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A B S T R A C T   

Determination of food doneness remains a challenge for automation in the cooking industry. The complex 
physicochemical processes that occur during cooking require a combination of several methods for their control. 
Herein, we utilized an electronic nose and computer vision to check the cooking state of grilled chicken. 
Thermogravimetry, differential mobility analysis, and mass spectrometry were employed to deepen the funda-
mental insights towards the grilling process. The results indicated that an electronic nose could distinguish the 
odor profile of the grilled chicken, whereas computer vision could identify discoloration of the chicken. The 
integration of these two methods yields greater selectivity towards the qualitative determination of chicken 
doneness. The odor profile is matched with detected water loss, and the release of aromatic and sulfur-containing 
compounds during cooking. This work demonstrates the practicability of the developed technique, which we 
compared with a sensory evaluation, for better deconvolution of food state during cooking.   

1. Introduction 

Control of food doneness demands the development of new protocols 
suitable for the growing food-cooking industry, e.g., represented by 
vending machines that produce freshly-cooked food; and for air cleaning 
systems powered by the Internet of Things (IoT) (Potyrailo, 2016). 
Moreover, in industrial kitchens, cooking in huge quantities needs an 
automated determination of food state to be integrated into risk or 
quality management. While the evaluation of food readiness is usually 
made by assessment of color, texture, and chemical composition changes 
through aroma and color perceived by the human nose and eye (Ötles, 
2016), it is rather subject to the psychological and physical condition of 
the human. 

The complexity of the aroma can be primarily evaluated using 
analytical techniques such as gas chromatography or mass spectrometry 
which are, however, rather expensive, complex, time-consuming, and 
require trained personnel to operate. A much simpler technique is based 
on gas-analytical systems made of discrete sensors that are collected in 

arrays for the discrimination of odors or smell patterns mimicking 
mammalian olfactory systems (Persaud & Dodd, 1982). Such arrays, 
often called electronic noses or e-noses, have been already demonstrated 
as a useful tool for quality control in industries concerned with odors. 
Recently, a number of studies have been conducted using e-nose to 
analyze food quality, i.e. of wine grapes (Lerma et al., 2011), coffee 
beans (Dong et al., 2019), pork (Huang et al., 2014), to discriminate 
different categories of cheeses (Schroeder et al., 2019), and to monitor 
fruit spoilage and maturity, for example, of apple (Li, Heinemann, & 
Sherry, 2007) and banana (Chen et al., 2018). E-nose was applied to 
monitor food production (Ponzoni et al., 2008), i.e. the key aromas of 
the bread baking process using an array of four metal-oxide-based sen-
sors. Hirano et al. studied the use of e-nose to detect the cooking state of 
microwave popcorn and waffles (Hirano et al., 2013). However, the e- 
nose can only acquire the volatile compounds and ignores other attri-
butes of food like color or appearance in general. Though the food 
appearance is a complex and multi-parameter value, it can be monitored 
with advances in computer vision. These systems are rather intensively 
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studied for integration in the technology of food processing, quality 
evaluation and control mainly combined with machine learning tech-
niques (Du & Sun, 2006; Gunasekaran, 1996; Jackman & Sun, 2013). 
Such a high interest is because of the advantages of being fast, consis-
tent, and objective (Brosnan & Sun, 2004), allowing many different 
applications like the assessment of freshness, texture, aging, or humidity 
of the meat surface (Taheri-Garavand et al., 2019). Although many 
studies are devoted to food quality, there are only a few reports on the 
issue of cooking and food preparation. Computer vision has been used 
for biscuit baking (Nashat & Abdullah, 2010; Yeh et al., 1995), beef 
doneness determination (Unklesbay et al., 1988), cheese melting (Wang 
& Sun, 2002), and for fried products (Leiva-Valenzuela et al., 2018). 
This method is proven objective when compared with sensorial evalu-
ation (Greiff et al., 2015) because it relies on analytical methods of 
assessment of chemical processes occurring in organic tissues under heat 
(Farroni & del Pilar Buera, 2012; Gökmen et al., 2007). 

The pattern recognition associated with both computer vision and e- 
nose employs various methods, statistical ones like linear discriminant 
analysis, and biologically motivated non-parametric methodologies, e.g. 
artificial neural networks (Hines et al., 2002; Jordan & Mitchell, 2015; 
Martinez & Kak, 2001). The employed machine learning is an expo-
nentially growing field that has proved itself useful for complex multi- 
parameter tasks from image processing to chemical engineering 
(Iakovlev et al., 2019; Joutou & Yanai, 2009). The method has shown its 
best in facilitating routine data processing (Wan, Jiang, & Park, 2020) 
and also in the optimization of a semi-industrial process (Khabushev 
et al., 2019) and even catalyst design (Li, Wang, & Xin, 2018). In gen-
eral, machine learning benefits multi-parametric and complex datasets 
that had been comprehended formerly by the human brain only. 
Moreover, computer vision alone cannot be fully indicative for con-
trolling food; computer vision or machine-learning-based image analysis 
could be complimentary when combined with e-nose to objectively 
monitor the main attributes for consumer acceptability of food – odor 
and appearance (Di Rosa et al., 2017; Girolami et al., 2014; Keller et al., 
2017). These methods also offer a contactless examination of the 
samples. 

Chicken meat represented about 37% of global meat production in 
2018 (FAO, 2018). Chicken is characterized by its pleasant odors and 
can be prepared using several cooking methods, which are primarily 
concerned with its safety, especially in the case of grilling (Hassan, 
Magda, & Awad, 2010; Langsrud et al., 2020). During this process, 
chicken is subjected to high temperature, e.g., by burning charcoal for a 
certain time, depending on the desired characteristics of the final 
product. The changes in doneness state are accompanied both by the 
release of distinct odors and transformations in appearance due to 
complex chemical modifications occurring in chicken during the grill-
ing. Chicken flavors result from the interaction between components 
found in the meat such as proteins, lipids, fatty acids, and others (Has-
san, Magda, & Awad, 2010). The Maillard reaction, which occurs during 
heating leads to the appearance of volatile compounds such as alde-
hydes, ketones, acids, and alcohols (Jayasena et al., 2013; Mottram, 
1998; Shi & Ho, 1994). Moreover, the development of cooked chicken 
flavors is greatly affected by the cooking environment, namely, by 
temperature and time (Coggins, 2012; Da Costa & Eri, 2012). Dolara 
et al. reported that mutagens were not produced in meat cooked at 
100 ◦C (Dolara, Commoner, & Vithayathil, 1979), but were produced 
when the meat was cooked at temperatures of 190–210 ◦C. Furthermore, 
grilling has been reported to affect the level of polycyclic aromatic hy-
drocarbons in chicken (Chung et al., 2011; Lee et al., 2016). Lan et al. 
found an increase in toxic and carcinogenic heterocyclic amine content 
with increasing heating time (Lan, Kao, & Chen, 2004). 

