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a b s t r a c t

Deep learning architectures are an extremely powerful tool for recognizing and classifying images.
However, they require supervised learning and normally work on vectors of the size of image pixels
and produce the best results when trained on millions of object images. To help mitigate these issues,
we propose an end-to-end architecture that fuses bottom-up saliency and top-down attention with an
object recognition module to focus on relevant data and learn important features that can later be fine-
tuned for a specific task, employing only unsupervised learning. In addition, by utilizing a virtual fovea
that focuses on relevant portions of the data, the training speed can be greatly improved. We test the
performance of the proposed Gamma saliency technique on the Toronto and CAT 2000 databases, and
the foveated vision in the large Street View House Numbers (SVHN) database. The results with foveated
vision show that Gamma saliency performs at the same level as the best alternative algorithms while
being computationally faster. The results in SVHN show that our unsupervised cognitive architecture is
comparable to fully supervised methods and that saliency also improves CNN performance if desired.
Finally, we develop and test a top-down attention mechanism based on the Gamma saliency applied
to the top layer of CNNs to facilitate scene understanding in multi-object cluttered images. We show
that the extra information from top-down saliency is capable of speeding up the extraction of digits
in the cluttered multidigit MNIST data set, corroborating the important role of top down attention.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Neural networks and deep learning (DL) architectures are the
urrent state-of-the-art for image classification and recognition.
hey have been shown to reliably distinguish between as many
s 10,000 different classes of objects (Deng et al., 2009). These
etworks, however, currently fall well short of human capabilities
n two areas: recognizing objects based on a relatively small
umber of examples and localizing and detecting multiple objects
n a single scene. One of the culprits is that computer architec-
ures rasterize the image into a long vector with a size given
y the number of pixels in the image. This approach, universally
ccepted as the standard, simplifies the processing in neural
etwork algorithms but it is a brute force procedure that loses
ocal information.

In order to move towards more autonomous vision systems,
e need an architecture that can extract features from a wide
ange of objects in cluttered scenes without labels. Humans have
he remarkable ability to view a scene and form an overall rep-
esentation in a very short time (Roelfsema, 2006). However,
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E-mail address: principe@cnel.ufl.edu (J.C. Principe).
ttps://doi.org/10.1016/j.neunet.2021.03.003
893-6080/© 2021 Elsevier Ltd. All rights reserved.
due to the complexity of visual scene understanding, it is rea-
sonable to assume that humans do not process an entire scene
at once, or even fixate on and process every small region in
an image. Instead, the human vision system (HVS) consists of
a number of brain areas that operate in a massively parallel
fashion, and which often are grouped in two subsystems based
on neuroanatomy (Goodale & Milner, 1992; Lee, 2011; Wang,
Sporns, & Burkhalter, 2012): one for object recognition and one
for spatial localization. The ventral stream, or ’’what’’ pathway,
consists of visual areas V1, V2, V4, and continues to the inferior
temporal cortex. Among other functions, it performs neurocom-
putations for identifying and semantically representing visual
objects (Riesenhuber & Poggio, 1999; Treisman & Kanwisher,
1998). The dorsal stream (Fig. 1), or ’’where’’ pathway, goes
through V1, V2, the dorso-medial area to the posterior parietal
cortex where object locations in internal coordinates are com-
puted, for example to enable control of eye movements (saccadic
changes of gaze location) by the oculomotor system (Goodale
& Milner, 1992). Humans saccade to a new fixation location at
an average 3 times a second, varying with task demands and
complexity of the visual scene (Fernández, Denison, & Carrasco,
2019). This is adaptive because the combination of optical and

neurophysiological features in the visual pathway yields a full
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esolution of the scene only for the foveal and parafoveal portion
f the visual field, corresponding to approximately 4 to 5 degrees
f the visual angle (Treisman & Kanwisher, 1998, 1998; Yarbus,
967). Thus, saccades enable the brain to sequentially sample
nformation from the full image field, using high acuity foveal
ision (Deza & Konkle, 2020). Recently, it has been proposed
hat the initiation of a saccade is also the beginning of a visual
rocessing cycle aimed at actively sensing the environment, and
ltimately recognizing objects in the ventral pathway (Schroeder
Lakatos, 2009), very much like sniffing for odors. The advantage
f this complex sensory motor coordination is to reduce the sub-
tantial complexity of the global visual scene to a series of simpler
erceptual decisions made at the local level. Saccade control
uring active exploration involves the entire brain, in a dynamic
omplex process that is not fully characterized (Einhauser, Kruse,
offmann, & Konig, 2006; Norman, 2002). However, there is
greement that two processes are at play: a bottom-up process
hat selects ‘‘interesting’’ local patches based on their saliency,
.e. sharp change of luminance, contrast, color or texture in a
ocal region of the image (Fernández et al., 2019); and a top-
own process that guides the eye to relevant visual details to
isambiguate the scene with respect to the current goal (Pos-
er, Walker, Friedrich, & Rafal, 1987). These two processes are
ommonly called overt visual attention (Posner et al., 1987) and
liminate the need to operate with the full visual scene to save
imited resources, and to facilitate the computation of motor
utput.
Here, we propose to design a comprehensive, end-to-end ma-

hine learning architecture that can be applied to realistic data
ets employing fovea-based image processing inspired by the
VS and incorporating two pathways and an attention module
ncluding both bottom-up and top-down saliency. The foveal
mage patch will be delivered to a redundancy reduction object
ecognition algorithm (Chalasani & Principe, 2015) which extracts
eatures in a self-organizing way (i.e. without labels) and stores
hem in an external memory for future use. The key characteris-
ics of our approach relate to the algorithmic pipeline, which is
ontrolled by foveation; the construction of a video stream with
ixed retina to improve the unsupervised recognition of objects
n the foveated patch; and the inclusion of top-down attention to
odify the order of the foveated patches according to the analysis
oal.
The paper is organized as follows: Section 1 reviews the lit-

rature, Section 2 presents the overall architecture and discusses
rimarily the bottom up and top down focus of attention, while
ection 3 presents results with the two attention mechanisms
n both realistic and synthetic data set. Section 4 presents the
onclusions.

. Related work

.1. Attention systems

One of the hallmarks of foveal vision is its high dependence on
he coordination of separate streams for object recognition and
election of salient areas in the image space. Not even the brain
as enough bandwidth to understand the continuous 180 degrees
ideo stream that reaches the eyes. Hence, it sparsifies selectively
nd intentionally the video input for real time interaction with
he world. By using this divide-and-conquer approach, the brain
an quickly process large, unwieldy images and break them into
maller pieces that require extensive computation required to
xtract and recognize object features from an image. This patch
election approach is compatible with the fact that the eye can
nly perceive the world in high resolution in a narrow cone (∼5
egrees of visual angle) centered around the center of gaze. The
146
Fig. 1. The ‘‘what’’ and ‘‘where’’ paths in the human visual system.

selection of where to look (the saccades) involves the entire brain,
e.g. executive, associative and motor areas (Fig. 1) and is rather
complex. The discovery of simplifying assumptions for bottom-
up and top-down processes are enabling inspirations for machine
learning architectures, as discussed below.

