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Facial expression recognition (FER) is a crucial task for human emotion analysis and has attracted wide
interest in the field of computer vision and affective computing. General convolutional-based FER meth-
ods rely on the powerful pattern abstraction of deep models, but they lack the ability to use semantic
information behind significant facial areas in physiological anatomy and cognitive neurology. In this
work, we propose a novel approach for expression feature learning called Semantic Graph-based Dual-
Stream Network (SG-DSN), which designs a graph representation to model key appearance and geometric
facial changes as well as their semantic relationships. A dual-stream network (DSN) with stacked graph
convolutional attention blocks (GCABs) is introduced to automatically learn discriminative features from
the organized graph representation and finally predict expressions. Experiments on three lab-controlled
datasets and two in-the-wild datasets demonstrate that the proposed SG-DSN achieves competitive per-
formance compared with several latest methods.

� 2021 Published by Elsevier B.V.
1. Introduction

Facial expression recognition (FER) has become an attractive
research area in recent years, as it plays a significant role in many
applications such as face animation [1] and medical diagnosis [2].
One key challenge of implementing effective FER is to capture dis-
criminative expression information from static images or video
sequences. Previous studies mainly depend on hand-craft feature
design or automatic feature learning followed by classifier con-
struction [3,4]. However, these methods generally handle local
and holistic expression cues in the view of classic image process-
ing, without considering latent semantic information. In this work,
we aim to develop a principled and effective method that combines
the facial appearance and geometric information with their seman-
tic relationships and leverage it for FER.

In the last few years, the convolutional neural network (CNN)
has achieved great improvement in the FER rate and eliminated
the tedious design of the hand-craft feature [5,6]. Recently,
researchers attempt to optimize the feature learning process that
can utilize spatial or temporal expression information to enhance
FER performance [7,8]. Nevertheless, most of these methods sim-
ply regard facial expressions as dynamic variations of several key
parts. The capability is limited since they do not explicitly consider
spatial or co-occurring relationships among these facial areas,
which are crucial for understanding facial expression according
to physiological anatomy and cognitive neurology studies [9–11].

To move beyond the above drawbacks, we need a novel
approach that can automatically learn patterns contained in key
facial parts as well as their semantic relationships. For local texture
features, it is the strength of classic image processing technology to
capture discriminative expression information from different
dimensions. For semantic relationships, one feasible way is to
exploit the graph structure based on facial landmarks to represent
faces, which is more consistent with facial muscle anatomical def-
inition [12,13]. Yet, the non-grid structure of graphs makes it diffi-
cult to use standard deep models like CNNs. Currently, graph
neural networks (GNNs) have received increasing attention and
have successfully been generalized to lots of computer vision tasks,
such as image-text matching [14] and human action recognition
[15]. Thus, how to exploit a graph to encode both spatial and
semantic information as well as how to implement GNNs to learn
discriminative features from the graph representation are two
major problems in graph-based FER.

In this paper, we design a graph representation of facial expres-
sion followed by an extended GNN, called Semantic Graph-based
Dual-Stream Network (SG-DSN). The proposed graph representa-
tion is generated based on facial landmarks, where each node indi-
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cates a local patch around one landmark. The semantic connections
among every node pair are initialized as edges of the facial graph.
Then, the dual-stream network (DSN) integrates both appearance
and geometric variations as well as their semantic relationships
embedded in the organized facial graph to learn effective features
and classify facial expressions.

The main contributions of this work summarize in four aspects:

� A graph representation for modeling facial expressions is gener-
ated, which consists of reasonable landmarks and semantic con-
nections based on prior knowledge in physiological anatomy
and cognitive neurology.

� A variety of local feature extraction methods and indexing ini-
tialization strategies are designed and evaluated for effective
description of node attributes and edge attributes respectively.

� A dual-stream network is built by stacking graph convolution
layers with attention blocks to learn discriminative features,
which can integrate both local variations and their semantic
relationships for expression prediction.

� On five public datasets, the proposed SG-DSN achieves remark-
able performance against previous FER methods.

2. Related work

2.1. Semantic expression representation

An effective facial representation can not only focus on the crit-
ical facial areas but also eliminate the useless information caused
by background noises or facial organ deformations. Generalizing
facial semantic information to describe expressions is an emerging
topic in FER research. Previous studies usually cropped images
based on basic facial components (e.g. eyes, nose, and mouth)
and then captured the local texture and spatial relationships from
facial patches. Zhang et al. [16] decomposed facial landmarks into
different parts to extract dynamic semantic geometric information
from facial morphological variations, which complemented the
static appearance features. Ye et al. [17] proposed a region-based
deep model to fuse semantic information among different levels
of receptive fields within valuable and unified patches. Recently,
several graph-based methods have been designed for more effec-
tive facial representation, which systemically modeled semantic
information in a static sense or a function of time. Liu et al. [18]
built an action units graph that encoded both appearance and geo-
metric expression information and co-occurring action unit rela-
tions to achieve effective representation for FER. Li et al. [19]
presented a semantic relationship embedded representation learn-
ing framework through structured knowledge-graph to generate
enhanced facial representation. Zhong et al. [20] utilized a graph
structure to represent facial expressions for removing useless
information and depicting geometric changes within different
facial expressions. Zhang et al. [21] introduced a context-aware
affective graph to extract context elements for discrete emotion
inferring and achieved higher performance than previous methods.
However, most of the studies regarded the graph as an indepen-
dent geometric branch outside the facial appearance that results
in limited performance. And some methods also demand temporal
information when building facial graphs, which cannot be imple-
mented on the latest large-scale FER dataset. In this paper, a graph
representation is constructed to jointly model key facial variations
and their semantic relationships based on static images.

