stage that segments the plant shoot from other objects present in the
image. Later, we will discuss about the conventional ML algorithms like
SVM, DT, KNN, followed by the DL approach using CNN. The conven-
tional ML techniques will work on a chosen set of attributes extracted
using standard feature extraction algorithms like Scale-Invariant fea-
ture transform (SIFT) [42,43] and Histogram of oriented gradients

(HOG) [44], etc.
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Fig. 1. Visualization of a sample in 0 degree (right) and 90 degree (left) from dataset.

Table 1
Number of images in each class.

Class Number of images

0 degree 90 degree

100% 3408 3408
50% 5112 5112
10% 5114 5114

2.1. Dataset

The plants shoot images for this work have been obtained from
a standard publicly available dataset containing almost 96,867 im-
ages of Sorghum plant shoot, provided by the Donald Danforth Plant
Science Center (https://plantcv.//danforthcenter.org/pages/data-sets/
sorghum_abiotice_stress.html) [45]. The dataset was prepared by sub-
jecting 30 genetically diverse genotypes of Sorghum to certain levels of
nitrogen stress. The motivation behind choosing Sorghum for the ex-
periment is its ability to grow in relatively dry soil with limited inputs.
Sorghum has many uses. It can be used for medical purposes, feeding
animals and humans, fuel production, etc. Next to water stress, nitrogen
stress is the most important environmental factor affecting the plant’s
yield. In this experiment, the phenotypic impacts of nitrogen stress on
Sorghum were examined for three weeks employing high-throughput
image based phenotyping. Three sets of experimental conditions were
created based on the amount of nitrogen available to plants: the
100∕100 treatment group, the 50∕10 treatment group, and the 10∕10
treatment group. In the first setup, 100% of the nitrogen requirement
was available (100% ammonium∕100% nitrate), in second setup 50% of
the nitrogen requirement was available (50% ammonium∕10% nitrate),
and in third, 10% of the nitrogen requirement was available
(10% ammonium∕10% nitrate) [45].

Based on the amount of nitrogen availability, we have three classes
of samples in this dataset. Plants with 100% as healthy (𝐴𝐴), 50% as
semi stressed (𝐴𝐵), and 10% as severely stressed (𝐴𝐶). The original
dataset includes both RGB and Near Infrared (NIR) images. For each
plant, one top view and two sides view RGB and NIR images corre-
sponding to 0◦ degree and 90◦ degree are taken. In this work we have
used two sides view RGB images of the plant shoot for finding the
level of nitrogen stress in the plant. The motivation behind using the
RGB images being the fact that RGB cameras are cheaper and widely
available, given the popularity of devices such as consumer cameras
and smart-phones. One of the biggest challenge in using the dataset is
taking care of difference in the age of plants that are captured over a
period of 26 days after seedling of plants in each class. Table 1 gives
the information about number of images per class. Fig. 1 shows some
sample images from this dataset.

2.2. Image pre-processing

The first stage in pre-processing is to segment the plant shoot from
the background. Images considered for this study were captured in
the laboratory settings with white background. The notion behind the
image pre-processing or background subtraction is to reduce the size
3

of the feature vector. Without background in the images, we are able
to reduce the number of keypoints significantly and subsequently this
helps in reducing the computational cost. As shown in Fig. 2, we
removed the plant to create the background using image patching
technique through GNU Image Manipulation Program (GIMP) software.
This background image contains the imaging setup, including the pot.
For the ease of computation, the areas having imaging setup including
pot were cropped. Once we had the cropped images, computational
methods were employed to generate both intensity as well as color
maps simultaneously. Finally, both the maps were merged to obtain
the final mask for segmentation of the plant shoot.

In the first method for mask generation, the background image is
used to detect the image pixels that belong to the plant. Here, both the
image and the background were first converted to gray-scale and then
binarized. The binarized background was subtracted from the image to
give the mask. This mask was smoothed out by removing small, discrete
areas, giving us the intensity based mask.

In the second method the color information in the image is used to
generate mask, as the image pixels belonging to the plant are usually
green in color. Here, first the image was converted from RGB to Lab
color space, which is defined by a luminosity layer ‘L’, a chromaticity
layer ‘a’ indicating where the color lies along the red–green axis, and
chromaticity-layer ‘b’ indicating where the color lies along the blue–
yellow axis. The entire color information is contained within the ‘a’
and ‘b’ layers. We then used k-mean clustering [46] on these layers to
do color based segmentation. Segmentation of the green color yielded
the required color based mask.