Thus, the quality and safety of prepared meat primarily require new 
tools for control across the cooking process. Although there is an 
appearance of many volatile organic compounds (VOC), e-nose systems 
are barely applied in cooking. Moreover, computer vision and e-nose 
systems have not been yet combined to control food preparation 

processes like grilling, whilst such a technique might be very useful for 
automation of the cooking process and its precise control. In this study, 
we hypothesize that different cooking times result in different odor 
profiles and colors of grilled chicken, which could be detected using e- 
nose and computer vision techniques to evaluate and to predict the 
degree of readiness of the grilled chicken. Subsequently, we demonstrate 
the practicability of the combination of electronic nose and computer 
vision techniques for the cooking industry in comparison with a sensory 
evaluation. 

2. Materials and methods 

2.1. Samples preparation and processing 

Fresh raw chicken breast sample without skin was purchased from a 
local supermarket in Moscow, Russia. 

The chicken was grilled according to the following protocol. An 
outdoor grill was filled with approximately 1–1.5 kg of charcoal and 
ignited by fire. Then, chicken breast, 0.5 kg, with a thickness of about 
1.5 cm, was placed on the grill pan for 40 min. To distribute the heat 
equally, the chicken breast was turned every 3 min during the whole 
grilling process. No oil or seasoning was applied to the chicken before 
the grilling. The temperature of the chicken sample was measured using 
a UT302B Infrared thermometer (Uni-Trend Technology Co., Ltd., 
China) just after the breast was turned over. 

2.2. E-nose 

To measure the changes in the environment caused by the appear-
ance of volatile compounds, we applied a home-made e-nose which 
included an array of 8 commercial sensors (Hanwei Electronics), MQ-2 
(smoke), MQ-3 (alcohol), MQ-4 (CH4), MQ-5 (liquefied petroleum gas 
- LPG), MQ-7 (CO), MQ-8 (H2), MQ-9 (CO, CH4, LPG) to be denoted as 
CO-II, MQ-135 (NH3, CO2, NOx), also temperature and humidity probes 
(Fig. 1e). The sensors were installed in a single metal housing to enable 
constant airflow supported by a ventilation fan. The e-nose was powered 
by means of a USB interface connected to a PC, also used for data 
acquisition. The signal output, sensor resistance, was measured at 1 Hz 
sampling rate over 140 min of total experiment time, which included 
signal output from the ambient air, initial charcoal burning, and grilling 
periods of chicken. We presented resistance transients during the grilling 
of chicken normalized to its resistance in the air. Sensitivity was 
calculated further as ΔR/Rair, where ΔR is a change in resistance of the 
sensor at exposure to volatile compounds in a mixture with air and Rair is 
the resistance of the sensor at ambient air conditions taken as a refer-
ence. During the grilling process, the electronic nose was placed in the 
ventilation system, where the odors and smoke were pumped out. 

2.3. Thermal analysis 

Evaluation of the changes corresponding to the grilling process was 
conducted by thermogravimetric analysis (TGA) coupled with mass 
spectrometry (MS). To simulate the cooking process, we used rather fast 
heating, 50 ◦C/min, to 200 ◦C followed by a one-hour isothermal phase. 
The temperature of 200 ◦C was reached after 5–6 min from the begin-
ning of the experiment. A sample of ca. 50 mg was filled into alumina 
crucible in these tests. The measurement was performed in a SiC furnace 
in an atmosphere of synthetic air at a flow rate of 70 sccm. The exper-
iment was carried out with a NETZSCH STA 449 F3 Jupiter® unit 
coupled with 403 Aëolos Quadro quadrupole mass spectrometer 
(NETZSCH-Gerätebau GmbH, Selb, Germany). Selected ion monitoring 
(SIM) tracked 23 different mass-to-charge (m/z) ratios during the mea-
surement. Herein we only presented SIM data from m/z = 18, 32, 34, 44, 
45, 46, 48, 64, 77, 78 because others were not very informative to the 
odor profile of grilled chicken. 
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2.4. Differential mobility analyzer 

The number size distributions of aerosol particles formed during the 
cooking were studied with a differential mobility analyzer (DMA) 
capable of measuring the particles of effective diameter from 6 nm to 
230 nm (Scanning Mobility Particle Sizer Spectrometer 3938, TSI Inc., 
Shoreview, MN). It should be mentioned that the differential mobility 
analyzer measures the electrical mobility of a charged aerosol particle; 
then the mobility is transformed into an effective size of the measured 
aerosol particle with an assumption of spherical shape (standard soft-
ware of Scanning Mobility Particle Sizer Spectrometer). Thus, the 
measured size is effective for all the dry solid particles (usually pre-
sented as clusters or non-spherical objects) and also corresponds well for 
liquid aerosols. For DMA studies we were able to simulate cooking 
conditions when a sample was usually placed already on a hot grill. 
Thus, during the experiment, a sample of the chicken meat (50 g) was 
put inside a massive muffle furnace (Nabertherm L 3/12/1340; Naber-
therm GmbH, Lilienthal, Germany) at 200 ◦C (we consider the muffle to 
be isothermal during the experiment). It should be noted that the muffle 
itself was positioned in a zone of semi-clean air (a laminar hood) to 
reduce the background aerosol noise on the one hand but to preserve 
“natural conditions” on the other. During the experiment, the sampling 
was continuous with a period of 75 s. 