2.2. Graph neural network

GNNs are widely used in many artificial intelligence tasks, due
to the ability of feature learning for graph structure data. In the
field of computer vision, GNNs can be sorted into two categories
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with different processing thoughts: the input-based and the
network-based. The first type attempts to transform graph struc-
ture data into forms that can be trained by standard deep models.
Such et al. [22] presented a Graph-CNN learning framework for
image classification that could process graph data while maintain-
ing the advantage of standard CNNs. Walecki et al. [23] provided an
auto-encoder to fuse local expression confidence values and then
predicted facial expressions. In [24], a structured deep network
was put forward to model graph inputs and generate complex fea-
ture representations simultaneously for expression intensity esti-
mation. By contrast, network-based approaches aim to build
specific neural networks that are more suitable for graph structure
data than input-based ones. Zhou et al. [25] proposed a spatial–
temporal graph convolutional network to learn both spatial and
temporal patterns from graph data and had proved its applicability
to FER. Li et al. [19] introduced a gated graph neural network
(GGNN) in a multi-scale CNN framework for propagating node
information to improve expression representation. Zhang et al.
[21] proposed a graph-based reasoning network to learn the affec-
tive relationship during the back-propagation process and outper-
formed the baseline methods. Zhong et al. [20] exploited a
bidirectional recurrent neural network (BRNN) to iterate each node
on a facial graph for the extraction of appearance and geometric
patterns. Different from the above methods that independently
considering the relational dependencies among facial areas, we
propose a dual-stream GNN to learn spatial features and semantic
relationships simultaneously. In addition, an attention module like
[26] is employed to explicitly enhance the semantic relational rea-
soning of facial variations, which improves the effectiveness and
interpretation of previous methods.
3. Proposed method

Recent physiological and psychological studies have revealed
that different expressions can be recognized by perceptual factors
in key facial areas and specific semantic information in facial con-
text [9,10]. Inspired by this prior knowledge, a novel graph-based
FER method is proposed in this section. Specifically, we firstly
demonstrate the processes of the local feature extraction and the
semantic relationship initialization. The two outputs are defined
as the node and edge attributes separately to construct our graph
representation. Next, we design a dual-stream network (DSN) by
stacking graph convolutional attention blocks (GCABs) to learn fea-
tures from the facial graph for effective FER.

The pipeline of our SG-DSN is illustrated in Fig. 1. An input
image is first preprocessed with face detection and rotation correc-
tion. Next, local texture features are extracted based on detected
and computed landmarks, while edge indexes are initialized at
the same step. After the facial graph is generated, it is then trans-
formed as the input of the DSN for final facial expression
prediction.
3.1. Facial graph representation

Based on the theory of cognitive neuroscience about face per-
ception, human beings use a dual-system model to process and
recognize facial information: analytic processing and holistic pro-
cessing [27]. Specifically, analytic processing obtains correspond-
ing multi-dimensional cluster features by analyzing local areas of
the face, while holistic processing aims to generate a holistic rep-
resentation to perceive the overall structure among critical facial
parts [27,28]. Therefore, in order to formally exploit above intrinsic
properties of facial expressions, a reasonable way is to introduce
the graph structure for expression modeling [18,20,21]. When
one face is described by a graph, not only the scattered facial



Fig. 1. The pipeline of our SG-DSN method.
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changes can be integrated, but also the expression semantic rela-
tionship can be embedded to form a local-to–holistic facial repre-
sentation. Therefore, a graph representation is designed by the
local feature extraction and the semantic relationship initialization
in this section.

3.1.1. Local feature extraction
Local feature extraction aims to focus on texture changes in

specific facial areas among different expressions. Generally, facial
landmarks follow facial muscle anatomy that can be further used
to locate target facial patches. In this work, 68 facial landmarks
are firstly detected and then 30 (including 17 of the external out-
line, five of the nose contour, and eight of the mouth) of them
are discarded due to their non-saliency of expression. This land-
mark selection is based on facial topology and FACS definition,
which is widely used in previous studies [13,20,25]. In addition,
to cover the texture of the forehead area where key action units
(AU) may activate (e.g., AU6: brow lowerer; AU9: nose wrinkler),
two additional landmarks are calculated based on existing ones by:

lp0 ¼ 0:5� l22 þ 0:5� l23; ð1Þ
and

lp00 ¼ 2� lp0 � l28; ð2Þ
where li denotes the landmark coordinate. As shown in Fig. 2, we
get a total of 40 reasonable facial landmarks. The contribution of
the landmark selection and addition is evaluated in Appendix A.