Bottom-up Attention: The HVS dual-stream organization intro-
duces new problems: finding the regions that contain relevant
information, i.e. implementing visuospatial attention, on top of
recognizing the patch content. Recently, machine learning meth-
ods have been proposed to suggest regions both within the struc-
ture of the network (Jaderberg, Simonyan, Zisserman, et al., 2015)
or as a separate mechanism based on image features (Girshick,
Donahue, Darrell, & Malik, 2014), but they still need to analyze
the full image. They also require labels to choose regions that
contain data most relevant for the task. Since the introduction
of Itti’s method in 1998 (Itti, Koch, & Niebur, 1998), saliency
has become a popular way to predict visual attention in images,
which could therefore be used to segment out, without labels, the
interesting image regions for faster processing. Saliency is defined
as the state or quality by which an object stands out relative to
its neighbors. An object tends to be more salient if it is brightly
colored, flashy, and altogether different from its surroundings.
Employing saliency as a proxy for visual attention enables the de-
sign of unsupervised systems that can: (1) quickly select regions
of interest; (2) dedicate resources for more computationally in-
tensive processing only to the selected regions; (3) combine these
representations into an overall understanding of a complex scene
in much the same way the HVS works. Practically, the human
visual cortex must remember and infer parafoveal and peripheral
information, or use a combination of the two, to estimate regions
of interest for future fixation locations. As shown from empirical
research on saccadic exploratory eye movements, these future
fixations will target the regions in the visual periphery (Collins,
Rolfs, Deubel, & Cavanagh, 2009; Norman, 2002).

Most saliency measures work by combining a number of sim-
ple features such as color, intensity, and orientation to find dis-
tinct regions in images that could attract the human eye. Three
competing views of saliency are the center–surround methods
that compare a local center to a neighborhood (Burt, Santana,
Principe, Thigpen, & Keil, 2016; Itti et al., 1998; Li, Zhou, Xu,
Yang, & Yang, 2009; Seo & Milanfar, 2009; Walther & Koch,
2006), the global context methods that compare regions to other
regions from any location in the image (Garcia-Diaz, Fdez-Vidal,
Pardo, & Dosil, 2009; Goferman, Zelnik-Manor, & Tal, 2012), and
the normal image methods that compare an image to a stan-
dard ideal (Achanta, Hemami, Estrada, & Susstrunk, 2009; Hou
& Zhang, 2007; Kanan, Tong, Zhang, & Cottrell, 2009; Li, Levine,

An, & He, 0000; Schauerte & Fink, 2010). Saliency metrics have
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een used in an effort to reduce computation in image and video
rocessing, often in lossy compression algorithms that keep high
esolution data only in salient areas (Guo & Zhang, 2010; Itti,
004). For a recent review see Cong et al. (2018).

op-down saliency: It turns out that bottom-up attention does
ot explain all the visual attention mechanisms discovered in
uman perception. Cognitive scientists have empirically demon-
trated that when the same individual views the same scene
wice, she/he will change their saccadic exploration paths
Bradley, Houbova, Miccoli, Costa, & Lang, 2011; Yarbus, 1967).
herefore, this indicates that there is also a top-down attention
rocess from the executive cortex (frontal) that changes visual
rocessing, by conditioning the extraction of relevant informa-
ion from the scene (see Fig. 1). Conceptually this selection is
lso based on some sort of saliency, but instead of working
n image pixels, saliency is applied to more abstract sets of
nowledge representations. The details are far from being fully
nderstood (Deza & Konkle, 2020; Wolfe & Horowitz, 2017), but
he existence of deep learning architectures and its multiscale
earned representations opens the door for experimenting with
aliency algorithms on their top layers. It has been experimentally
erified (Girshick et al., 2014) that deep learning networks tend
o cluster features of specific objects in their top layers. Hence, we
an attempt to apply similar saliency algorithms, not to the pixels
ut to the feature maps created by convolution neural networks
CNNs). The Top-Down attention becomes another input to the
ystem that can change the priority of the search in image space,
y modifying the bottom-up saliency maps.

.2. Object recognition for foveal vision

With saliency functioning as a factor that constraints guided
earch, the next processing goal is to form representations of
nd extract features from foveated patches. Therefore, an end-to-
nd architecture needs to integrate fovea vision and top-down
ttention with object recognition and memory. Therefore, the
raditional deep learning single module architecture needs to be
mproved. In principle, the ventral stream receives patches of
isual data from the fovea and builds a representation through
he ventral visual pathway that is then sent to a temporary (work-
ng) memory to enable inference about the scene composition.
inally, objects that are relevant for the state of the subject are
ermanently stored in a visual long-term memory. It is well
ccepted that human memory is content addressable (Hasanbel-
iu & Principe, 2008), which is very efficient because it utilizes
he metric of the internal representations, instead of an address
us as in our digital computers. Normally in computer vision
rchitectures, there is no use of external memory blocks. A neural
etwork builds its own internal long-term memory of the input
ata in its parameters through learning, or a short-term memory
n its recurrent connections, like LSTMs (Schmidhuber, 2015).
ut this internal memory is not shared with other modules in
he architecture. Therefore, we propose to implement explicitly
ontent addressable memories in our architecture.
With regard to object recognition for foveal vision, we will

mploy a deep learning neural network. But notice that by focus-
ng the representation on only foveated patches, rather than the
ntire scene, we save computation and may even improve recog-
ition because background and other objects become distractors.
y segmenting objects around highly salient points found by
he attention mechanism, the network role is simplified to find
nvariant representations of the objects in isolation. These deep
etworks are generally trained on large datasets such as Ima-
enet (Deng et al., 2009) or CFAR100 that contain tens of thou-
ands up to millions of labeled images. By backpropagating the
rrors in the class labels through the network, the network is able
147
to learn the relevant features for predicting the label associated
with the image. However, this learning becomes harder when
multiple objects are contained within each image, each with its
own label. In addition, supervised training requires labels for each
image, which requires curating these large datasets and hampers
their ability to be implemented in autonomous vision, where the
number of classes are unknown.

Despite recent advances in single object recognition, classifica-
tion results on image datasets with multiple objects in complex
scenes require either state-of-the-art deep convolutional meth-
ods such as RESNET (He, Zhang, Ren, & Sun, 2015) or approaches
that learn to extract salient features using CNN networks. One
limitation is that the majority of the methods still require labels
for training. In this group we consider the Spatial Transformer
Network (STN), which integrates a differentiable image transform
into the overall network structure that is capable of learning
which features in an image best discriminate objects by their
labels, focusing in on these objects accordingly (Jaderberg et al.,
2015). The CNN based saliency detection architectures have be-
come the main stream, using convolution blocks (Woo, Park,
Lee, & So Kweon, 2018), an attention aware concentrated net-
work (Li, Xing, Xu, Cai, & Cheng, 2021) as well as recurrent
networks (Zhang, Wang, Qi, Lu, & Wang, 2018), perhaps using
as inspiration the neurodynamics of V1 (Berga & Otazu, 2020).
We can consider these as ‘‘parametric saliency’’ methods, be-
cause the CNN learns saliency from the full image, as opposed
to the ones mentioned above that simplify the processing of
information using nonparametric saliency algorithms that are
much faster and never see the full picture, as inspired by the
HVS. Of course, there are internediate methods that break images
down into regions, then perform classification on these rather
than the entire image (Gu, Lim, Arbelaez, & Malik, 2009). By fusing
these region detection algorithms with the recent advances in
convolutional networks, classification performance on datasets
such as VOC2012 have improved by up to 30% (Girshick et al.,
2014). Most of the region classification methods were designed
to be trained in conjunction with deep convolution networks,
such as OverFeat (Sermanet et al., 2013). OverFeat consists of
a single convolutional network that is applied at multiple lo-
cations via a sliding window before producing a distribution
that predicts the bounding box containing the targeted object.
Alternatively, the R-CNN uses a separate region method (selective
search), before separately sending these regions to a CNN for
classification and then finally recombining similar regions (Gir-
shick et al., 2014). The stacked what-and-where autoencoder is
a different approach of implementing divide and conquer in a
deep architecture (Zhao, Mathieu, Goroshin, & LeCun, 2016) with-
out supervision, and exploits the same discriminative-generative
principles of our approach. Despite the different paradigms, pro-
cessing smaller image regions has the potential to be the next
breakthrough in computer vision by reducing the brute force
sliding windows in the CNNs, but further work is necessary.