The final mask was then obtained by merging these two masks, and
removing the outliers using the Cook’s distance [47]. A white pixel in
the mask, with Cook’s distance larger than three times the mean Cook’s
distance was considered as an outliers and is removed.

The final mask was then applied to the cropped RGB image to
segment the plant shoot. An overview of the process is shown in Fig. 2.

2.3. Classical ML approaches

Classical ML techniques are used widely in computer vision prob-
lems even today. These techniques basically involve three steps: Ex-
tracting descriptors for the detected keypoints, encoding these descrip-
tors, and then training a classifier using the encoded descriptors (model
creation). The details of the methods used in this work are provided in
the following sub-sections.

2.3.1. Feature extraction
The first step in using the classical ML techniques involve feature

extraction. Feature extraction involves detecting the keypoints and then
describing the local patches in the neighborhood of these points. In
the context of computer vision, points rich in information content
are known as keypoints. These keypoints play a significant role in
increasing/decreasing the computational cost depending on the number
of data points. In the present work, we have used two of the most
prominent image descriptors i.e., SIFT [42], and HOG [44] features.
These features are extracted separately from plant images available
in the dataset. Additionally, the performance of chosen descriptors
is evaluated using different classifiers and the results are given in
Section 3.

2.3.1.1. Scale-invariant feature transform (SIFT). In this work, we used
SIFT descriptor for feature extraction from the segmented plant im-
ages [42,43]. The SIFT keypoint detector first generates a Difference-
of-Gaussians (DoG) scale-space and then finds local extrema in that
space. SIFT proceeds by first sampling the data regularly in space to
approximate a density function. This density function has been used
to generate a scale space and finally, a search is performed to find
the local maxima in Hessian matrix. The subsequent section details the

process of creation of scale space and the local maxima. The scale space

https://plantcv.//danforthcenter.org/pages/data-sets/sorghum_abiotice_stress.html
https://plantcv.//danforthcenter.org/pages/data-sets/sorghum_abiotice_stress.html
https://plantcv.//danforthcenter.org/pages/data-sets/sorghum_abiotice_stress.html
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Fig. 2. Illustration of the image segmentation steps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
is obtained by convolving the input image 𝐼 (𝑥, 𝑦) with a number of
Gaussian filters 𝐺 (𝑥, 𝑦, 𝜎) which have standard deviations 𝜎 that differ
from one another by a fixed factor

𝐿 (𝑥, 𝑦, 𝜎) = 𝐺 (𝑥, 𝑦, 𝜎) ∗ 𝐼 (𝑥, 𝑦) , (1)

Where ∗ represents the convolution operator. The SIFT keypoints are
located at the extrema of the scale-space of the DoG function 𝐷 (𝑥, 𝑦, 𝜎)
which is given as the difference between two images, whose scales vary
by a factor 𝑘, i.e.,

𝐷 (𝑥, 𝑦, 𝜎) = 𝐿 (𝑥, 𝑦, 𝑘𝜎) − 𝐿 (𝑥, 𝑦, 𝜎) (2)

Given 𝐷 (𝑥, 𝑦, 𝜎), its local maxima and minima are obtained by com-
paring each of the points with their 8 neighbors that are at the same
scale, and 9 neighbors that are up and down one scale. If this point
is the minima or the maxima, then it is chosen as an extrema. In the
next stage, the Laplacian is calculated for these extrema. The extremum
location 𝐙, is

𝐙 = − 𝜕2𝐷−1

𝜕𝐱2
𝜕𝐷
𝜕𝐱

. (3)

The value at 𝐙 is compared to a threshold and if it is below it, the
point 𝐙 is discarded. This gets rid of extrema having low contrast. SIFT
descriptors are computed based on the gradient magnitude as well as
orientation at each image point in the neighborhood of a keypoint,
weighted by a Gaussian window as shown in (1). This step assigns a
consistent orientation to the keypoints. The gradient magnitude 𝑚 are
then obtained as
𝑚 (𝑥, 𝑦) =
√