2.5. Mass spectrometry 

We applied mass spectrometry to assess further compounds of higher 
molecular weight which evolved during the grilling. All experiments 
were performed on a modified QExactive Orbitrap mass spectrometer 
(Thermo Scientific, Germany) with installed ion funnel and fore vacuum 
matrix-assisted laser desorption ionization (MALDI) system (Spec-
troglyph Company LLC, Laurel, MD). The front panel with the MALDI 
translational stage was replaced with a specially developed plate with an 
inserted ion-transfer capillary. Pressure in the ion funnel was set at 10 
Torr. Mass spectra were recorded by Orbitrap with a resolving power of 
140 000. For the ionization, we used a vacuum UV lamp (Chromdet- 
Ecology Company, Russia). This glow discharge lamp is filled with Kr 
and produces photons with energies of 10 and 10.6 eV. No dopants were 
used. Ions were detected in a positive mode. A detailed description of the 
experimental setup is described elsewhere (Kostyukevich et al., 2018). 

2.6. Image data acquisition 

Images of grilled chickens were acquired using a DFK 33UX250 
camera (The Imaging Source Europe GmbH, Bremen, Germany) placed 
25 cm on the top of a grill pan. The images based on an RGB color mode 
were obtained and were transmitted to the computer via a USB port. We 
analyzed images taken for one side only not to be influenced by sample 

Fig. 1. Grilling state analysis based on liberated odor detection. (a) Typical transients of sensor resistance normalized to its resistance in the air during the grilling of 
chicken. The colors denote the difference in cooking time where the green area shows the response of 10 min, blue and red colors represent 20–30 min, and the 
yellow area corresponds to 40 min of cooking time. (b) Vector signals of e-nose processed by LDA and projected into a coordinate system of the first two LDA 
components. (c) Feature importance of the sensors in the array. (d) The sensitivity of each sensor at different cooking periods presented as ΔR/Rair. (e) The electronic 
nose module overview displayed 8 sensors based on their specific interaction with target gases from alcohol to LPG. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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specific features. The images from each cooking time, namely 10, 20, 30, 
and 40 min, were used for the analysis. Image preprocessing, image 
segmentation, and color measurement were performed using MATLAB® 
software (The MathWorks, Inc., Natick, MA). The average value in RGB 
was taken as the color of the sample. 

2.7. Pattern recognition analysis 

Linear discriminant analysis (LDA), a supervised statistical method, 
was applied to the data obtained from both electronic nose and com-
puter vision; it enables classification of distinct “patterns” by reducing 
dimensions of multidimensional data at artificial space of features to get 
the maximum ratio between inter-class and in-class variations (Fedorov 
et al., 2017; Hierlemann & Gutierrez-Osuna, 2008). We projected the 
analyzed data into a coordinate system of the first two LDA components. 
To quantify selectivity, we evaluated Mahalanobis distance (MD), i.e. 
distance between clusters gravity centers in the LDA artificial space 
(Hierlemann & Gutierrez-Osuna, 2008). 

For analysis of the contribution of each sensor, we used the Decision 
Tree classification method (Breiman et al., 2017; Breiman, 2001) that, 
following successful classification, allowed us to compute the impor-
tance of a feature as the normalized total reduction of the criterion 
brought by the one. 

2.8. Sensory evaluation of the grilled chicken 

Sensory analysis was performed to evaluate the degree of doneness, 
consumer appreciation, and other attributes of the grilled chicken. A 
panel included 16 panelists, i.e. PhD students and researchers of Labo-
ratory of Nanomaterials, Skolkovo Institute of Science and Technology, 
and researchers from Alferov University. The panelists’ age ranged from 
24 to 48 years; the panel included 14 men and 2 women. The recruited 
panelists were non-smokers; they were asked to avoid using strong 
smells or odors for at least an hour before the evaluation, also not to use 
any perfume or cosmetics. 

The chicken breasts were grilled according to the protocol described 
in Section 2.1 for 10, 20, 30, and 40 min, positioned on coded plates, and 
then cut into small pieces. We offered cucumber, watermelon, and water 
to the panelists between the samples (Ventanas et al., 2020). 

The panelists assessed the following attributes: overall tenderness, 
tenderness liking, tenderness doneness, overall juiciness, juiciness 
liking, juiciness doneness, overall flavor intensity, flavor liking, flavor 
doneness, overall color/appearance, its liking, and doneness accord-
ingly; also they gave an estimate of the overall liking and overall 
doneness (see Supplementary Materials for the example of the ques-
tionnaire). The panelist instructions were to evaluate each attribute 
using a 10-point hedonic scale, with 1 to be extremely tough, dry, dis-
liked, uncooked, no flavor, or discolored and 10 meaning extremely 
tender, juicy, overcooked, extremely intense flavor or colored accord-
ingly (Aaslyng, Jensen, & Karlsson, 2018; Tkacz et al., 2021; Vidal et al., 
2020). Based on the assessment results, we have calculated the mean 
marks given by the panelists, standard deviation, and also performed 
normal (Gauss) distribution fitting. 

3. Results and discussion 

3.1. Evaluation of cooking state by e-nose 

Cooking state, i.e. the quality of the final product during grilling, is 
determined by occurring physicochemical changes, which lead to the 
appearance of gas vapors, including aerosol particles; also by changes in 
color and texture. We detected the differences in the gaseous environ-
ment using the e-nose; typical sensor responses are shown in Fig. 1a. The 
response values of all the sensors demonstrate an increase in resistance, 
first, when the charcoal was burnt for about 20–25 min. These sensor 
responses can be associated primarily with CO2, CH4, CO, NOx vapors 

emitted from burning charcoal (Estrellan & Iino, 2010; Jetter et al., 
2012). The onset of grilling was also expressed in the growth in resis-
tance of the sensors in the array, well-pronounced for the first 10 min of 
cooking. The measured temperature of the chicken breast surface was 
190–210 ◦C. At such elevated temperatures, we anticipate VOCs to be 
formed through the Maillard reaction, thermal degradation of lipid, and 
Maillard–lipid interactions. Hui and Guerrero-Lagarreta reported that 
sulfurous compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, 
and methionol; and carbonyl compounds such as hexanal, trans-2-octe-
nal, and trans-2-nonenal to be the main contributors to chicken odors 
(Hui & Guerrero-Legarreta, 2010). Furthermore, a large number of 
heterocyclic compounds are produced during the chicken grilling due to 
high-temperature conditions (Jayasena et al., 2013). The acquired 
resistance values or sensors’ responses we consider further as a 
“fingerprint” of a particular cooking state, related to the response of all 
the sensors to the complex mixture of VOCs formed (Lashkov et al., 
2020). After grilling for 15 min, the resistance started decreasing, which 
should be associated with a lower amount of precursors available to 
form VOCs. Such a decrease is followed by a rather pronounced drop in 
the normalized response when the chicken begins to be overcooked. 