Training deep learning architectures without explicit class la-
bels has been a growing area of research (Walther, Rutishauser,
Koch, & Perona, 2005). In an effort to expand these techniques be-
yond datasets that are fully labeled, there have been effort toward
learning features based on other forms of supervision such as
temporal and ego motion. Goroshin, Bruna, Tompson, Eigen, and
LeCun (2015) and Wang and Gupta (Wang & Gupta, 2015) learned
short term dependencies between subsequent frames in video.
Agrawal et al. modeled the ego motion of the camera in order to
provide a form of supervision other than labels (Agrawal, Carreira,
& Malik, 2015). A different approach uses the input data as the
desired response i.e., it creates a generative model of the system
that created the data. Helmholtz in the XIX century wrote that

the role of the visual system was exactly to model the external
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Fig. 2. Within the framework of the what–where paths, we present our vision system architecture using sequential acquire cycle for scene understanding. The
‘where’’ path is implicitly included by the search for salient image patches (bottom-up saliency), as well as by the top-down attention mechanism. The what path
ecognizes objects selected by the acquire cycle. Note that the explicit memory module is also needed for inference and storage of object identity.
ources that created the sensory stimuli (Von Helmholtz, 1867).
productive way to extract a generative model that created the
ata is through redundancy reduction principles. The deep predict
oding network (DPCN) by Chalasani and Principe (Chalasani &
rincipe, 2015; Principe & Chalasani, 2014) uses temporal pre-
ictions to learn in an unsupervised manner features through
ime and build object representations of video streams. This work
as later extended to the recurrent winner take all autoen-
oder (RTWA) (Santana, Emigh, Zerges, & Principe, 2016), which
se a dual-stream autoencoder structure with a recurrent bot-
leneck layer to represent the current frame and predict the
ext frame (Fig. A.1 in the Appendix). Both methods are self-
rganizing generative models, but use different algorithms: the
PCN uses a naïve Bayes approach to maximize free energy on
distributed multilayer topology, while the latter uses more

raditional machine learning methods (stacked autoencoder and
ecurrent neural networks). This framework must be integrated
o learn features from unlabeled image datasets by taking advan-
age of the sequence structure introduced through a prescribed
ovement of a retina (creating a video) covering the saliency
atch (Cudic & Principe, 2019).
In terms of DL applications of foviation and attention, we

ention visual question answering (VQA), where the bottom-
p mechanism (based on Faster R-CNN) proposes image regions,
hile the top-down mechanism determines feature weightings
Anderson et al., 2018). The push for explainability benefits from
aliency and attention (Gilpin et al., 2019), the recent DeepFovea
y Facebook speeds up and brings low-power solutions to render-
ng in virtual reality environments (Kaplanyan et al., 2019), and
o implement gaze prediction with DL (Bazzani, Freitas, & Ting,
011), or DeepFix (Kruthiventi, Ayush, & Babu, 2017) and efficient
gocentric machine perception (Ozimek, Balog, Wong, Esparon, &
iebert, 2017).

. Methods

Humans experience the world’s static scenes through move-
ent, whether by moving fixations across a painting or walking
round a still landscape. Despite the lack of change in the physical
roperties of the scene, the information sent to the visual cortex
hrough the eyes is constantly changing at a slow pace as the
iewpoint is updated. The temporal coherence builds the full
nderstanding of the scene as objects are recognized and placed
148
into working memory as the brain searches out new fixations.
Time disambiguates space, and we will take advantage of this in
our approach.

3.1. Proposed architecture

As in HVS, we propose an end-to-end machine learning ar-
chitecture to merge information from separate paths to simplify
processing: one path for attention, which selects visually in-
formative regions (bottom-up and top-down saliency modules),
and one for representing object properties in an unsupervised
manner, organizing and storing extracted objects in a dedicated
long-term and working memory modules. Fig. 2 shows our pro-
posed architecture, where the object recognition module never
sees the full scene. Bottom-up saliency works as the dispatcher
or the executive module for the full architecture that initiates
and drives the transferring of data from the source (video or
image), operating in cycles and sending the data to the object
recognition module that works only on patches. Meanwhile, the
extracted objects must be temporary stored in an internal canvas,
a.k.a working memory, that summarizes the visual scene, and can
be used for further inference. After training and during testing,
the system still has the ability to speed up recognition of a
scene if it is instructed by the user (or the task itself) to search
for a certain object type in the scene. Currently, the top-down
attention module can modify, as a prior, the bottom-up module
with the characteristics of the preferred object. This architecture
is rather different from CNN based saliency (Goodfellow, Bulatov,
Ibarz, Arnoud, & Shet, 2013), and requires several innovations as
described below.

The diagram of Fig. 3 shows the visual processing cycle, and
it is complemented by Fig. 4 with a demonstration. The process
starts with an image (Fig. 4A) by foveation to the center of the im-
age (Fig. 4B), to select the highest saliency point (Fig. 4C). Multiple
saliency patches may exist and they should be forwarded to the
object recognition module one at a time. Hence, the process of
selecting salient regions needs to be automatically repeated until
the saliency map is featureless, achieved by a hyperparameter to
define what is ‘‘sufficiently different’’ from background. Foveal
vision requires centering and refocus in the highest saliency
(Fig. 4D) because of the intrinsic blurring produced by the masks.
Moreover, the saliency algorithm must not only find the most
salient point in the image, but also the extent of the proto-object.



R. Burt, N.N. Thigpen, A. Keil et al. Neural Networks 141 (2021) 145–159

i

T
a
e

Fig. 3. The cycle of acquiring and processing information in our architecture,
nitiated with the saccade to the center of the image.

his is accomplished by the Gamma Saliency with its multi-scale
pproach because the underlying rings contain information to

stimate the object extent, which leads to object segmentation
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matched to its size (Fig. 4E-F). Working from this base, we fine
tune the saliency patch to avoid nearby objects and recompute
saliency and crop a tighter patch around the object (Fig. 4G),
create the video according to the selected scan (Fig. 4H), and
send it to the RTWA for representation and/or recognition. After
this, the saliency map is locally inhibited by applying an inverted
Gaussian that corresponds to the extent of the foveal area and
with an amplitude estimated from the saliency value (Fig. 4I).
Below we will explain these modules one by one.

3.2. Gamma saliency

An effective attention mechanism should meet a few basic
requirements to bring two pathways into a single vision system
pipeline. First, the calculation should be done quickly so that
the attention works to speed scene recognition, not slow it by
compounding the data. Second, the bottom-up attention system
should trigger the object recognition module, not in reverse order,
i.e. be driven by recognizing objects and then assigning saliency
scores. Since the dorsal stream of the HVS uses the peripheral,
and therefore blurred, vision as the input to determine fixations,
the system should be able to work only with low-level features.