(𝐿 (𝑥 + 1, 𝑦) − 𝐿 (𝑥 − 1, 𝑦))2 + (𝐿 (𝑥, 𝑦 + 1) − 𝐿 (𝑥, 𝑦 − 1))2
. (4)

The corresponding orientation 𝜃 is

𝜃 (𝑥, 𝑦) = arctan
(

𝐿 (𝑥, 𝑦 + 1) − 𝐿 (𝑥, 𝑦 − 1)
𝐿 (𝑥 + 1, 𝑦) − 𝐿 (𝑥 − 1, 𝑦)

)

. (5)

To obtain the descriptor, a set of orientation histograms are created
using both magnitude and orientation values of image sample points
in a neighborhood of the keypoint. The coordinates along with the
gradient orientations are then rotated with respect to the key-point
orientation, giving rotation invariance.

2.3.1.2. Histogram of oriented gradients (HOG). Another descriptor used
for feature extraction from the segmented plant images is HOG [44].
HOG uses a window to generate a descriptor that is local to a detected
image keypoint. The window, consisting of a regular square grid (𝑛×𝑛)
is centered upon the keypoint under consideration, and for each cell
within the grid, a frequency histogram is generated to depict the edge
orientations distribution. The gradient magnitude 𝑀 and orientation 𝜃
is calculated as

𝑀 (𝑥, 𝑦) =
(

𝑔2 + 𝑔2
)

1
2 , (6)
4

𝑥 𝑦
and

𝜃 (𝑥, 𝑦) = arctan
( 𝑔𝑦
𝑔𝑥

)

, (7)

Where 𝑔𝑥 and 𝑔𝑦 are gradient for each pixel of image 𝐼 along 𝑥 and 𝑦
directions, respectively,

𝑔𝑥 = 𝜕𝐼
𝜕𝑥

= 𝑓 (𝑥 + 1, 𝑦) − 𝑓 (𝑥 − 1, 𝑦) (8)

and

𝑔𝑦 =
𝜕𝐼
𝜕𝑦

= 𝑓 (𝑥, 𝑦 + 1) − 𝑓 (𝑥, 𝑦 − 1) (9)

This is then followed by the quantization of the edge orientations into 𝑞
bins. A vector (𝑞 −𝐷) is formed by concatenating the histogram counts
for each cell. These vectors are further concatenated giving a 𝑞𝑛2 − 𝐷
vector for the entire window. Some implementations sample several
windows in a non-overlapping 𝑤 ∗ 𝑤 grid in the key-point locality and
concatenate all these windows to produce the final descriptor.

2.3.1.3. Fisher vector (FV). Once the SIFT and HOG descriptors are
extracted for the plant images separately, the next step is to use them
in the classification stage. However, since the rows of the descriptors
are basically the feature vectors for each of the image keypoints, the
size of the descriptors varies from image to image, as the number of
keypoints detected for each image are different. This necessitates the
quantization of the descriptors into a single vector of uniform size.
This is called encoding, and in this work, we have used Fisher Vector
(FV) [48] encoding.

A ‘FV’ is a statistical representation of the distribution of a set of
vectors (image features in our case). The FV performs the encoding
by creating a dictionary of 𝑘 words using a Gaussian Mixture Model
(GMM) for the descriptors. Once ready, the dictionary is used to encode
the gradients of the log-likelihood of the features under the GMM, with
respect to the GMM parameters and compare 𝑁 descriptors to 𝑘 visual
words.

As compared to other methods, the FV representation offers cer-
tain advantages such as low computational requirements as it can be
computed from small vocabularies and better performance with linear
classifiers as they do not generate complex boundaries between the
classes. This property results in significant advantage as it allows us to
use linear classifiers that learn very efficiently and are fast to compute.

2.3.2. Support vector machines (SVM)
A supervised learning method, SVM works by generating a separat-

ing hyperplane [18]. The decision surface separating the classes is a
hyperplane of the form:

𝐖𝐓𝐗 + 𝑏 = 0 (10)

Where 𝐗 is the input vector, 𝐖 is the weight vector, and 𝑏 is the
bias. The algorithm works by creating an optimal hyperplane using
the labeled training data that is provided to it during the training



Measurement 173 (2021) 108650S. Azimi et al.