The relative change in resistance of the e-nose sensors obtained in 
every cooking period is shown in Fig. 1d. There are only a few sensors 
characterized by a rather pronounced response to the aroma of the 
grilled chicken. In particular, MQ-3 and MQ-7 exhibit the highest 
change towards it at all the cooking times, responding mainly to alcohol 
vapor, and CO. MQ-2 and MQ-4 sensors also demonstrate good sensi-
tivity to be matched to acyclic saturated hydrocarbons. Notably, the 
applied sensors are characterized by rather high cross-sensitivity and 
react to a broad range of organic compounds (Liu et al., 2012). 

Thus, the e-nose provides a digital fingerprint of the volatile com-
pounds to be recognized as a whole mixture or pattern instead of 
decomposition to single components (Ötles, 2016). To assign the 
changes of sensors resistance to an exact cooking state we have 
employed LDA for processing the vector signal of 8 sensors from the 
array (excluding humidity and temperature) as depicted in Fig. 1b. The 
discriminant functions component 1 and component 2 respectively 
represent 57.8% and 35.8% of the total variance, which indicates that 
they adequately explain the total variance in the dataset. It can be seen 
that different stages of cooking are distributed along with component 1 
from the right to the left part of the plots. This explains a trend related to 
the changes in VOCs during cooking and separating the grilling chicken 
into different clusters according to the degree of readiness. First, the 
“under-cooked” cluster is observed within 10 min grilling time. Then, 
the responses related to chicken cooked for 20 and 30 min are separated 
in the other cluster. Further looking at the LDA plot, it can be seen that 
the “over-cooked” cluster is distinguished along with component 1 and 
component 2 after 40 min of grilling. This might be a consequence of a 
greater degree of tissue decomposition involving the carbonization of 
the chicken and corresponding processes (Coggins, 2012). The MD be-
tween the clusters is applied as a measure of the quality of selective 
recognition (the data are shown in Supplementary Materials, Table S1). 
The MD between clusters enlarges with the increase of grilling time. For 
instance, the MD between 10 and 40 min cooking time is 83.2, while the 
MD between 20 and 30 min cooking time is 19.1. The presented results 
indicate that e-nose could be used to distinguish the different states of 
chicken grilled at various cooking times. United States Department of 
Agriculture Food Safety and Inspection Service released approximate 
chicken cooking times: when breast halves, bone-in chicken is cooked by 
grilling, the optimum cooking time based is 10–15 min per side (USDA, 
2000). Therefore, in this study, the chicken is considered to be “well- 
cooked” at 30 min. 

While the responses of the sensors show rather pronounced differ-
ences, we analyzed each sensor contribution by performing feature 
importance analysis of sensors taken from the “present” condition to the 
previous condition, across all cooking states. When each sensor is 
considered as a feature, in the frame of the Decision Tree classification 
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method, we compared its importance coefficient (see Fig. 1c). The 
higher the value of the importance coefficient the greater the contri-
bution of the feature. The values of sensors’ importance at 10 min 
suggest that features corresponding to alcohol and ammonia are more 
informative to distinguish between charcoal and 10 min cooking state, 
while the remaining features are not. Moreover, at 30 min, features 
corresponding to CO, LPG, and H2 sensors also contribute to recognition. 
Change in the contribution of sensors shows that after the first 10–20 
min there is a transition from the half-cooked chicken to a more “grilled” 
one. 

3.2. TGA-MS, DMA, and APPI-MS analysis of volatile compounds in 
grilled chicken samples 

We analyzed the transformation that occurred during the grilling 
process to assess the composition of appearing gas vapors. Fig. 2a shows 
the TGA results of chicken heated to 200 ◦C for 40 min and corre-
sponding m/z ions detected during that period. Generally, the weight 
changes with the increase in temperature. The TGA showed that at 
60 ◦C, the chicken lost 5% of its weight. In addition, the highest weight 
loss is observed at 5 min, when the temperature has reached 170 ◦C 
resulting in a 37% weight loss in the sample. By the time the tempera-
ture is stabilized at 200 ◦C, the sample loses about 60% of its original 
weight and a small percentage of weight loss is then observed until its 
stabilization. This loss should stem primarily from water expelled out of 
meat followed by the liberation of other components including products 

of physicochemical processes forced by the heating; the meat has a 
moisture content of ca. 74% (Hughes et al., 2014). 

Selected ion monitoring was also performed to detect the ion current 
at a certain value of m/z that is characteristic of the compound of in-
terest as presented in Fig. 2b–d. The ion current at m/z 18 (Fig. 2c) likely 
attributed to the parent molecule of water shows an increase at 3 min of 
the experimental time. This result supports the thermal analysis mea-
surement, showing the mass loss onset at a low temperature of ca. 60 ◦C. 
Phenyl and benzene were detected to appear after 10 min of the pro-
cessing manifested by an increase of ion currents at m/z 77 and 78 
(Fig. 2c), thus, indicating the existence of aromatic compounds that 
presumably contribute to the chicken odor. In addition, Fig. 2b, which 
identified m/z 32, 34, 48, and 64, reveals the presence of the main 
contributors to chicken odor namely sulfur-containing compounds. 
Alcohol and hydrocarbon compounds also influenced the formation of 
chicken odor. The fragments from these compounds started to appear 
when the temperature reaches about 170 ◦C corresponding to m/z 44, 
45, 46, as presented in Fig. 2d; m/z 44 is also due to CO2 liberation 
represented by two peaks at 7 and 10 min of the experiment. 