Next, the local texture information around each facial landmark
p 2 P is extracted. We assume that the result of analytic processing
can be achieved by using different feature detectors. Considering
the patch size of landmark neighbors is usually small, we propose
two methods to conduct local feature extraction.

One way is to use fused classic features. Here, Gabor filters and
HOG descriptors are applied for effectiveness and convenient com-
putation. Fig. 3 presents the overall framework of the process.
Specifically, we set
Fig. 2. Detection and calculation of facial landmarks.
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h ¼ 0;p=4;p=2;3p=4;p;5p=4;3p=2;7p=4,
k ¼ 4;4

ffiffiffi
2

p
;8;8

ffiffiffi
2

p
;16 to generate 40 sets of Gabor vectors, where h

and k are two important parameters that indicate wavelength and
direction of the filter respectively. These vectors are then fused
averagely in eight directions to output the local Gabor feature f gp
attached to landmark p. For HOG descriptors, nine feature maps
are generated based on the gradient amplitude and orientation at
each pixel. Next, the obtained feature maps are applied to encode

local feature vector f hp about the area of landmark p through corre-
sponding feature channels. Effects of different Gabor kernel sizes
and different cell and block numbers of HOG are evaluated in
Section 4.2.1.

Both Gabor and HOG feature vectors are then concatenated to
generate the complete local texture feature. Thus, the local texture
feature to the neighborhood of landmark p can be formulated by:

f p ¼ Concatðf gp; f hpÞ; ð3Þ

where Concatð�Þ is the concatenation function. Since the two types
of detectors have the same order of magnitude (640 and 324 for
Gabor and HOG respectively in this work), powerful performance
can be achieved by directly feature concatenation. But when choos-
ing other kinds of local texture detectors, feature balancing may be
an important option.

Furthermore, we also attempt to design a lite-CNN to learn local
texture features following the intuition behind well-knownmodels
like VGG-Face [29], because the CNN-based descriptor has proven
its effectiveness in previous work [6], even if it is more time-
consuming. As shown in Fig. 4, our lite-CNN has a five-layer net-
work architecture with an image patch size of 16� 16 as input,
where two convolutional layers and two max-pooling layers are
alternatively stacked, followed by a fully connected layer. More
concretely, the convolutional operation uses 3� 3 size kernels
and is implemented in a stride of 1 without padding, while the ker-
nel size of max-pooling layers is 2� 2. And the output feature
maps are fully connected to generate the final local texture feature
vector f p. Note that the input size is the same as that used in the
above fused feature to balance the need for performance and fair
comparison. And before feeding all the local patches, the lite-
CNN will first be pre-trained like other CNN-based FER methods
[19]. The performance evaluation between these two local feature
extraction methods is conducted in Section 4.2.2.

3.1.2. Semantic relationship initialization
The next key part is to simulate the procedure of holistic pro-

cessing. Since every facial expression consists of a combination of
local facial variations, how to model this kind of relationship is
the other critical job. Fig. 5 shows an example of how to build
the semantic relationship of happiness. The blue lines in the left
sub-figure indicate possible semantic dependencies. Specifically,
edge connections are first initialized based on prior knowledge,



Fig. 3. The framework of local feature extraction via Gabor and HOG.

Fig. 4. The framework of local feature extraction via lite-CNN.
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including FACS and facial topology [12,13,25], to establish seman-
tic dependencies among facial changes. Furthermore, edge indexes
are calculated to introduce attributes of these pre-defined links. In
this subsection, we design two edge indexing strategies: Euclidean
distance and Hop distance.

Euclidean distance: For any two nodes (landmarks) p; q in the
node set P, their edge indexes can be calculated by:

sp;q ¼ klp � lqk2
Deye

; ð4Þ
Fig. 5. An example of semantic
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where lp; lq are the coordinates of landmarks p; q, and Deye is the
inner-eyes distance which is used for normalization of scale
diversity.

Hop distance: Let A indicates the adjacency matrix of the initial-
ized graph, it is easy to compute the nearest hop matrix A0, in
which A0

pq denotes the shortest hop distance between any two
nodes p; q. Considering a semantic facial action may occur in a joint
region composed of several adjacent nodes, a node may also inter-
act with the neighbors of its connected node. So the hop distance
can be formulated as their edge indexes by:

sp;q ¼ A0
pq; if A0

pq 6 B;B 2 f1;2g
0; otherwise

(
; ð5Þ

where B is defined as the receptive threshold for all the connected
node pairs, that is B denotes the max acceptable hop distance on
the graph. In practice, we set B ¼ 2 for a trade-off between effi-
ciency and relevance.