I
c

𝑥

R
a
i

ℎ

w
o

m

s

phase. This hyperplane then categorizes new test data. Thus, the SVM
is a linear, non-probabilistic binary classifier. The binary SVM can be
extended to work as a multi-class classifier. Two of the most common
approaches for this are one-versus-one and one-versus-all. This paper
employs the one-versus-all approach.

2.3.3. K-nearest neighbors (KNN)
KNN is a supervised learning algorithm that stores all the available

feature vectors during the training phase and assigns labels to the
images and classifies new feature vectors based on a similarity score
(e.g., distance metric) [20]. In the classification phase, the unlabeled
point is just given the label of the K Nearest Neighbors to the point.

𝑦 = 1
𝐾

𝐾
∑

𝑖∶1
𝑦𝑖 (11)

Typically a majority vote involving K Nearest Neighbors of the new
query point is used for the classification.

2.3.4. Decision trees (DT)
DTs also belong to the class of supervised ML. DT works by contin-

uously splitting the data in accordance with a certain parameter [19].
The tree consists of two parts called the decision nodes and leaves. The
leaves represent the final decision, while the nodes are points where
the data is split. The decision tree used in this paper grows by the
classification and regression (CART) algorithm [49]. Here, the binary
DT is constructed in a top-down manner, starting with a root node
obtained from any of the variables from the feature space and grows
by minimizing a certain impurity metric of the two sibling nodes as per
a specified splitting rule. To avoid the over-fitting problem, the splits
number is constrained to be lower than the number of categories. This
effectively acts as the pre-prune method. The missing values are taken
care using surrogate splitting, where other input variables values are
used to do a split for observations with a missing value for the best
split.

2.4. Deep learning approach

DL techniques based on ANNs have been showed to be very efficient
at solving many computer vision problems. The fundamental difference
between traditional ML and CNN is that CNN does not require hand-
crafted features. CNN’s can extract features directly from raw images
by tuning the parameters in the convolutional and the pooling layers.
DL techniques such as the CNNs introduced by LeCun [23] have an
architecture specially made for images. This has resulted in a recent rise
in the use of CNNs for image processing applications. In this section,
we briefly discuss CNN architectures.

2.4.1. Proposed convolutional neural network (CNN)
The CNN model employed in this paper for classifying plant stress

was based on the model proposed in [50]. ConvNet has both the feature
extraction and the classification capabilities. The groups of arrays that
form the input and the output of each stage are refereed to as feature
maps. Each feature map at the output presents a particular feature
extracted for all the locations on the input. Each stage has three layers,
namely, filter bank layer, non linearity layer, and feature pooling layer.
A typical ConvNet can have one, two, or three such stages. These layers
are followed by a classification stage. Our CNN network has 23-layered
architecture as shown in Fig. 3. The architecture of the proposed model
is structured as (conv8-bn-relu), max-pool, (conv16-bn-relu), max-pool,
(conv32-bn-relu), max-pool,

(conv64-bn-relu), max-pool, (conv128-bn-relu), fully connected,
softmax, and classification output layer. The conv(n) represents a 2d
convolution layer with kernel size as 3𝑥3 and stride 1. These filters
slide across the input image both horizontally and vertically and the
dot product is computed at every spatial location known as activation
5

map. The output of the convolution layer is obtained by stacking all
the activation maps across the depth dimension. The ‘bn’ is the batch
normalization layer. The relu (ReLU) stands for rectified linear unit.
ReLU perform a nonlinear mapping onto the results of the preceding
layers. The max-pooling layer has kernel size 2𝑥2 and stride 2. They
are used to reduce the dimensionality of convolutional layers. The
fully connected layers provide a global representation for the image
by summarizing the feature vectors from the preceding layers. The
classification layer categorizes the computed feature vectors formed
at the fully connected layer into the image class using an appropriate
loss function. The functionality of different layers is briefly summarized
below. Mathematically ’𝑐𝑜𝑛𝑣 (𝑛)’ is defined as:

𝐶 (𝑝, 𝑞) = (𝐼 ∗ 𝑤) (𝑝, 𝑞) =
∑

𝑘

∑

𝐼
𝐼 (𝑝 − 𝑘, 𝑞 − 𝑙)𝑤 (𝑘, 𝑙). (12)

n the above equation, 𝐼 is the input image with size (𝑝, 𝑞), 𝑤 is the
onvolutional kernel with dimensions (𝑘, 𝑙).