To accomplish this list, we use a simple center surround
saliency method that computes local differences in regions at
different scales. Although high level saliency methods exist which
predict human fixations very well, these often require exten-
sive training, require full object recognition, and are slower to
compute than the more classic signal processing methods. We
adopt here the Gamma kernels, which have been used for target
detection (Kim, Fisher III, & Principe, 1996). The circular shape
of the kernel is ideal for comparing a center region to a local
neighborhood, and the size of the saliency patch can easily be
controlled to fit the object size through two parameters (the
decay µ and the order k of the Gamma function), which allows
for easy change in spatial scales.
Fig. 4. A series of images showing the progression of the focus of attention algorithm. (A) The original image. (B) The image focused on the center point. (C) Saliency
map created from center-focused image. (D) The image refocused on the most salient point. (E) The local patch containing the point. (F) Local saliency map. (G) The
segmented object. (H) A set of scanned frames. (I) Saliency map around the new focus point with Gaussian inhibition at previously scanned locations.
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Similar to the Itti method and others, the Gamma saliency
(Burt et al., 2016) is based on the center surround principle: a
region is salient if it is sufficiently different from the surrounding
neighborhood. In order to compute these local differences, we
use a 2D gamma kernel that emphasizes a central area while
contrasting it with a local neighborhood through convolution:

gk,µ (n1, n2) =
µk

2π (k − 1)!

(√
n2
1 + n2

2

)k−1

e−µ

√
n21+n22 (1)

For this kernel, n1 and n2 are the local support grid coordinates,
µ is the shape parameter, and k is the kernel order. Using µ

and k, we can control the shape and extent of the kernel: when
k = 1, the kernel peak is centered around the origin of the patch
(exponential decay). The scale parameter µ affects the metric of
the coordinates in the same way, which means that the peak
of kernels k >1 is centered at k/µ away from the origin, while
for k = 1 it controls the exponential decay. With these two
parameters we can construct a 2D circularly symmetric shape
that compares a center region to a surrounding neighborhood
by subtracting the kernel with order k > 1 from the k = 1
kernel, i.e. γm (n1, n2) = g1,µ (n1, n2) − gk,µ (n1, n2) ,m = k + 1.
The peak of g1,µ (n1, n2) functions as the center of the image
area to be tested, while multiple higher order kernels form the
surrounding neighborhood. By adjusting the shape parameter and
order of the ring kernel we can control the size and location of
the neighborhood relative to the center, as well as adjust the size
and location of the neighborhood relative to the center. The 2D
kernel is then slid over the full image, with a stride equal to twice
the radius of the highest order kernel.

One of the advantages of the Gamma kernel is that it easily
allows for the estimation of the object size, by utilizing multiple
rings and implementing successive subtractions over consecutive
rings. For a multiscale saliency measure, we simply combine
multiple kernels of different orderm before the convolution stage,
as shown in (2), creating a multiscale template. By creating the
multiscale template before the convolution stage, we create a
method which is capable of computing saliency at different scales
adding little extra computation beyond a single scale γm (n1, n2).
he number of different scales is M -1.

γtotal (n1, n2) =

M∑
m=1

γm (n1, n2)

= Mg1,µ (n1, n2) −

M∑
m=1

gm,µ (n1, n2) (2)

In this work we do not take advantage of the recursive computa-
tion of the gamma function, because we precompute the kernel.
However, if one is interested in space time saliency, the recursive
computation of the gamma function becomes very efficient.

Apart from the local functions, the rest of the saliency mea-
sure is constructed similarly to the other center surround meth-
ods (Lee, Grosse, Ranganath, & Ng, 2009): the image is broken
into local feature matrices of predetermined size, each matrix is
convolved with the multiscale kernel, the matrices are combined
and exponentiated to accentuate peaks, then post processing is
performed to boost results using a Gaussian blur and a center
bias.

The feature matrices to compute the saliency are composed
in the CIELab color space, which has three matrices — one lu-
minance matrix and two color opponency matrices. In CIELab
space, the distance between two colors can be calculated us-
ing the Euclidean distance, which is a useful property that we
take advantage of in the convolution. Each of these matrices is
convolved with the multiscale gamma kernel to get the saliency
150
Fig. 5. Example image from the Toronto Saliency Dataset (A), saliency map
produced by Gamma Saliency (B) and the ground truth fixation map (C).

measure in each channel (3). In the following equations, ∗ is the
convolution operator.

S =
|γ ∗ L| + |γ ∗ a| + |γ ∗ b|

3
(3)

Once we have the overall combined saliency map, there are a
few common postprocessing mechanisms used to improve re-
sults (Judd, Durand, & Torralba, 2012). First, the main peaks in the
measure are accentuated by raising the combined map to a power
α > 1, applied elementwise. It is well known that humans tend
to fixate on the image center, so a Gaussian weighting is applied
to the center of the image where the variance of the Gaussian is
dependent on the image size. Finally, to reduce the noise effects
and create a more streamlined map, the map is blurred using a
small Gaussian kernel (4) as

S =
(
SαGσ2 (.)

)
∗ G0.5(.) (4)

Fig. 5 shows an example of the gamma saliency map on a foveated
image in the Toronto data set, along with the human fixation map.

3.3. Foveal vision

There are fundamental differences between how saliency mea-
sures are tested and how the human vision system uses saliency
to direct attentive exploration of the surrounding scene. Since
human vision only has access to full resolution in the fovea
area, the saliency module to properly mimic the human vision
system must be able to find regions of interest in low resolution,
outside the initial focal area. Interestingly, studies have shown
that initial full previews of the scene can often hinder relevant
object detection, meaning that the blurred initial glimpse can
be an improvement over knowledge of an entire scene a pri-
ori (Litchfield & Donovan, 2016). However, saliency algorithms
applied to digital images have per definition access to the full
resolution across the field of view.

To address this crucial difference between biology and com-
putational study, we use foveated imaging, which uses images
with a clear field of focus and a blurred periphery to mimic the
HVS. Foveated imaging has been used mainly for compression and
faster processing (Cong et al., 2018; Geisler, Perry, & Najemnik,

2006). In addition, some saliency metrics have been tested in
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ulti-resolution images in an attempt to speed computation and
mprove results (Advani, Sustersic, Irick, & Narayanan, 2013; Itti,
004), but study in this area is still limited. Currently the Lytro
llum camera, a light field camera (Ng, 2006), can be used for this
urpose. But for comparisons with data sets in the literature, we
ill need to create foveated imaging by software.
To mimic the effect of the fovea, we created images that are

ncreasingly blurred around a small high-resolution area (artificial
ovea), employing the fast method developed by Geisler and
erry for images and videos in 2002 (Geisler & Perry, 2002). This
ethod creates a variable resolution map around a center point

either pre-selected or input in real time by the user). The map is
omposed of a multi resolution pyramid created by first blurring
he original image with a small kernel (such as 3 × 3), then
own sampling and blurring with the same kernel, then repeating
he process to create 6–7 layers. These layers are blended with
eights corresponding to the distance from the center point,
hus creating the newly foveated image. The foveation mecha-
ism contains a resolution parameter that controls the distance
eights, which in turn affect both the size of the fovea and the
mount of blur in the periphery.