However, either Euclidean distance or Hop distance is only ini-
tial edge attributes and needs dependency reasoning to learn
semantic features. Besides, the location of landmarks is equally
important for graph node representations. Thus, landmark coordi-
nates are taken together to form the global geometric cues of the
facial graph. Similarly, the effects of these two strategies and their
settings are compared in Section 4.2.3.

3.1.3. Graph generation
After the two steps above, we can present the definition of our

graph representation. Definition 1 explains the details of the facial
graph in this work.

Definition 1. Let G ¼ ðV ; EÞ denotes a facial graph: 8v i 2 V is a
region near one facial landmark; 8ej 2 E is a 2-element subset of V
that represents any edge existing in graph. Pv ¼ flij1 6 i 6 jV jg
denotes the landmark coordinates. Fv ¼ ff ij1 6 i 6 jV jg is the node
attribute set, and f i represents the extracted local texture feature of
the corresponding facial patch v i, and jV j is the number of
relationships in happiness.
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landmarks in V. Fe ¼ fsjj1 6 j 6 jEjg is the edge attribute set, sj
indicates the semantic distance of edge ej, and jEj is the number of
edges in E.

Note that the obtained local texture features and initial edge
indexes are taken as the node attribute set Fv and the edge attri-
bute set Fe for graph generation respectively.

There are two advantages of the proposed facial graph:

1. The facial graph describes expressions from a formalized local-
to-holistic view and keeps the latent semantic information by
using graph structure;

2. The facial graph integrates both appearance and geometric
information of expressions that can provide sufficient cues.

In the next subsection, we introduce a graph-based neural net-
work to learn effective features from the generated facial graph for
enhanced FER.

3.2. Dual-stream graph network for FER

Different from classic CNNs that have the input with grid struc-
tures, GNNs can manage graph structure data and maintain the
effectiveness of the convolution procedure. In this subsection, a
GNN based on graph convolution and attention module is designed
to process the above generated facial graph for expression feature
learning.

3.2.1. Graph convolutional attention block
Given a graph G with nodes and their representations, the idea

of graph convolution is designed in the Fourier domain by the mul-
tiplication of a signal x 2 RN with a filter gh ¼ diagðhÞ parameter-
ized by h 2 RN as follows:

gh � x ¼ UghU
>x; ð6Þ

where U is the matrix of eigenvectors of the normalized graph

Laplacian L ¼ IN � D�1
2AD�1

2 ¼ UKU> (D indicates the degree matrix
and A is the adjacency matrix), with a diagonal matrix of its eigen-
values K. Specifically, the graph convolutional layer (GCL) general-
izes the definition to a signal X 2 RN�C with C input channels (C is
the vector dimension of each vertex attribute in our work) and K fil-
ters for feature maps as follows:

Z ¼ �D�1
2�A�D�1

2XH; ð7Þ
where �A ¼ Aþ IN and �Dii ¼ Rj

�Aij;H is a matrix of filter parameters
and Z 2 RN�K is the convolved signal matrix. The GCL can be trained
on a specific structure by learning filters based on the eigendecom-
position of the graph Laplacian that is suitable for our proposed
facial graph.

In addition, to further extract the semantic relationship among
the facial graph, we design the graph convolutional attention block
(GCAB) following the attention structure given in [30]. In particu-
lar, one channel attention module and one node attention module
are added after the outputs of max-pooling and average-pooling of
each GCL as shown in Fig. 6.

Differently, we replace the common convolution operation with
graph convolution in the second part, called node attention, to
match the requirement of the GNN. Therefore, for one middle fea-
Fig. 6. The process of attention mechanism in GCAB.
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ture map H, the channel attention coefficients and the node atten-
tion coefficients are calculated as:

MchðHÞ ¼ �ðMLPðAvgPoolðHÞÞ þMLPðMaxPoolðHÞÞÞ; ð8Þ

MnoðH0Þ ¼ �ðGCLðAvgPoolðH0Þ;MaxPoolðH0ÞÞÞ; ð9Þ
where � denotes sigmoid function, the MLP is a multi-layer percep-
tron with ReLU activation function that shares weights for both
pooling results, the H0 ¼ MchðHÞ � H;H00 ¼ MnoðH0Þ � H0, and � indi-
cates element-wise multiplication. Specifically, the pooling in chan-
nel attention step is to focus on the importance of different
channels instead of node representations, while the pooling in the
node attention is conducted across the channel to suppress infor-
mation of redundant channels.

Note that graph attention networks (GATs) [31] also can achieve
attention on graph learning. But only the edge connections are
used in GATs, the consideration of the edge attributes is missing
whose are very important semantic information for FER. That is
why we design the GCAB instead of applying GATs directly. Based
on the GCAB, a DSN can be built for feature learning from the gen-
erated facial graph.

3.2.2. Graph transformation
Before processing our facial graph by GCABs, we need firstly

transform the graph data into the input format that satisfies net-
work training. Concretely, the variant adjacency matrix
Ma 2 RN�N , the node texture matrix Mc 2 RN�C of graph and the
landmark location matrix Ml 2 RN�2 are constructed for feature
learning as follows:

Ma ¼

0 s1;2 � � � � � � s1;N

s2;1 0 . .
. . .