The functionality of ‘bn’ layer is mathematically given as:

̄ =
𝑥𝑖 − 𝜇𝑚𝐵
√

𝜎2𝑚𝐵+ ∈
, (13)

where 𝑥𝑖 is the input, 𝜇𝑚𝐵 and 𝜎𝑚𝐵 are the mean and the variance over
a mini-batch and over each input channel. ∈ is added to improvise the
numerical stability when the mini-batch variance is very small.

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽. (14)

The activations are further shifted by offset 𝛽 and scaled by factor 𝛾.
Both 𝛽 and 𝛾 are learnable parameters updated during network training.

ReLu counteracts for the gradient vanishing problem and is defined
as:

ReLu (𝑥) = max {𝑥, 0} . (15)

eLu’s gradient is 1 for the input not less than 0. Using ReLU for
ctivation in CNN leads to faster convergence. Max pooling (max-pool)
s given by

𝑖,𝑗 = max
𝑘, 𝑙

𝑥𝑖+𝑘−1,𝑗+𝑙−1, 1 ≤ 𝑘, 𝑙 ≤ 𝑚, (16)

here 𝑚 is the kernel width, and the maximization is simultaneously
ver 𝑘 and 𝑙.

The Softmax layer constrains the output in the range (0, 1) and it is
athematically given as:

oft
(

𝑥𝑖
)

=
exp 𝑥𝑖

∑𝑛
𝑗=1 exp 𝑥𝑗

. (17)

2.5. Performance evaluation metrics

The performance of the proposed CNN model is evaluated using the
performance metrics of Accuracy(Acc), Sensitivity(Se), Specificity(Sp)
and Precision(Pre). Mathematically they are defined as;

Accuracy (𝐴𝑐𝑐) = Total correct classifications
Total samples (18)

Sensitivity (𝑆𝑒) =
Total true positives

Total positives (19)

Specif icity (𝑆𝑝) =
Total true negatives

Total negatives (20)

Precision (Pr) = Total correct classifications
Total classifications made (21)

3. Results and discussions

3.1. Results

In this section, we have evaluated and compared the classification
performance of both classical ML techniques and proposed CNN. It is
significant to mention that before performing the ML and DL exper-
iments, the image size is reduced. Images are reduced to a size of
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Fig. 3. CNN architecture used in this paper.
270 × 270, depth 3 (RGB channels) with resolution as 72 pixels/inch
for both ML and DL experiments so as to lower the computational cost.
Also, as the dataset is made up of images of different plant ages from
seedling till maturity, we used a pixel count threshold to remove very
short plants which are mainly 3 days old. In this stage, at first, we find
the mean value of every image obtained from the segmentation stage.
Later, the mean value is compared with the threshold value equal to
300. Only images having mean values above this threshold are used
for our experiments. Additionally, for all the experiments 60% data
is used for training and 40% for validation. We have also evaluated
the performance of CNN model on plant images with background and
without background. The obtained results were also compared with
existing state of art deep architectures like ResNet18 [51,52] and Nas-
Net large [53]. These proposed model is fit for 50 epochs (determined
empirically). Further the weight parameters are trained using ′𝑠𝑔𝑑𝑚′

with the initial learning rate as 0.001. Binary cross-entropy is used as
a loss function. The models are implemented in MATLAB 18𝑏 platform
and executed on a system with configuration as Intel Core 𝑖7 − 4500𝑈
CPU, 3.40 GHz, and 16 GB RAM.

3.1.1. Performance evaluation of the classical ML techniques
To evaluate the performance of classical ML techniques, firstly the