Cooking activities generate some particles that have negative health 
effects (Buonanno et al., 2011). Accordingly, we further studied the 
aerosol particles released during cooking (Fig. 3a) as the presence of an 
aerosol (or fog) might affect or even disturb electronic nose or computer 
vision. The aerosol particle size distributions (provided by DMA) show a 
monomodal shape, implying the emitted species agglomerates within a 
single mechanism and is relatively liquid due to the characteristic lack of 

Fig. 2. Results of thermal analysis coupled with mass spectrometry. (a) The thermogravimetric curve for chicken meat heated to 200 ◦C in dry air with a heating rate 
of 50 ◦C/min. The blue line shows the weight changes, while the red line corresponds to the changes in temperature. (b) The fragments of sulfur-containing 
compounds detected in selected ion monitoring, m/z = 32, 34, 48, 64. (c) Selected ion monitoring of water and aromatic compounds, m/z = 18, 77, 78. (d) The 
analytes related to the molecule of alcohol, hydrocarbon, and carbon dioxide identified by mass spectrometry, m/z = 44, 45, 46. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 
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the di-, tri-, and tetramers of the aerosol nanoparticles, which can be 
observed as specific shoulders at sizes greater than the mean one. This is 
the case for low-temperature agglomeration of solids, while liquid 
aerosol particles tend to reconstruct a spherical shape (Krasnikov et al., 
2019). Grilling results in the aerosol concentration of nanoparticles 
reaching as high as 4.2 × 107 per cm3 observed at 5–10 min. Taking into 
account the mass spectrometry results (Fig. 2), we can imply the emitted 

aerosol to be mainly represented by water, i.e. fog. Further decrease of 
the aerosol concentration can be attributed to the reduced water loss 
near the “optimal stage” of cooking. This DMA result is in good agree-
ment with the thermal analysis, showing that at 5–10 min, a high per-
centage of the weight loss occurs, which may cause a number of 
compounds to be released as aerosol nanoparticles. It should be noted 
that the mean effective diameter, as well as aerosol concentration, 

Fig. 3. Differential mobility analysis of aerosol particles emitted from the chicken at different periods of the simulated cooking process. (a) Typical particle size 
distributions from the experiment; the inset shows the baseline of the filtered air used for the experiment. (b) The evolution of total aerosol concentration (black dots) 
and geometric mean effective size (blue dots). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 4. Results of the mass-spectrometry experiment. (a) The heating curve. (b, c) Representative mass spectrum, and the extracted ion curves (EICs) for the most 
abundant peaks in the time range of 15–32 min. (d) Representative mass spectrum in the time range of 32–40 min. (e) Kendrick mass defect (KMD) plot. (f) Double- 
bond equivalent (DBE) plot. (g) Class distribution of detected volatile organic compounds. 
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slightly increases in the time range of 17–25 min (Fig. 3b). This can be 
also attributed to the emission of water observed as an extra shoulder in 
Fig. 2c. Thus, the results of aerosol studies show a massive emission of 
aerosol. Nevertheless, as the contribution of the humidity sensor is not 
the most significant one, the aerosol emission problem can be handled 
by a proper selection of the sensors for e-nose. 

We evaluated the vapor composition during the chicken cooking 
process using mass spectrometry. Spectra were recorded by a built-in- 
house thermo-desorption system coupled with atmospheric pressure 
photoionization-mass spectrometry (APPI-MS) during the heating 
gradient as presented in Fig. 4a. According to the volatile organic 
compounds found in vapor, the cooking process can be divided into 
three time ranges with characteristic mass spectra. For the first 15 min of 
the heating process, we observed minor differences from the spectrum 
obtained without a sample. During the next time range (15–27 min), we 
found a few intensive peaks in mass spectrum whose intensity decreased 
from 27 to 35 min to background noise levels (Fig. 4b, c). In the last time 
range (from 35 min) spectra contained peaks from multiple compounds 
(Fig. 4d). The general shape of the mass spectrum and major classes of 
compounds resemble those previously observed for the biomass after 
thermal treatment (Kostyukevich et al., 2016) (Kostyukevich et al., 
2017) and for biological tissues after very long exposure in a dry and hot 
environment (Kostyukevich et al., 2019). For the most abundant peaks 
(noise level was set at 5% of the highest peak) we assigned molecular 
formulas and plotted Kendrick mass defect (KMD, Fig. 4e), double-bond 
equivalent (DBE, Fig. 4f) diagram, and class distribution plot. KMD al-
lows the detection of the compounds which are associated with the same 
homology series produced by –CH2– or other repeating units, whereas 
DBE explains the degree of unsaturation that determines π bonds and the 
number of rings. Unequivocal structure identification is not possible but 
we can see that most compounds belonging to N2 class (Fig. 4g) started 
appearing at about 200 ◦C when severe thermal decomposition began. 
Our results correlate with previously published data where a large 

number of pyrazines were detected by GC–MS in fried chicken (Jian 
et al., 1983). 

Cooking time and temperature affect greatly the chemical changes 
that occur in chicken during grilling. Our studies using TGA-MS, DMA, 
and APPI-MS demonstrated that chicken loses weight in the first 10 min 
of cooking leading to the formation of a large amount of aerosol parti-
cles. Aromatics, sulfur-containing compounds, alcohols, and hydrocar-
bons were presumably released during this time, resulting in the 
characteristic odor of cooked chicken. 

3.3. Image processing analysis 

Another important indicator for consumer acceptance of grilled 
chicken is color. In fact, the color of the chicken is influenced by 
chemical composition, water content, the temperature of grilling, and 
cooking time (Coggins, 2012). The colors represented by the mean of 
RGB were obtained from the grilled chicken at different cooking times 
(Fig. 5a). We observed that after 20–30 min of grilling, the chicken 
surface started to brown. Subsequently, the development of brownish 
darker color occurred with increase of the cooking time. The color of 
cooked meat is influenced by the oxidation state of iron and the complex 
formed by myoglobin pigment with other molecules (MacDougall, 
1986). During the cooking process, iron in myoglobin is oxidized, loses 
its ability to bind oxygen, but forms a complex that interacts with other 
molecules that shifts meat color towards brown or discolored. Dena-
turation of myoglobin with cooking will lead to the formation of ferro-
hemochrome, Fe2+, which is rapidly oxidized to ferrihemochrome, Fe3+. 
The final color of cooked meat depends on the ferri/ferro ratio, which is 
determined by the intensity and time of cooking (Hui & Guerrero- 
Legarreta, 2010). 