. ..
.

..

. . .
. . .

. . .
. ..

.

..

. . .
. . .

.
0 sN�1;N

sN;1 � � � � � � sN;N�1 0

2
6666666664

3
7777777775
; ð10Þ

and

Mc ¼

f 11 f 12 � � � f 1C
f 21 f 22 � � � f 2C

..

. ..
. . .

. ..
.

f N1 f N2 � � � f NC

2
66664

3
77775; Ml ¼

l1;x l1;y
l2;x l2;y

..

. ..
.

lN;x lN;y

2
66664

3
77775; ð11Þ

where spq (spq ¼ sqp) is the semantic index computed depending on
different strategies. And f p½1;...;C� are local texture features calculated
by Eq. (3) or extracted by lite-CNN module, while li;x and li;y are the
landmark coordinates respectively.

3.2.3. Network architecture and learning
To capture the appearance and geometric expression patterns

as well as their semantic relationships simultaneously, it is impor-
tant to keep the graph structure during the learning process. Thus,
we stack up several GCABs into a multi-layer dual-stream network
(DSN) for multi-level expression feature learning on the facial
graph. Since the local appearance and landmark positions belong
to different feature spaces and have different dimensions, two
streams are needed and the number of GCABs they need may also
be different. Fig. 7 gives the architecture of DSN. Effects of different
GCAB layer numbers are tested in Section 4.2.4 to determine the
optimal network architecture.

The Ma;Mc and Ml are then fed into the DSN and the required
item Z for graph convolution operation is calculated previously
according to Eq. (7) before data loading. All the trainable parame-
ters are updated by stochastic gradient descent (SGD)with backprop-



Fig. 7. The architecture of DSN.
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agation (BP). After several layers of the GCAB, the outputs of each
node in DSN are combined with the fully connected layer and set
as the input to a softmax layer for expression prediction. The cross-
entropy cost is evaluated as the loss function for model training and
the dropout trick is applied to alleviate the overfitting problem.
Table 1
Comparison of different Gabor kernel size.

Kernel size Accuracy(%)

CK+ Oulu-CASIA

3� 3 96.15 86.40
5� 5 92.86 85.23
7� 7 88.11 82.68

1Bold value denotes best.
4. Experiments

In this section, we evaluate the performance of SG-DSN on three
lab-controlled FER datasets: Extended Cohn-Kanade (CK+) [32],
Oulu-CASIA [33] and MMI [34], and two in-the-wild datasets: Sta-
tic Facial Expressions in the Wild (SFEW) [35] and real-world
expression database (RAF-DB) [36]. In particular, multiple groups
of comparison experiments on CK + and Oulu-CASIA datasets are
set up for ablation studies. Then, the recognition power of the
SG-DSN model is verified against several latest methods on five
datasets.

4.1. Implementation details

In this work, all parameters are trained using NVIDIA GeForce
GTX 1080Ti GPU based on the open-source Tensorflow platform.
Each GCAB has 64 channels for output. The decayed learning rate
is set as 0:005, and the dropout ratio is 0:5. All the parameters
are fixed throughout the whole experiments. Images from all the
datasets are resized to 224� 224. The landmark detection is per-
formed by SAN [37] and the official provided metadata of land-
marks are used for hard samples. For those still undetectable
images, we just discard them and treat them as samples of the
wrong prediction when evaluating the FER performance. In addi-
tion, the experimental environment and data preprocessing meth-
ods are the same or similar as previous approaches for a fair
comparison.

4.1.1. Datasets
CK+ is one of the most widely used FER datasets, which contains

593 image sequences of 123 subjects. In this paper, seven emotions
(anger, contempt, disgust, fear, happiness, sadness, and surprise)
are taken into consideration. For each sequence, the last three
frames are selected and grouped into 10 subject-independent sub-
sets for 10-fold cross-validation.

Oulu-CASIA includes six emotions (without contempt) collected
from 80 subjects aged 23 to 58. Each sequence starts at the onset
frame and ends at the apex frame of the corresponding expression.
Similar to CK + dataset, the last three frames of every sequence are
grouped for the 10-fold cross-validation.

MMI has 205 sequences of 30 subjects labeled with six emo-
tions. In this work, we conduct a subject-independent 10-fold
cross-validation for experimental comparability. It is noteworthy
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that three apex frames in each sequence are selected for the
experiment.

SFEW consists of 1394 images from video clips of movies in the
real world, which are labeled as six basic expressions, and neutral
expression. Since it has divided training, validation and test groups,
we select these official sets for cross-validation.

RAF-DB is a large-scale in-the-wild dataset and has 15,339
images with the same expressions as the SFEW dataset. In this
work, 12,271 and 3068 images are used as the training set and test
set respectively.
4.1.2. Metrics
We evaluate the proposed SG-DSN with accuracy metric to

compare the performance of each FER approach quantitatively.