local descriptors were extracted from the segmented plant images,
and then they were fed to the classifiers (SVM, KNN, and DT) for
categorization. Figs. 4, 5, and 6 show the performance of the SVM,
KNN and DT classifiers respectively for SIFT and HOG features, in terms
of confusion matrices for classifying the plants categories 𝐴𝐴, 𝐴𝐵 and
𝐴𝐶 corresponding to three nitrogen levels. The confusion matrices are
represented in the form of heatmaps. The colors are based on a count
aggregation, which totals the number of times each pair of ‘x’ and ‘y’
values appear together in the table. The ‘x’ input indicates the table
variable to display along the 𝑥-axis, i.e., predicted AA, AB, and AC.
The ‘y’ input indicates the table variable to display along the 𝑦-axis,
i.e., actual AA, AB, and AC. Larger the count, deeper the color. For
all the subsequent confusion matrices shown in the paper, the same
convention is followed. From the confusion matrices, it is evident that
all classifiers yield ceiling level performance with HOG features in both
views and classes (𝐴𝐶 and 𝐴𝐵). However for class 𝐴𝐴, SIFT features
outperformed the HOG features. The performance metrics for the two
different views and for SIFT and HOG features have been presented
separately in Table 2. From the tubular results presented, it is seen
that HOG features rendered the best classification performance. The
comparative analysis among classifiers shows that SVM outperforms
other classifiers by attaining an average classification accuracy of 74%
and 75% using SIFT and HOG features. The limitation of using SVM is
that the computation time is large. As shown in last column of Table 2,
the computation time is 570.3 s for SVM using HOG features. It also
indicates that a trade-off between performance and speed can always
be considered depending on the need of application.

3.1.2. Performance of the CNN for images with background
In this section, we have used images with background information

to check the robustness of the proposed CNN model. Fig. 7 repre-
sents the result of the proposed CNN method for plant images with
background. As evident, the proposed method resulted in appreciable
number of true positives in each class thereby justifying the robustness.
6

Table 2
Performance metrics for the classical Machine Learning techniques (Acc: Accuracy, Se:
Sensitivity, Sp: Specificity and Pre: Precision) and the average time per s.

Classifier Feature V. Angle Acc Se Sp Pre Average time (s)

SVM
SIFT 0𝑜 0.73 0.75 0.77 0.75 3499.1

90𝑜 0.74 0.73 0.75 0.83

HOG 0𝑜 0.75 0.72 0.86 0.83 570.3
90𝑜 0.74 0.75 0.87 0.82

KNN
SIFT 0𝑜 0.52 0.75 0.79 0.64 282.4

90𝑜 0.51 0.72 0.70 0.58

HOG 0𝑜 0.76 0.76 0.90 0.72 249.7
90𝑜 0.73 0.78 0.87 0.73

DT
SIFT 0𝑜 0.64 0.60 0.82 0.64 220.8

90𝑜 0.66 0.59 0.77 0.60

HOG 0𝑜 0.70 0.62 0.85 0.66 198.5
90𝑜 0.71 0.68 0.81 0.70

Table 3
Performance metrics for proposed CNN, ResNet-18 and NasNet Large (Acc: Accuracy,
Se: Sensitivity, Sp: Specificity and Pre: Precision).

Classifier V. Angle Acc Se Sp Pre

Proposed CNN
(With background)

0𝑜 0.75 0.52 0.81 0.64
90𝑜 0.72 0.50 0.80 0.56

Proposed CNN
(Without
background)

0𝑜 0.83 0.66 0.89 0.76
90𝑜 0.82 0.64 0.88 0.76
Both views 0.84 0.63 0.89 0.71

ResNet18 0𝑜 0.84 0.64 0.88 0.76
90𝑜 0.82 0.63 0.87 0.73

NasNet large 0𝑜 0.87 0.75 0.91 0.81
90𝑜 0.84 0.68 0.92 0.70

Table 4
The average time per image for SIFT and HOG features for both kind of images —
with background and without background-.

Feature Time

With background Without background

SIFT 4.0866 s 1.3788 s
HOG 1.4485 s 1.0758 s

Table 5
Comparison of the parameter numbers.

Type of CNN model Parameter numbers Storage requirement

NasNet large 84,912,645 343 MB
ResNet18 11,182,851 40.71 MB
Proposed CNN 197,187 1.28 MB

Table 3, shows that the classification accuracy of CNN for plant images
with background for both 0◦ and 90◦ views are 75% and 72% respec-
tively. Also, the proposed CNN achieves a sensitivity, specificity, and
precision equal to 52%, 81%, 64% for 0◦ view and 50%, 80%, 56%
for 90◦ view. Higher values of specificity and lower value of sensitivity
indicate that the proposed CNN has resulted in fewer false positives
in contrast to false negatives for the images with background (see
Fig. 12).
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Fig. 4. Confusion matrices depicting the results for the SVM classifier for SIFT and
OG descriptors. (For interpretation of the references to color in this figure legend,

he reader is referred to the web version of this article.)