.4. RTWA

Rather than using explicit labels, our vision module uses ar-
hitectural constraints along with the structure inherent in a
ideo stream in order to extract robust features from images.
ere we use the RTWA (Santana et al., 2016), which uses a
ombination of a feedforward convolutional autoencoder and an
NN on the bottleneck layer that encodes a dynamic state that
escribes the change between consecutive frames (Fig. A.1 in the
Appendix). By using the same decoder at the end of each stream,
he representations are forced to project to the same space and
he error can be minimized. The cost function for the RTWA is
iven by

t = E[(xt−1D(E(xt−1))2 + (xtD(R(xt−1))2] (5)

where xt is the video stream at time t, the stateless encoder is E,
he shared decoder is D, the RNN is R, and E denotes the expecta-
tion operator. The architecture is trained using backpropagation
through time and the architecture details are in the Appendix.

As already stated, the Gamma Saliency works on still images
while the RTWA uses both spatial and temporal context to form
images representations. The reason we selected this combination
relates to two difficulties: First, the small amount of data available
for training in most complex real-world scenes. We hypothesize
and confirmed (Cudic & Principe, 2019) that rasterizing an image
of an object into a video of small image patches extracts more
discriminatory information from the imagery than just the spatial
structure of the pixels, as normally done in CNNs. The reason is
that the next image patch appears naturally as a label, in a self-
organizing process, that targets to learn the changes from patch to
patch i.e., time helps disambiguate space. Second, a disadvantage
of foveal vision is that the size of the saliency patch is not known
a priori and would create difficulties for the RTWA, which is built
around an autoencoder with a pre-fixed pixel size. These two
aspects can be overcome with a segmentation of the saliency
patch in fixed 28 × 28 pixel frames, which becomes the input size
of the RTWA (small squares in Fig. 4H), immaterial of the size of
the input image as in HVS. The attention mechanism provides, not
only the salient point on which to focus, but a structured series
of frames encompassing the object e.g., a video. There are mul-
tiple techniques that could be used for creating the video from
image patches: scan the frame over the saliency patch, either in
a circular or zig-zag path. Both provide reasonable results; the
important aspect is that the scan must be kept constant such
151
that the RTWA’s learned representations do not change across
the frames from training to testing. This sequence of frames leads
to a more invariant set of features learned by the vision system
when compared to a simple cutout of pixels, as classified by a
CNN (Cudic & Principe, 2019).

In order to train the RTWA, one frame is used for input, and
two frames are used as the desired response: the input frame
will be used to train the autoencoder part of the RTW and the
next frame trains the recurrent part for prediction (See Fig. A.1 in
the Appendix). Notice that this training is unsupervised i.e., does
not require a desired response. The system is trained simply to
represent inputs, but given enough parameters it can represent
a large class of different classes as we demonstrate in Sermanet
et al. (2013). After training stops, the outputs of the bottleneck
layer are the internal representations that need to be stored in the
external memory for permanent storage to represent the input
class with a significant savings in storage. The RTWA is capable
of reproducing the input when needed by placing the memory
codes at the input of the decoder part, and even predict the next
image in the sequence.

3.5. Top-down saliency module

The last module of the architecture is the top-down visual
attention, which implements a goal driven approach to guide the
selection of scene objects. Top-down saliency is an extra input to
the vision system that can be used to modify the operation of a
trained network to meet some other constraint. In the HVS, the
executive cortex may want to direct the visual cortex to search
for a piece of information needed to complete an inference. In
general, this is very difficult to achieve in machine learning, so
we need to simplify what is meant by top-down attention. Here
we hypothesize that the user or the environment provides the
learning machine the simplest hint of what is the goal of the
processing. With this extra information the idea is to modify
the bottom-up processing with a top-down prior that automat-
ically changes saliency priorities with the information contained
solely in the learning machine memories. In machine learning,
example applications are video question answering, where the
question prioritizes the search for objects in a scene. Current
solutions in these domains (Anderson et al., 2018) can still be
largely improved. We propose to train a model that is capable of
discriminating different input objects based on top layer network
activations by leveraging the Gamma Saliency framework. Our
proposed method is similar to the work of Frintrop, Backer, and
Rome (2005), except that in our approach the feature maps are
extracted from a network trained on the scene objects, instead
of using pre-defined feature maps designed by hand, which does
not qualify as a simple hint. In bottom-up Gamma Saliency, the
features maps were naturally the channels of a LAB image, as
shown in (3). However, to implement top-down Gamma Saliency,
we propose to use a set of feature maps C i

n(a1, a2) from a fully
convolutional neural network (CNN), where n is the feature map
index for object i, and a1, a2 are coordinates in the activations
of the convolutional layers (Erhan, Bengio, Courville, & Vincent,
2009). Unlike fully-connected layers, convolutional layers of a
neural network are representation layers agnostic to the size of
the input. Note that the feature maps are themselves discrimina-
tive for the objects in the training set, however, with the RTWA
or DPCN, this discrimination does not necessarily mean human
provided labels. Therefore, it is possible to train a system external
to the CNN to discriminate amongst object classes solely based
on the top layer activations of a network trained on a standard
dataset (such as MNIST or Imagenet). One just needs to present
an object class, find out which feature maps are activated in the
convolution layers, and then learn how these maps differ from
other objects’ feature maps.
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We selected for simplicity and to quickly test the reasonable-
ness of the approach, a linear discrimination model that weights
(wi

n) the Gamma Saliency for each object i. We propose to learn
the weights wi

n as follows: Over a training set with an exemplar of
the ith class as input, we compute each raw saliency map directly
from the Gamma Saliency feature maps

⏐⏐γ ∗ C i
n

⏐⏐. We may need to
use foveal vision to individualize which object is being observed,
for multi-object imagery. We then calculate the ratio (contrast) of
the mean raw saliency (a scalar) inside the bounding box SmIn of
the object of interest to the mean raw saliency of the background
SmOn

, and find the mean value across different image exemplars of
the same object in the training data, i.e.

wi
n =

M∑
m=1

SmIn/SmOn

M
(6)

where m is the exemplar image index for the class and n is the
corresponding feature map index for each image. This scalar value
gives the average weight for each feature map (n) of object i
cross different images of the same object. We then compute a set
f Gamma Saliency feature maps Si that can be used to distinguish
mong i objects in the training set, i.e.

Si =

∑N
n=1 wi

n

⏐⏐γ ∗ C i
n

⏐⏐α
N

(7)

where
⏐⏐γ ∗ C i

n

⏐⏐ is the Gamma Saliency for feature map C i
n, α is

an enhancement parameter applied elementwise, and wi
n are the

vector coefficients for object i. The procedure creates a weight
matrix W that contains a vector of weights for each object of
interest. Feature maps that always activate for a certain object are
given a high weight, while feature maps with fewer activations
are given a lower weight. Hence, each entry in this weight matrix
corresponds to how highly each specific feature map activates for
each class. These saliency maps Si, when utilized in conjunction
with the bottom-up saliency templates, will modify by multipli-
cation, e.g. as a prior, their bottom-up saliency values and lead to
object ranking according to a top-down goal, which potentially
decrease the number of fixations necessary to find a particular
object.

4. Results

This section presents the experimental results. First, we will
demonstrate the results of the gamma saliency when compared
with other techniques. Then we apply foveated vision to the
Street View House Numbers (SVHN) dataset to access the perfor-
mance of the method in a realistic environment. Finally, we will
show results with mixed saliency to speed up the understanding
of visual scenes with multiple objects when a ranking of object
importance is given. Information on the parameters used for the
attention mechanism and the classifiers are presented in the
Appendix.