The accuracy Acci of the convergence model in ith fold can be
obtained by:

Acci ¼ CPLi
GTLi

; ð12Þ

where GTLi and CPLi are the total number of ground truth labels and

the number of correct prediction ith fold separately. Then the aver-
age FER accuracy is calculated as follows:

Acc ¼ 1
g
Xg
i¼1

Acci; ð13Þ

where g is the number of folds, which is varied according to differ-
ent datasets in this work.
4.2. Ablation studies

The effectiveness of our proposed components in SG-DSN is
examined in this subsection by FER performance experiments on
CK + and Oulu-CASIA datasets.
4.2.1. Parameters of local texture descriptors
First, we evaluate the performance on different parameter sets

of Gabor and HOG features. For Gabor filters, three groups of exper-
iments are conducted with kernel sizes of 3� 3;5� 5, and 7� 7.
And these generated Gabor vectors are then averaged for later fea-
ture fusion. As shown in Table 1, the kernel size of 3� 3 performs
best. One possible explanation is that a smaller kernel size might
result in a better description of the texture. Thus, we use 3� 3 size
kernel in the final implementation. For HOG descriptors, we choose
the cell size of 4� 4 and 8� 8 with corresponding block size of
2� 2 and 1� 1 separately. Table 2 shows the effects on two differ-
ent groups of cell sizes and block sizes of the HOG feature for FER.
The comparison reveals that the highest performance occurs at
4� 4 cell size and 2� 2 block size, which are followed in later
experiments. And the possible reason for the case of HOG is that
more blocks and small cells can achieve fine-grained and small-
scale gradient sampling, especially for the local patches segmented
in our work.



Table 2
Comparison of different HOG parameters.

Parameter sets Accuracy(%)

Cell size Block size CK+ Oulu-CASIA

4� 4 2� 2 95.19 87.25
8� 8 1� 1 89.10 83.63

1Bold value denotes best.

Table 4
Performance with and without edge indexes and attention.

Method (Lite-CNN) Accuracy(%)

CK+ Oulu-CASIA

Without edge indexes 90.81 81.59
With Euclidean distance 97.52 86.32
With Hop distance 98.07 86.53
Euclidean distance + Attention 98.36 88.79
Hop distance + Attention 99.23 89.24

Table 5
Different architectures of GCABs and DSN on CK + dataset.

Number of GCAB layers Accuracy(%)

Stream-A Stream-B CK+ Oulu-CASIA

2-layer 2-layer 94.36 84.12
2-layer 3-layer 90.10 81.48
3-layer 2-layer 99.23 89.24
4-layer 2-layer 95.82 87.15

DSN (3-layer) 95.63 74.46
DSN (2-layer) 91.24 69.28
Baseline (SVM) 87.19 63.15

Baseline (VGG-Face) 92.71 82.17

1Bold value denotes best.
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4.2.2. Local feature extraction methods
In Section 3.1.1, we present two methods for local feature

extraction. As shown in Table 3, we verify the effectiveness of sin-
gle classic features, fused features, and lite-CNN features respec-
tively. The results demonstrate that the SG-DSN with fused
features can achieve better performance than only using the other
two single local features. In addition, the fused feature and the lite-
CNN feature get almost equally high accuracy on CK+, while the
former performs better on Oulu-CASIA. One possible explanation
is that the insufficient training samples limit the effectiveness of
the lite-CNN. A similar situation also applied to the case on MMI
(see Table 6). But the deep features show better results on the
large-scale in-the-wild dataset (see Table 7). On the other hand,
it reveals that our DSN is compatible with different local features.
Therefore, both of the two methods are followed in subsequent
experiments.

4.2.3. Effects of edge attributes and attention
To verify the effectiveness of the two proposed strategies for the

semantic relationship initialization in our facial graph, we blind the
edge attributes by setting sj ¼ 1; ð1 6 j 6 jEjÞ. Besides, the node
attributes are generated using the fused feature as above and the
attention module is not used in this stage. The results in Table 4
illustrate that both the two semantic indexes can raise 7% and
5% accuracy on CK + and Oulu-CASIA respectively. Furthermore,
the accuracy of the Hop distance is slightly higher than that of
the Euclidean distance, which shows that the former can better
represent the semantic relationship of facial changes in expres-
sions. On the other hand, we further explore the role of our atten-
tion module. As shown in Table 4, both the two models using
different semantic strategies benefits from introducing attention
mechanism into DSN. These observations confirm the prior knowl-
edge that the significant facial changes in key areas are co-
occurring and have prior importance for specific expression. There-
fore, we exploit these two components to make fully use of the
semantic relationship encoded in the proposed facial graph.

4.2.4. Architectures of GCAB layers
In this part, we compare the performance of DSN with different

architectures. Four GCAB groups are trained with the same setting
respectively, using our facial graph as input. As summarized in
Table 5, the best result appears at the third architecture, which
has 3-layer GCAB for stream-A and 2-layer GCAB for stream-B. It
is observed that the performance does not always increase with
the number of GCAB layers. We believe the reason is that the
Table 3
Performance with and without feature fusion.