LDA was applied to the color values of chicken for the discrimination 
of its doneness during grilling (Fig. 5b). A score plot for the first two 
components explains the different samples with different cooking times. 

Fig. 5. Recognition of doneness degree of the grilled chicken using computer vision alone and in combination with e-nose data. (a) The images of chicken at different 
cooking times. (b) Recognition of doneness by LDA processing of computer vision data. (c) Recognition of doneness based on e-nose and computer vision data. 
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Also, LD1 explained 54.8% of the total variation, while LD2 explained 
35.3% giving a sum of 90.1%. Plots of the first two discriminant func-
tions show a reasonable separation of the samples depending on their 
cooking times. The MD between the “under-cooked” sample and “over- 
cooked” sample is 27.4. (The MD of computer vision is shown in Sup-
plementary Materials, Table S2). Other approaches applied for the 
classification of computer vision results are presented in Fig. S1 (Sup-
plementary Materials). The recognition quality might be refined even 
more accurately by including an assessment of each side of the chicken 
in computer vision protocols. 

3.4. Combination of e-nose and computer vision 

An advanced LDA plot could be obtained by combining the computer 
vision features to the responses of the e-nose. The variance of the array 
output falls with the square root of the number of sensors in the array 
(Hierlemann & Gutierrez-Osuna, 2008). Therefore, to provide a justified 
comparison with the e-nose, we assembled a new data set consisting of 
values from the five most significant gas sensors and three RGB values. 
Fig. 5c shows new LDA score plots for chicken grilled at different 
cooking times. The figure shows that the cooking stages are separated 
into different clusters. The MD between 10 min and 40 min cooking time 
is 120. It is also noticeable that the MD between the sample at 20 and 30 
min of cooking time is characterized by a value of 17 (see Supplemen-
tary Materials, Table S3). Although e-nose or computer vision alone 
offers a good classification, combining both techniques leads to 
improved selectivity. 

However, it is worth noting when chicken tissues with other pa-
rameters (i.e. fat content, thickness, age, etc.) or other cooking methods 
are considered, we anticipate different odor/color profiles that the e- 
nose, and computer vision should be trained for (Fedorov et al., 2017). 
In particular, tissue parameters (i.e. content of water, proteins, lipids) 
(Demby & Cunningham, 1980) would determine conductivity, specific 
heat capacity will influence temperature profile, together with process 
parameters like surrounding medium type and temperature, heat flux 
direction (Chen, Marks, & Murphy, 1999; Cover, 1943; Dominguez- 
Hernandez, Salaseviciene, & Ertbjerg, 2018; Eberth, Neal, & Robles 
Hernandez, 2012; van der Sman, 2012). The skin (or its absence) will 
also influence doneness (Pleva et al., 2020). By contact with “heat”, the 
tissue experiences a water loss, protein denaturation, shrinkage of pro-
tein network, and the reduction of water-holding capacity (Rabeler & 
Feyissa, 2018) along with other physical changes (for fats) and chemical 
reactions of lipids (Murphy et al., 2001; Wattanachant, Benjakul, & 
Ledward, 2005). Accounting for that, the major variables to determine 
the doneness should be cooking temperature, time, and heating method 
(Aaslyng et al., 2003; Unklesbay et al., 1988) that all determine such 
characteristics as juiciness, tenderness, color, and flavor (Choi et al., 
2016). At high temperatures, typical for grilling, the observed heavy 
water loss is expected to be negatively correlated with juiciness (Aaslyng 
et al., 2003) and have a great influence on its tenderness (Ježek et al., 
2019). 

3.5. Sensory evaluation 

We further carried out sensory evaluation tests of the grilled chicken 
breasts to match the results obtained by analytical methods with its 
perception by humans (Fig. 6). As intuitively expected, during grilling 
the mean estimates of tenderness and juiciness are characterized by the 
highest values for the 10 min of cooking and then decrease almost lin-
early as the grilling time was increased (Fig. 6a). Conversely, the flavor 
intensity increases as grilling progresses showing a linear trend ac-
cording to the panelist estimates. In the case of color/appearance in-
tensity, the highest marks were given to the chicken grilled for 20 and 
30 min, while for 40 min of grilling the mean marks were the lowest, 
possibly related to discoloration of the sample. Images of typical ex-
amples of grilled chicken breasts are shown in Supplementary Materials 

(Fig. S3). As for the liking criteria, the mean estimates of panelists are 
depicted in Fig. 6b; the detailed distribution is shown in Fig. S4a. The 
liking of tenderness received the highest mean mark for 10 min of 
grilling, to be about 6.2 ± 1.9 out of 10, while the mean marks for 20 and 
30 min of grilling are close to 5 out of 10. The liking of juiciness seems to 
be similar for 10, 20, and 30 min of grilling. Color/appearance and 
flavor liking are assessed to be greater at 20 and 30 min of grilling, 
correlating well with an increase of intensity, i.e. as depicted in Fig. 6a. 

Fig. 6. Sensory evaluation of chicken breasts grilled for 10, 20, 30, and 40 min. 
(a) Mean marks for overall tenderness, juiciness, flavor intensity, and color/ 
appearance with plotted standard deviations. Mean estimates for (b) liking and 
(c) doneness based on tenderness, juiciness, flavor, and color/appearance with 
standard deviations indicated. 
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It is slightly lower for 10 min of cooking. The best mean marks of overall 
liking are given to the samples grilled for 30 min and 10 min, while the 
40 min sample received the lowest mean marks. 