Validation of Gamma saliency.
Remember that our goal is to develop a methodology that

uses only low-level features in the periphery (low resolution),
and the goal is to be fast to compute, and agree with the human
foveation. Therefore, we ultimately compare the methods with
respect to human eye tracking. Saliency can be thought as object
detection, and as such it is important to use detection theory as
the underlying theory to compare different saliency detectors. To
compare this new saliency metric with other common methods,
results were computed on the Toronto dataset (Bylinskii et al.,
2015) and the CAT2000 training database (Borji & Itti, 2015). The
Toronto database consists of 120 images shown to 20 students
for four seconds of free viewing. The CAT2000 database has 2000
images drawn from 20 different categories for a wide variety of
 r

152
image foregrounds and backgrounds, as well as the fixation data
from 18 different observers. The observers were given the task
of free viewing each image for five seconds with one degree of
visual angle corresponding to roughly 38 pixels in each image.
Each set of saliency maps were computed with the default set of
parameters recommended by the algorithms.

For Gamma Saliency, the parameters used were k = [1, 26, 1,
25, 1, 19], µ = [2, 2, 1, 1, .5, .5], and α = 5. Note that α is also
a function of the µ selected, so it was selected by performing a
grid search on the integers between 1 and 20. This gives center
surround differences at three scales, as in Tavakoli, Rahtu, and
Heikkilä (2011), set to neighborhood sizes of 13, 25, and 38
pixels. All images are resized to 128 × 171 to speed processing
time. The maps were then compared to the collected fixation
data using the following five metrics: the area under receiver
operating characteristic (ROC) curve created by Judd et al. (2012),
the area under ROC curve by Borji, Sihite, and Itti (2013), the
similarity measure (Le Meur & Baccino, 2013), the correlation
coefficient, and the normalized scanpath saliency (Peters, Iyer,
Itti, & Koch, 2005). The area under ROC curve by Judd is measured
as the proportion of saliency map values above a threshold at the
fixation locations to the number of values below the threshold
at the fixation locations. In contrast, Borji’s version of the area
under ROC curve measure the proportion of true positives to
false positives, which are the values in the saliency map above a
threshold that do not correspond to a fixation location. The sim-
ilarity measure treats each map as a distribution and computes
the histogram intersection. The correlation measure is Pearson’s
linear coefficient between the two maps. Lastly, the normalized
scan path saliency refers to the mean value of the normalized
saliency map at fixation locations. In each of the metrics, the
higher number indicates a better result. Also, note that these
metrics only deal with finding the location of the fixation, not
determining what the object is or its size. We compare the
Gamma Saliency with the following competing algorithms: the
original center surround Itti’s work (Itti et al., 1998), graph-
based saliency (GBVS) (Harel, Koch, & Perona, 2007), Torralba
method (Oliva & Torralba, 2001), attention based on information
maximization (AIM) (Bruce & Tsotsos, 2007), the free energy
saliency (FES) (Gu, Zhai, Lin, Yang, & Zhang, 2015), Rare (Riche,
Mancas, Gosselin, & Dutoit, 2012), and random center surround
saliency (RCS) (Vikram, Tscherepanow, & Wrede, 2012).

To estimate the computation time, each algorithm was set
to produce a saliency map sized 128 × 171 to ensure that al-
orithms that down sample do not have an inherent advantage
or computation time. All times were computed on PC running
atlab R2012a on an i5-2310 clocked at 2.9 GHz. Fig. 6 shows

he ROC curves for different scales. Table 1 shows the full results
rom comparing the saliency maps with the fixation maps in the
AT2000 database across five different metrics along with the
ean time to create a saliency map from a single image in the
atabase, with the best results for each metric in bold. Fig. 7
hows the ROC curves calculated with the Judd method for each
etric. Gamma saliency performs the best in four of five metrics,
ith the closest competitor being GBVS. Gamma saliency is also
he fastest since it is based on a convolutional filter. Table 2 shows
he results for the Toronto database. Once again Gamma saliency
erforms the best in 4 of 5 metrics and computes the saliency
aps in the fastest times.
Foveal Vision Results
Table 3 shows the results for each saliency measure on the

oveated Toronto database. Gamma saliency still performs the
est across 5 of the 6 metrics, which shows that it could be used
n a fixation system that approximates the HVS. Interestingly,
hen compared with Table 2, the foveation actually improves the

esults obtained by most saliency measures, possibly because the
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Table 1
Attention prediction results on the CAT2000 database.
Method \
Metric

ROC
(Judd
et al.,
2012)

ROC
(Borji
et al.,
2013)

Similarity
(Le Meur
&
Baccino,
2013)

Correlation NSS
(Pe-
ters
et al.,
2005)

Time
(s)

Itti (Itti et al.,
1998)

.700 .570 .377 .206 .258 0.25

AIM (Bruce &
Tsotsos, 2007)

.772 .628 .437 .335 .497 1.04

Oliva and
Torralba (2001)

.770 .619 .437 .324 .448 1.20

GBVS (Harel
et al., 2007)

.844 .642 .498 .486 .510 1.05

FES (Gu et al.,
2015)

.812 .576 .562 .628 .368 0.29

RARE (Riche
et al., 2012)

.822 .643 .466 .408 .511 1.37

RCS (Vikram
et al., 2012)

.763 .593 .431 .292 .352 14.9

Gamma (Burt
et al., 2016)

.852 .676 .592 .633 .468 0.21
Table 2
Attention prediction results on the Toronto database.
Method\
Metric

ROC
(Judd)

ROC
(Borji)

Similarity Correlation NSS Time
(s)

Itti .712 .597 .384 .275 .341 0.28
AIM .746 .632 .403 .363 .479 1.10
Torralba .684 .600 .374 .292 .360 0.78
GBVS .848 .677 .488 .570 .638 1.03
FES .847 .586 .520 .572 .446 0.21
RARE .785 .625 .477 .551 .489 1.39
RCS .747 .609 .431 .414 .413 15.8
Gamma .862 .695 .588 .581 .546 0.21

Fig. 6. ROC curves for different scales of gamma saliency on the Toronto Saliency
Dataset.

addition of a blur and center bias improves results, as shown in
previous studies.

Classification Results: Street View House Numbers
The Street View House Numbers (SVHN) dataset offers a tough

ocalization and classification challenge. It consists of over 73,000
raining digits and over 23,000 testing digits in images from
oogle Street View. There are two main formats to the database
one cropped into 32 × 32 MNIST like digits with the additions

f color, variable contrast, and some confusing data and the full
mages which contain extensive backgrounds and multiple digits
n addition to the challenges in the cropped format.

In this dataset, the foveate vision implemented with Gamma
aliency is used to localize and separate each number, turning
he task into one resembling MNIST rather than training a single
NN to recognize both the number of digits and the classification
153
Table 3
Attention prediction results on the foveated Toronto database.
Method\
Metric

ROC
(Judd)

ROC
(Borji)

Similarity Correlation NSS

Itti .737 .597 .403 .314 .369
AIM .794 .657 .433 .458 .561
Torralba .784 .650 .433 .469 .539
GBVS .839 .664 .502 .603 .594
FES .846 .571 .487 .536 .403
RARE .841 .656 .525 .632 .591
RCS .819 .629 .517 .592 .517
Gamma .858 .684 .607 .649 .583

Fig. 7. ROC curves on the Toronto Saliency Dataset. The images contain 3.8
times as many negative locations as positives.

of each. By using this divide-and-conquer approach the unsuper-
vised feature extraction is able to focus on representing relevant
parts of the image rather than trying to explain both the digit and
the noise, leading to more useful features.