Fig. 5. Confusion matrices depicting the results for the KNN classifier for SIFT and
HOG descriptors. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Confusion matrices depicting the results for the DT classifier for SIFT and
HOG descriptors. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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a

Fig. 7. Confusion matrices depicting the results of the plant images with background
for the proposed CNN for both 0◦ and 90◦ angles.

Fig. 8. Confusion matrices depicting the results of the plant images without back-
ground for the proposed CNN for 0◦, 90◦ angles, and both views combined (0◦ and 90◦

ngles)

Fig. 9. Confusion matrices depicting result for plant images without background using
ResNet18 for both 0◦ and 90◦ angles.

Fig. 10. Confusion matrices depicting result for NasNet large model for plant images
without background in 0◦ and 90◦ angles.

3.1.3. Performance of the CNN on images without background
Fig. 8 represents the result of the CNN method for plant images

without a background. The classification accuracy, sensitivity, speci-
ficity, and precision for plant images without background are shown
in Table 3. The classification accuracy’s of proposed CNN for 0◦ view,
for 90◦ view and for both 0◦ and 90◦ views are 83%, 82% and 84%
espectively. Moreover, other performance evaluation metrics have a
alue equal to 66%, 89%, 76% for 0◦ view, 64%, 88%, 76% for 90◦

iew, and 63%, 89%, 71% for both the views. There is an increase of
◦ ◦
pprox. 10% in contrast to results with background for both 0 and 90
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Fig. 11. Accuracy and loss versus the number of iterations (0◦ view).

Fig. 12. Accuracy and loss versus the number of iterations (90◦ view).

view, which is justifying the advantage of the removing background.
The possible reason for the increase in accuracy after background
subtraction is that the size of the plant is very small as compared to
that of background. Background subtraction enables the descriptors
to be extracted only from the plant itself rather than the plant as
well as the invariant background, thereby facilitating fast and accurate
classification with larger true positives and fewer misclassifications. We
noticed that in combining both 0◦ and 90◦ views, there is an increase in
accuracy by 1% and 2% in comparison to 0◦ and 90◦ view. Moreover,
for the specificity there is an increase of 1% on combining both the
views in contrast to the 90◦ view. One of the probable reasons for such
an increase is that more number of images are given as input to the pro-
posed CNN model. Classification accuracy and loss versus the number
of iterations for 0◦ and 90◦ were illustrated in Fig. 11 and in Fig. 12. It
is clearly evident that there is an improvement in performance with an
increase in the number of iterations. This improvement is rapid initially
till 10 epochs followed by a plateaus showing minor improvement in
validation accuracy. The training progress curves shown in Fig. 11
indicates a scope of performance improvement in the proposed CNN
model by adding an early stopping criterion (like validation patience),
image augmentation, and L2 Regularization to account for over-fitting.
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3.1.4. Performance comparison of the proposed CNN model with estab-
lished deep architectures

This subsection illustrates the comparison of the proposed 23-
layered CNN model with the well established deep models like
ResNet18 [51] and NasNet Large [53]. The confusion matrices are
shown in Figs. 9 and 10 and the performance metrics are reported in
Table 3. As seen from Table 3, applying ResNet18 and NasNet large to
images without background resulted in an accuracy of 83.59%, 86.87%
for 0◦ and 82.16%, 84.27% for 90◦ view. Other metrics for ResNet18
have a value of 64%, 88%, 76% for 0◦ and 63%, 87%, 73% for 90◦