The mean marks of the panelist assessment of doneness are presented 
in Fig. 6c. We notice a trend of an increase of mean mark with the 
grilling time. The samples grilled for 10 min received mean mark for all 
attributes to be from 4.2 to 4.6, while it was 6.0–6.6 and 7.3–7.7 for 20 
and 30 min, and 9.1–9.5 for 40 min of grilling indicating overcooked 
chicken. The data suggest that the marks for 20 and 30 min of grilling lie 
closer to each other when compared to the distance between 10 and 20 
min, or 30 and 40 min (the distribution is shown in Fig. S4b). Even 
though the marks of 10 min sample are close to the middle of the he-
donic scale, we believe, that accounting for the liking (Fig. 6b) and the 
overall attribute marks (Fig. 6a), it might need an extra grilling time for 
safety reasons. 

4. Conclusion 

In this study, e-nose and computer vision were applied to determine 
the degree of doneness of a grilled chicken supported by sensory eval-
uation. In particular, the odor changes during the cooking process were 
evaluated by e-nose, while the appearance was determined by computer 
vision. The difference in the cooking state was obtained by applying LDA 
to the e-nose vector response and RGB data. The development of odor 
from grilled chicken was governed by water loss during cooking, 
releasing volatile compounds such as aromatic and sulfur-containing 
compounds. Moreover, we observed the presence of a high concentra-
tion of aerosol particles at 5–10 min. The appearance of chicken was also 
influenced by grilling time, with increase in the discoloration of chicken 
as time progressed. LDA resulted in good separation of clusters related to 
“under-cooked”, “well-cooked” and “over-cooked” chicken. A combi-
nation of e-nose and computer vision ensured greater selectivity man-
ifested in enhanced Mahalanobis distance between clusters at the LDA 
plot. Thus, the proposed techniques are attractive to food quality control 
due to their objectivity, rapidity, and non-destructive measurement. 

CRediT authorship contribution statement 

Fedor S. Fedorov: Conceptualization, Data curation, Formal anal-
ysis, Funding acquisition, Investigation, Methodology, Project admin-
istration, Validation, Writing - original draft, Writing - review & editing. 
Ainul Yaqin: Data curation, Investigation, Visualization, Writing - 
original draft. Dmitry V. Krasnikov: Formal analysis, Investigation, 
Writing - review & editing. Vladislav A. Kondrashov: Investigation, 
Writing - review & editing. George Ovchinnikov: Data curation, 
Formal analysis, Investigation, Software, Validation, Visualization, 
Writing - review & editing. Yury Kostyukevich: Formal analysis, 
Validation, Visualization, Writing - review & editing. Sergey Osipenko: 
Data curation, Formal analysis, Investigation, Writing - review & edit-
ing. Albert G. Nasibulin: Conceptualization, Formal analysis, Funding 
acquisition, Methodology, Project administration, Resources, Supervi-
sion, Validation, Writing - original draft, Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

F.S.F. acknowledges the Russian Science Foundation for support of 
STA-MS, DMA, gas sensor performance, computer vision, and a sensory 
evaluation by grant no. 19-72-00136. This work is supported by the 
Ministry of Science and Higher Education of the Russian Federation 
(project no. FZSR-2020-0007 in the framework of the state assignment 

no. 075-03-2020-097/1). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.foodchem.2020.128747. 

References 

Aaslyng, M. D., Jensen, H., & Karlsson, A. H. (2018). The gender background of texture 
attributes of pork loin. Meat Science, 136, 79–84. https://doi.org/10.1016/j. 
meatsci.2017.10.018. 

Aaslyng, M. D., Bejerholm, C., Ertbjerg, P., Bertram, H. C., & Andersen, H. J. (2003). 
Cooking loss and juiciness of pork in relation to raw meat quality and cooking 
procedure. Food Quality and Preference, 14(4), 277–288. https://doi.org/10.1016/ 
S0950-3293(02)00086-1. 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and 
regression trees. Classification and regression trees. https://doi.org/10.1201/ 
9781315139470. 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/ 
10.1023/A:1010933404324. 

Brosnan, T., & Sun, D.-W. (2004). Improving quality inspection of food products by 
computer vision––A review. Journal of Food Engineering, 61(1), 3–16. https://doi. 
org/10.1016/S0260-8774(03)00183-3. 

Buonanno, G., Johnson, G., Morawska, L., & Stabile, L. (2011). Volatility 
characterization of cooking-generated aerosol particles. Aerosol Science and 
Technology, 45(9), 1069–1077. https://doi.org/10.1080/02786826.2011.580797. 

Chen, H., Marks, B. P., & Murphy, R. Y. (1999). Modeling coupled heat and mass transfer 
for convection cooking of chicken patties. Journal of Food Engineering, 42(3), 
139–146. https://doi.org/10.1016/S0260-8774(99)00111-9. 

Chen, L.-Y., Wu, C.-C., Chou, T.-I., Chiu, S.-W., & Tang, K.-T. (2018). Development of a 
dual MOS electronic nose/camera system for improving fruit ripeness classification. 
Sensors, 18, 3256. https://doi.org/10.3390/s18103256. 

Choi, Y.-S., Hwang, K.-E., Jeong, T.-J., Kim, Y.-B., Jeon, K.-H., Kim, E.-M., … Kim, C.-J. 
(2016). Comparative study on the effects of boiling, steaming, grilling, microwaving 
and superheated steaming on quality characteristics of marinated chicken steak. 
Food Science of Animal Resources (한국축산식품학회지), 36(1), 1–7. https://doi.org/ 
10.5851/kosfa.2016.36.1.1. 

Chung, S., Yettella, R., Kim, J., Kwon, K., Kim, M., & Min, D. (2011). Effects of grilling 
and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. 
Food Chemistry, 129, 1420–1426. https://doi.org/10.1016/j.foodchem.2011.05.092. 

Coggins, P. C. (2012). Attributes of muscle foods: Color, texture, flavor. In Handbook of 
meat, poultry and seafood quality (pp. 35–44). John Wiley & Sons, Ltd. https://doi. 
org/10.1002/9781118352434.ch3. 

Cover, S. (1943). Effect of extremely low rates of heat penetration on tendering of beef. 
Journal of Food Science, 8(5), 388–394. https://doi.org/10.1111/j.1365-2621.1943. 
tb16573.x. 