Fig. 8 shows the foveate vision working on an example SVHN
image. It first segments a salient area (Fig. 8B-D), then breaks that
area up into the digits that compose the two objects found in that
location (Fig. 8E-J). By separating the digits in this manner, we
are able to extract features that correspond to a single object at a
time, rather than attempting to learn a network that explains an
entire scene with multiple labeled objects.

Table 4 shows the classification accuracies, segmentation ac-
curacies, and time per training epoch on the fully image dataset
with the enlarged bounding boxes created by the procedure
outlined in Geisler and Perry (2002). Segmentation accuracies are
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able 4
VHN results on the bounded box dataset.
Method Unsupervised Supervised

RWTA FOA TDN FOA Autoencoder VAE CNN Full CNN FOA STN Full

Classification 92.51 92.28 15.58 17.46 94.47 96.06 96.30
Segmentation 83.67 83.67 76.92 76.92 76.92 83.67 NA
Time (sec) 12638 2015 2372 2784 1426 1195 NA
Table 5
SVHN results on the full image dataset.
Method Unsupervised Supervised

RWTA FOA TDN FOA Autoencoder VAE CNN Full CNN FOA STN Full

Classification 73.30 71.59 5.13 8.34 68.15 80.58 28.03
Segmentation 72.43 72.43 NA NA NA 72.43 NA
Time (sec) 22658 2943 3689 4016 2397 1506 4549
a
s
t
T

calculated by dividing the intersection of the true and predicted
bounding boxes by their union. The STN and CNN results are
reported by the authors (Goodfellow et al., 2013; Jaderberg et al.,
2015) respectively, and do not include segmentation data or
time information. We implemented an autoencoder (Vincent,
Larochelle, Bengio, & Manzagol, 2008) and a stacked autoen-
coder (Zeng, Yu, Wang, Li, & Tao, 2017), which were not com-
petitive. RWTA and TDN (the recurrent part of the RWTA is
substituted by a time delay neural network (Waibel, Hanazawa,
Hinton, Shikano, & Lang, 1989)), which greatly simplifies the
training because it can be trained by backpropagation. In our
model that generates a priori the video from a sequence of images
it is easy to set the TDN size, and explains the similar results. Both
vastly outperform traditional unsupervised learning strategies
that do not use attention. In addition, the focus of attention also
improves the performance of a CNN close to the state-of-the-art
results reported by the STN. This means that the focus of attention
can be used with any neural network architecture for vision.

Fig. 9 shows the ROC curves for the bottom-up attention
ystem on the full SVHN dataset. These curves were created by
etting the digit locations as fixations and computing the ROC
sing the Judd method (Bylinskii et al., 2015).
Most results reported on the SVHN dataset use cropped digits,

nd even the few ones that try to classify the full address at
nce use an enlarged bounding box instead of the full image. In
his next test, however, we use the full collected images with
o additional preprocessing nor information about the image
ontents. This means that our bottom-up attention mechanism
ased on foveate vision implemented with the Gamma saliency
ust find the address location, segment, then identify each digit

or success. This is a much harder problem than simply classifying
oxed digits since it combines the problems of localization and
lassification in a paradigm that does not have fixed output size.
Table 5 shows the classification, segmentation, and timing

esults for the full dataset. In this case, adding an attention
echanism is imperative to success as the task involves clas-
ifying numbers in what are often extremely large background
ompared to the size of the numbers. It is gratifying to see that
ure unsupervised techniques using space–time information are
utperforming the standard deep architectures based on CNNs in
urated datasets. This shows that the curated datasets used by
he ML community are still very artificial and do not portray the
eality of autonomous vision. It is also important to note that the
oveal vision helps as a preprocessor for CNNs, because it avoids
he cluttered background, even though there are still errors in the
aliency algorithms.
Multi-digit, Cluttered MNIST Search with Top-Down Saliency
To test the combined bottom-up and top-down framework,

e used a cluttered multi-digit MNIST environment (Cudic, 2016;
udic, Burt, & Principe, 2018). This environment is useful for
154
a proof of concept since it is built upon a dataset for which
we know classification performance. This ensures that the com-
plexity in the problem comes from the multiple objects and
the clutter found in the scene. For a first test, the environment
consists of 128 x 128 pixels canvas with 5 random MNIST digits
placed at random locations, without the clutter. The end-to-end
architecture employed the standard MNIST 28 x 28 pixels input
and was a simple convolutional network trained on the original
MNIST data base, augmented with the bottom up and top-down
Gamma Saliency previously described. The bottom-up saliency
used parameters k = (1, 9) and µ = (.2, .5) because the digits
re small, and the background is uniform, so a single scale is
ufficient. The 64 feature maps for each of the 10 digits were ex-
racted at the end of the final convolutional layer before pooling.
he top-down saliency mask used the same k and µ parameters,

and the discriminatory weights in (6) and (7) were computed
after the neural network was trained in the full original MNIST
data set. During operation, the user first selects the number to be
searched (the external hint), and then the system automatically
biases the bottom-up saliency according to this extra information
as described above.

The first goal is to test the ‘‘search’’ of the top-down saliency
against the original bottom-up version of Gamma Saliency by
comparing the number of saccades required by each algorithm
to find target digits, specified by the user. Fig. 10 shows an
example image of the data base, as well as the bottom-up and
top-down saliency measures for one image, where the target
digit is ‘‘1’’. With the bottom-up saliency, each digit was found
in an average of 3 saccades. Adding the top-down framework
reduces the number of average saccades to 1.73 saccades per
digit, meaning the saliency was successfully biased towards the
desired object we want to find.

The more demanding task adds clutter as shown in Fig. 11.
In this case, the system is answering a simple question for each
new input image: does the image contain a specific (randomly
selected) digit?

The test uses three different architectures, shown in Fig. 11.
The first is a network given the full image augmented with a one-
hot vector with the target digit (Fig. 11A). The second network
preprocesses the image with bottom-up Gamma Saliency and
classifies the patch using a pre-trained MNIST network (Fig. 4B).
Finally, the third architecture uses both bottom-up and top-down
Gamma Saliency to find the target image before sending the
extracted image patch to the same pre-trained MNIST classi-
fier (Fig. 4B). We created 100,00 training images, as well as
25,000 validation and 25,000 test images to train the classifier in
Fig. 11.A, but the classifier for Fig. 11B does not need retraining
because the digits are from the original MNIST data set.

Table 6 shows the results for this experiment. The full network
trained on the scene has trouble combining information from the
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Fig. 8. Initial SVHN image (A), saliency map produced by Gamma Saliency (B), thresholded saliency map (C), the cropped patch around the house numbers (D), the
initial saliency map from the crop (E), the thresholded version of that map (F), the patch extracted around the object with the highest saliency (G), the saliency map
with return inhibition around the most salient point (H), the thresholded map (I), and the cropped second object (J).
cluttered image and the target, correctly identifying whether the
target is present in less than 72% of test images. The bottom-up
saliency network performance in one saccade is only 61% correct
targets, and it improves slowly with two saccades. Since this
attention mechanism is purely input driven, it often misses the
target digit, passing saccades of irrelevant digits to the classifier.