Method Accuracy(%)

CK+ Oulu-CASIA

Single Gabor feature 96.15 86.40
Single HOG feature 95.19 87.25
Fused feature 98.86 90.88
Lite-CNN feature 99.23 89.24

1Bold value denotes best.
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dimension of our graph structure is not large, so that too deep lay-
ers will make the node features tend to converge to the same vec-
tor and gradually become indistinguishable. This phenomenon is
also in line with the studies in [38,39]. Besides, we also experiment
with the case of using only one stream with a concatenated matrix
of the appearance and geometric attributes. Since graph convolu-
tion is a message passing and aggregation method, we implement
SVM and VGG-Face as baseline models by sending averaged local
textures and semantic features. From Table 5, three of the architec-
tures outperform the baseline model and the dual-stream frame-
work performs better than the single DSN. One possible reason is
that these two types of features have different dimensions and
belong to different feature spaces. The simple feature-level fusion
might suppress the contribution of geometric so that we applied
two branches of feature learning and decision-level fusion, which
is also used in previous methods [16]. Thus, we choose the third
architecture as the backbone of SG-DSN for later performance com-
parison with the latest methods.

4.3. Visualization of learned semantics

For the purpose of exploring the semantics of features, the visu-
alization of features learned by SG-DSN is conducted. In particular,
we link the normalized graph features to their related input nodes
to present the semantic weights. As illustrated in Fig. 8, the larger
the size and the darker the color of the node is, the greater contri-
bution the node feature provides. For example, the nodes near the
lip corner and upper lip play important roles in happiness and sur-
prise respectively. In addition, the two additional landmarks also
provide significant contributions in contempt, disgust, and surprise.
And these observations are also consistent with the theory in phys-
iological anatomy and cognitive neurology, which proves our SG-
DSN can explicitly extract the semantic information of facial
expressions and has certain interpretability.

4.4. Comparison with state-of-the-art methods

4.4.1. Performance evaluation on lab-controlled datasets
To evaluate the performance of SG-DSN with the above settings,

we firstly conduct experiments on three lab-controlled datasets:



Table 6
Performances on three lab-controlled datasets.

Methods Data Accuracy(%)

CK+ Oulu-CASIA MMI

DAUGN [18] static image 97.67 84.28 80.11
DDL [40] static image 99.16 88.26 83.67
DeRL [41] image pair 97.30 88.00 73.23
DLP-CNN [36] static image 95.78 / 78.46
DTAGN [42] sequence 97.25 81.46 70.24
FER-IK [43] static image 97.59 / 84.90
IFSL [44] static image 98.70 / 92.60
MSCNN-PHRNN [16] sequence 98.50 86.25 81.18
RCFN [17] static image 97.94 86.94 /
SG-DSN (fused feature) static image 98.86 90.88 85.75
SG-DSN (lite-CNN) static image 99.23 89.24 82.64

1 Bold values denote the best, italic values denote the second best.
2 Fused feature and lite-CNN are two versions using different local feature extraction methods.
3The IFSL takes the advantage of non-deep feature in small-scale datasets so that obtains leading performance.

Table 7
Comparison on SFEW dataset.

Methods Framework Accuracy(%)

SFEW RAF-DB

DAUGN [18] G. + CNN 55.36 86.03
DLP-CNN [36] CNN 51.05 84.13
IPFR [45] deep 57.10 /
LDL-ALSG [46] G. + CNN 56.50 85.53
RAN [4] CNN + Att. 54.19 86.90
RCFN [17] CNN 43.28 /
IFSL [44] non-deep 46.50 76.90
SG-DSN (fused feature) GNN + Att. 56.35 86.87
SG-DSN (lite-CNN) GNN + Att. 57.42 87.13

1 Bold values denote the best, italic values denote the second best.
2 G. denotes using graph-based representation of facial expression and Att. indicates
attention module.
3 Fused feature and lite-CNN are two versions using different local feature extrac-
tion methods.
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CK+, Oulu-CASIA, and MMI against several previous FER methods,
including DAUGN [18], DDL [40], DeRL [41], DLP-CNN [36], DTAGN
[42], FER-IK [43], IFSL [44], MSCNN-PHRNN [16], and RCFN [17]
respectively.

CK+: From Table 6, we find that most approaches achieve the
accuracy higher than 97%. Although DLP-CNN utilizes joint super-
vision by softmax loss and locality preserving loss, it lacks the use
of spatial semantic relationships which causes lower a result. In
addition, DATGN and MSCNN-PHRNN combine the appearance
and geometric information and acquire good accuracy with the
help of extra temporal information. By contrast, our SG-DSN gets
the best in this experiment with the help of graph-based represen-
tation and the attention mechanism. Also, it performs better than
DAUGN and DDL, of using the above two separately. The confusion
matrix in Fig. 9(a) illustrates that our SG-DSN performs well at all
Fig. 8. The visualization of the learne
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the seven emotion classifications, which can be attributed to the
excellent representation strategy.