view. For NasNet large, the metrics have surged to 75%, 91%, 81% for
0◦ and 68%, 92%, 70% for 90◦ view. The results obtained via ResNet18
for both the views are comparable to those achieved using the proposed
deep network. In contrast to the NasNet large model having 1234 layers
with millions of learnable parameters, the proposed 23-layered CNN
model achieved slightly less accuracy. Accuracy using NasNet large is
better by nearly 4.55% and 2.76% in contrast to our proposed architec-
ture that has just 23 layers and substantially less learnable parameters.
The results signify that a 23-layered model is capable of measuring
stress in plants with competitive performance to that of a 71-layered
and 1234-layered model. Additionally, it is observed that employing a
71-layered and 1234 layered model surges the computational cost by a
factor of 4.51 and 22.18 in contrast to the proposed 23-layered model.
A comparison of the learnable parameter numbers for proposed and the
deep architectures taken for comparison is given in Table 5. From, the
tabular findings, it is evident that the proposed CNN requires a small
number of parameters than the other established deep architectures.
The number of learnable parameters in the proposed model is just
1,97,187 in contrast to 11 million and 84 million learnable parameters
for ResNet18 and NasNet large architectures. Clearly, due to the small
number of learnable parameters, the computational and disk storage
requirement to train and store the proposed model is substantially
lower than other investigated architectures. As indicated in Table 5,
it is just 1.2 MB in contrast to 40.71 MB and 343 MB for the other
deep architectures taken for comparison. Deeper architectures not only
require high disk space but also need high-performance GPU/CPUs
for training. Lesser number of learnable parameters and smaller disk
storage requirements make the proposed 23-layered model practical for
the real-time applications as it can be easily implementable on a simple
computing platform.

3.2. Discussion

The results obtained in our experimental studies prove that the
proposed CNN outperformed other considered traditional ML methods.
Based on all the above results, we found that the proposed CNN can
learn the features automatically for efficient classification of stress
levels in plants. Hence, the proposed CNN found to be the best tool
in assisting researchers for precise plant stress classification. As evident
from other studies, Deeper layers improve the performance, but require
huge amounts of plant datasets that are usually not available publicly.
The dataset we used in this paper is the only publicly available dataset
containing plant shoot images under nitrogen deficiency. Due to the
lack of required data, we are in the process of preparing our own plant
shoot images dataset for quantifying and classifying different abiotic
stress levels using Deep Learning methods in our future work. There are
few related studies in the existing literature that have dealt with plant
stress detection. In [21], Zhuang et al. have considered the effect of
water stress conditions for maize plant on fields using ML techniques.
In [41], Jiangyong et al. have used the same maize dataset as [21],
to identify and classify drought stress by using DCNN. However, the
dataset used in their work is not publicly available. The only reference
in the existing literature that has used the same dataset as ours is work
by Veley et al. [45]. However, the authors have used simple plant
profiling techniques like change in height, width and color fluctuations

to report growth rate with respect to Nitrogen deficiency. Therefore, a
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direct comparison with their work is not possible. Also, the proposed
CNN model attains a comparable performance to the established deep
architectures. Prominently, in comparison to NasNet large the proposed
model has simple architecture, less number of trainable parameters, re-
quires less storage space, and can be easily implemented on a personnel
computer making it practical for the real time scenario. On the other
hand, NasNet large has 1234 layers, millions of trainable parameters,
requires more disk space for storage and necessitate the requirement of
powerful CPU/GPU for its implementation. All these make NasNet large
computationally very complex for the application of automatic image
based plant phenotyping. Also, it is well known that the SIFT and HOG
features and even the DL methods are usually capable of ignoring the
invariant features that correspond to the background. However, detect-
ing the keypoints that belong to the image background and extracting
the features for those keypoints results in a significant increase in the
computation required and the time consumed. This makes the plant
segmentation a crucial step in enhancing the performance of both the
classical ML as well as the DL methods for nitrogen stress classification.
Subtracting the background requires very less computation but results
in a significant reduction in the overall computation required for the
image feature extraction. This is evident from the time required for
extracting features, as seen in Table 4, which is reduced to just 1 s for
HOG features. As we have a huge number of images, and size of features
is quite big, with background subtraction, we are able to significantly
reduce the number of keypoints and consecutively, the computational
load as well as computation time.

4. Conclusions

In this present work, we have demonstrated the use of DL in
classification of stress level in Sorghum plant from the shoot images.
The performance of the proposed 23-layered CNN is compared with
other established ML techniques and deep architectures like ResNet18
and NasNet Large. Here, we observed that the proposed 23-layered
CNN model outperformed the conventional ML techniques in identify-
ing plant stress levels. Our experimental results demonstrate that the
proposed CNN is capable of providing better feature representations
for nitrogen induced stress classification as compared to local features
used in the classical ML methods. Also, the proposed model achieves
comparable performance over well-established deep architectures with
much less trainable parameters. In our future work, we will extend this
CNN based model to other plant species with both offline and online
images.
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