The top-down saliency, however, improves on both the
ottom-up saliency and the full canvas neural network, correctly
dentifying at the first saccade with 84% accuracy that the target
umber is present. With 2 saccades, the result is over 90%.
herefore, we conclude that the top-down information biases
he bottom-up saliency sufficiently to make the selected digit
ore probable, which speeds up the understanding task. If the
155
Table 6
Classification results for finding the target digit.
Input Full network Bottom-up Top-down

Full image 72.3 NA NA
One saccade NA 61.4 84.1
Two saccades NA 68.3 92.3

number of saccades is increased to 5 (the number of digits on
each canvas), the bottom-up saliency network approaches the
performance of the mixed saliency network, as expected. The
reason the mixed saliency network performance is higher when
compared with the conventional network is the benefit of being
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Fig. 9. ROC curve for finding the bounding box containing all numbers from the SVHN data set using foveated vision (A) and without blurring and centering (B).
Fig. 10. Example feature maps from the convolutional layers of the MNIST classifier, with saliency weighted for the digit 1.
Fig. 11. Training of the full network (A) and the end-to-end architecture with saliency (B).
able to remove background information, while also concentrating
on the correct foreground data. Recall that an added advantage
is that the classifier of the proposed end-to-end architecture is
also much smaller and can run in microprocessors for Internet of
Things (IoT) applications, since the network only processes a 28
x 28 pixel input instead of learning the entire canvas. The details
of both networks are presented in the Appendix.

5. Conclusion

In this paper we propose an architecture that mimics the
function of two fundamental mechanisms of the human vision
156
system: a saliency-based method for the spatial attention (ap-
proximating functions of the HVS dorsal pathway) and an object
recognition network (approximating the function of the HVS ven-
tral pathway). By separating these pathways, we can achieve
greater computational efficiency by quickly selecting subregions
of the image for full processing, as well as improve the feature
extraction by eliminating non-discriminatory data.

In addition to removing irrelevant information, the attention
pathway is a way to also create videos from still images, which
adds data augmentation to the new architecture and in spite of
being unsupervised, gets performance close to fully supervised
techniques. Here we use a RTWA network that has both spatial
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Fig. A.1. Block diagram of the RTWA.
nd temporal pathways to learn more discriminant data struc-
ure. This combination extracts robust features that cluster the
elevant information in objects without the need of labels. One
ajor drawback to spatial time features is the computation time,
specially the temporal component that uses an RNN. To mitigate
hese issues, we simply combined the features from different
rames using learned weights (TDN), which produced similar re-
ults at much faster speeds. We believe this was possible since the
nderlying data in the frames were the same, i.e. the videos were
reated simply with rotation. In a true video, the RNN would be
ecessary to learn the temporal relationship between the frames.
The inclusion of the top-down saliency is a major advantage in

onditions of high background clutter, and in scene understand-
ng with many objects. Fovea vision (Fig. 3) is the dispatcher for
cene understanding, and it must go over all of the salient points
hich can be very computation intensive and the visitation order

s dictated by pixel information only. Top-down attention is able
o change this ordering, when the information is made available
o the system. Basically, the vision system must use fovea vi-
ion to individualize each object, and store the extracted object
eatures in an external memory (content addressable memory —
AM) as shown in Fig. 2. This problem requires the use of extra
nformation to disambiguate the images, which the brain does
aturally through attention mechanisms. Since we are using ma-
hine learning methods, we employ a traditional CNN trained on a
arge dataset to discriminate among classes, although the system
oes not need human labels as stated above. Our proposal to
xtract object specific information in the top layers of CNNs uses
amma saliency applied to the top layers of a trained deep learn-
ng architecture. The method is simple, effective, and it shows
hat the local activation of units in the top layer of CNNs indeed
arry global information about the image type in a distributed
anner. We only use a linear model to make the decision, and
onlinear functions would likely improve the results. Very few
omputer vision systems today could achieve the performance of
ur end-to-end architecture. This is an exciting avenue of future
esearch.

Future work includes extending and testing the proposed
ethod in scene understanding, particularly occluded objects
here deep learning is worse than human performance. In ad-
ition, future research may aim to further improve the attention
echanism to make it focus not only on areas of the image that
re locally different, but ones that offer the greatest scene under-
tanding when combined with the information already extracted
rom the image. Finally, further enhancing the bio-realism and
utonomy of the architecture requires inclusion of some form of
upervision to extract object affordances for scene understanding,
sing reinforcement learning techniques.
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Appendix

All networks were created using Keras [92] using the Theano
backend. We adopt the notation that conv [N, w, s] denotes a
convolutional layer with N filters of size w x w, and stride s; fc
[N] is a fully connected layer with N units; and max[s] is a s x s
max-pooling layer with stride s. The CNN model is conv [64,9,9]-
max [2]- conv [32,7,7] - max [2] - fc [256] – fc [10] with rectified
linear units following each weight layer and a softmax layer at the
end for classification. For the CNN with STN, the STN network is
max [2]- conv [20,5,5] – max [2]-conv [20,5,5] – fc [50] – fc [6].

The spatial encoder in the RWTA model is conv [64,3,3] – conv
[64,3,3], while the convolutional time encoder is conv [64,3,3]
with a time sequence of 5 frames (Fig. A.1). A linear SVM is
learned on the latent states of the RWTA to produce the classi-
fication scores.

Since the images and digits in this dataset are uniformly sized,
a single scale attention model was used. The center kernel has
an order of k = 1 and a shape parameter of µ = 0.2. The
neighborhood kernel has an order of k = 9 and µ = 0.5. A single
frame was extracted from each image since each image contained
only a single digit and contained no location information.

Each network was trained for 500 epochs on a Tesla K80 GPU.

A.1. SVHN

The CNN model is: conv [48,5,1] – max [2] – conv [64,5,1]
– conv [128,5,1] -max [2]-conv [160,5,1]- conv [192,5,1] – max
[2] – conv [192,5,1] – conv [192,5,1] – max [2] – conv [192,5,1]
– fc [3072] -f c [3072] – fc [3072], with rectified linear units
following each weight layer, followed by five parallel fc [11]
and softmax layers for classification. There are 11 outputs in the
final layer to account for the digits 0–9 and an extra class for
noise classification. The ST-CNN has a single spatial transformer

before the first convolutional layer of the CNN model the STNs
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ocalization network architecture is: conv [32,5,1] – max [2] –
onv [32,5,1]-fc [32] – fc [32].
The spatial encoder in the RWTA model is conv [64,3,3] – conv

64,3,3] – conv [128,3,3], while the convolutional time encoder
s conv [64,3,3] with a time sequence of 5 frames. A linear SVM
s learned on the latent states of the RWTA to produce the
lassification scores.
Since the images and digits in this dataset have different sizes,

multi scale attention model was used. The center kernels have
n order of k = 1 and a shape parameter of µ = 0.1; µ = 0.3;

and µ = 0.8. The neighborhood kernel has an order of k = 13; k =

; k = 5 and µ = 0.3; µ = 0.5; µ = 0.7. These parameters were
sed to create the initial saliency maps and find the main fixation
oints. For the local saliency, the largest scale was removed to
ocus on finer details, leaving a two-scale kernel. Each network
as trained for 10000 epochs on a Tesla K80 GPU.

.2. Cluttered MNIST

The network in Fig. 11A was a conv [32,3,3] – conv [64,3,3]
pool [2,2]- conv [64,3,3] – conv [128,3,3] – pool [2,2] – conv

128,3,3] – conv [256,3,3] – pool [2,2] – fc [500] – fc [100] – fc
2] with the one-hot target vector concatenated to the features
efore the first dense layer.
The network in Fig. 11b used for the saliency-based architec-

ures is conv [32,3,3] – conv [32,3,3] – pool [2,2] – conv [64,3,3]
conv [64,3,3] – pool [2,2] – fc [100] – fc [10].
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