Da Costa, N. C., & Eri, S. (2012). Chemical characterization. In Handbook of meat, 
poultry and seafood quality (pp. 76–90). John Wiley & Sons, Ltd. https://doi.org/ 
10.1002/9781118352434.ch6. 

Demby, J. H., & Cunningham, F. E. (1980). Factors affecting composition of chicken 
meat. A literature review. World’s Poultry Science Journal, 36(1), 25–67. https://doi. 
org/10.1079/WPS19800002. 

Di Rosa, A. R., Leone, F., Cheli, F., & Chiofalo, V. (2017). Fusion of electronic nose, 
electronic tongue and computer vision for animal source food authentication and 
quality assessment – A review. Journal of Food Engineering, 210, 62–75. https://doi. 
org/10.1016/j.jfoodeng.2017.04.024. 

Dolara, P., Commoner, B., & Vithayathil, A. (1979). The effect of temperature on the 
formation of mutagens. Cooking Procedures, 60, 231–237. 

Dominguez-Hernandez, E., Salaseviciene, A., & Ertbjerg, P. (2018). Low-temperature 
long-time cooking of meat: Eating quality and underlying mechanisms. Meat Science, 
143, 104–113. https://doi.org/10.1016/j.meatsci.2018.04.032. 

Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative 
evaluation of the volatile profiles and taste properties of roasted coffee beans as 
affected by drying method and detected by electronic nose, electronic tongue, and 
HS-SPME-GC-MS. Food Chemistry, 272, 723–731. https://doi.org/10.1016/j. 
foodchem.2018.08.068. 

Du, C.-J., & Sun, D.-W. (2006). Learning techniques used in computer vision for food 
quality evaluation: A review. Journal of Food Engineering, 72(1), 39–55. https://doi. 
org/10.1016/j.jfoodeng.2004.11.017. 

Eberth, J. F., Neal, J. A., & Robles Hernandez, F. C. (2012). Evaluation of heat 
propagation through poultry in a reduced computational-cost model of contact 
cooking. International Journal of Food Science & Technology, 47(6), 1130–1137. 
https://doi.org/10.1111/j.1365-2621.2012.02951.x. 

Estrellan, C., & Iino, F. (2010). Toxic emissions from open burning. Chemosphere, 80, 
193–207. https://doi.org/10.1016/j.chemosphere.2010.03.057. 

FAO. (2018). World food and agriculture statistical pocketbook 2018. Food and Agriculture 
Organization of The United Nations.  

Farroni, A., & del Pilar Buera, M. (2012). Colour and surface fluorescence development 
and their relationship with maillard reaction markers as influenced by structural 
changes during cornflakes production. Food Chemistry, 135(3), 1685–1691. https:// 
doi.org/10.1016/j.foodchem.2012.05.114. 

F.S. Fedorov et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.foodchem.2020.128747
https://doi.org/10.1016/j.foodchem.2020.128747
https://doi.org/10.1016/j.meatsci.2017.10.018
https://doi.org/10.1016/j.meatsci.2017.10.018
https://doi.org/10.1016/S0950-3293(02)00086-1
https://doi.org/10.1016/S0950-3293(02)00086-1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/S0260-8774(03)00183-3
https://doi.org/10.1016/S0260-8774(03)00183-3
https://doi.org/10.1080/02786826.2011.580797
https://doi.org/10.1016/S0260-8774(99)00111-9
https://doi.org/10.3390/s18103256
https://doi.org/10.5851/kosfa.2016.36.1.1
https://doi.org/10.5851/kosfa.2016.36.1.1
https://doi.org/10.1016/j.foodchem.2011.05.092
https://doi.org/10.1111/j.1365-2621.1943.tb16573.x
https://doi.org/10.1111/j.1365-2621.1943.tb16573.x
https://doi.org/10.1079/WPS19800002
https://doi.org/10.1079/WPS19800002
https://doi.org/10.1016/j.jfoodeng.2017.04.024
https://doi.org/10.1016/j.jfoodeng.2017.04.024
http://refhub.elsevier.com/S0308-8146(20)32609-1/h0080
http://refhub.elsevier.com/S0308-8146(20)32609-1/h0080
https://doi.org/10.1016/j.meatsci.2018.04.032
https://doi.org/10.1016/j.foodchem.2018.08.068
https://doi.org/10.1016/j.foodchem.2018.08.068
https://doi.org/10.1016/j.jfoodeng.2004.11.017
https://doi.org/10.1016/j.jfoodeng.2004.11.017
https://doi.org/10.1111/j.1365-2621.2012.02951.x
https://doi.org/10.1016/j.chemosphere.2010.03.057
http://refhub.elsevier.com/S0308-8146(20)32609-1/h0110
http://refhub.elsevier.com/S0308-8146(20)32609-1/h0110
https://doi.org/10.1016/j.foodchem.2012.05.114
https://doi.org/10.1016/j.foodchem.2012.05.114


Food Chemistry 345 (2021) 128747

10

Fedorov, F., Podgainov, D., Varezhnikov, A., Lashkov, A., Gorshenkov, M., Burmistrov, I., 
… Sysoev, V. (2017). The potentiodynamic bottom-up growth of the tin oxide 
nanostructured layer for gas-analytical multisensor array chips. Sensors, 17(8), 1908. 
https://doi.org/10.3390/s17081908. 

Fedorov, F., Vasilkov, M., Lashkov, A., Varezhnikov, A., Fuchs, D., Kübel, C., … 
Sysoev, V. (2017). Toward new gas-analytical multisensor chips based on titanium 
oxide nanotube array. Scientific Reports, 7(1), 9732. https://doi.org/10.1038/ 
s41598-017-10495-8. 

Girolami, A., Napolitano, F., Faraone, D., Di Bello, G., & Braghieri, A. (2014). Image 
analysis with the computer vision system and the consumer test in evaluating the 
appearance of lucanian dry sausage. Meat Science, 96(1), 610–616. https://doi.org/ 
10.1016/j.meatsci.2013.08.006. 
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Ötles, S. (2016). Handbook of food analysis instruments. Handbook of Food Analysis 
Instruments. 

Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the 
Mammalian olfactory system using a model nose. Nature, 299(5881), 352–355. 
https://doi.org/10.1038/299352a0. 
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