Oulu-CASIA: As shown in Table 6, under the normal illumina-
tion condition of this dataset, all the compared methods get the
FER accuracy over 80%. Specifically, DDL alleviates the generic
knowledge of AUs by integrating a Bayesian Network into a deep
learning framework and gains a remarkable performance improve-
ment. Similar to the experiment on CK + dataset, MSCNN-PHRNN
also performs well on the Oulu-CASIA dataset that further confirms
the effectiveness of feature fusion technology. The top-2 results
come from the proposed SG-DSN model. The fused feature beat
lite-CNN because it is more capable of small-scale and low-
resolution samples. The confusion matrix in Fig. 9(b) demonstrates
that SG-DSN acquires satisfying results for four emotions except
for sadness and disgust. One possible explanation is that samples
of these two categories in Oulu-CASIA are too similar to learn dis-
criminative features.

MMI: Different from CK + and Oulu-CASIA datasets, MMI has
less image samples and more non-aligned poses. As shown in
Table 6, most approaches suffer an accuracy drop with different
degrees in this experiment. DTAGN and DeRL achieve FER accuracy
just over 70%. The reason is the effectiveness of features extracted
from these two methods highly relies on their deep architectures
and sufficient training data, which is what the MMI dataset does
not satisfy. In other words, that is why IFSL gets the best result
by using the non-deep method. This can also explain the perfor-
mance degradation of lite-CNN. Still, our SG-DSN (fused feature)
integrates local-to–holistic expression information based on
semantic relationships and acquires the second-best FER accuracy.
From the confusion matrix presented in Fig. 9(c), we summarize
that SG-DSN performs well at disgust, happiness, and surprise. The
poor results appear in anger, fear, and sadness, which can be
imputed to the insufficient and unbalanced training data of corre-
sponding expressions.
d semantic features of SG-DSN.



Fig. 9. The confusion matrices on lab-controlled datasets.
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4.4.2. Performance evaluation on in-the-wild datasets
To further verify the effectiveness of our SG-DSN in real scenar-

ios, we conduct the experiment on SFEW and RAF-DB datasets and
add three state-of-the-art comparison methods RAN [4], IPFR [45],
and LDL-ALSG [46].

SFEW: As shown in Table 7, due to the challenging factors, RCFN
fails to break through the accuracy over 50%. This is because its
region segmentation is heavily weakened in real environments.
LDL-ALSG performs well by utilizing a label space graph that links
multiple labels with different intensities to one emotion. RAN
adaptively captures the importance of facial regions to handle
the pose variant, and achieves an accuracy of 54.19%. Our SG-
DSN defeats other methods, even if the face alignment and land-
mark coordinates are not precise enough. This shows that the
semantic relationship can also enhance recognition performance
in real scenes. The confusion matrix in Fig. 10(a) illustrates that
SG-DSN can recognize anger, happiness, and surprise well, but
barely distinguish disgust, and fear. The main reason is that the
facial deformation and background interference in the SFEW data-
set impair the power of our facial graph.

RAF-DB: According to Table 7, DAUGN also performs well by
using graph-based representation. Although the RAF-DB dataset
provides sufficient samples, the non-deep framework of the IFSL
makes it difficult to benefit from such an advantage, so that causes
a big gap of accuracy. The proposed SG-DSN using lite-CNN obtains
the best result, we think this is due to our effective facial graph and
the powerful DSN. Because of the limitation of hand-crafted fea-
tures in such a large-scale in-the-wild dataset, our fused features
suffer an accuracy decrease, but it still achieves a favorable perfor-
Fig. 10. The confusion matrice
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mance just slightly lower than RAN. The confusion matrix in Fig. 10
(b) indicates that SG-DSN performs well at all the emotion cate-
gories except disgust and fear, which can be attributed to the large
training data in RAF-DB.
4.5. Discussion

Although the five datasets have different conditions, the pro-
posed SG-DSN outperforms most of the compared state-of-the-
art approaches. In CK + dataset, the high quality of images makes
it possible to conduct precise facial landmark detection that
ensures the validity of the graph representation and achieve
remarkable FER results. In the Oulu-CASIA dataset, for the sake of
the graph convolution process, our SG-DSN overcomes the low-
quality problem and extracts powerful expression features. And
in the MMI dataset, we notice that the FER accuracy is influenced
by the not-well-aligned faces which decrease the useful semantic
information of the generated graph. Alternatively, our SG-DSN still
gets competitive performance due to the effective local features
and the combination of appearance and geometric information.
When facing the in-the-wild SFEW and RAF-DB datasets, the pro-
posed SG-DSN keeps an impressive accuracy in the case of the large
facial deformation and the complex background. Nevertheless, this
also reveals that our graph representation is closely related to the
accuracy of landmark detection, which still limits the performance
of SG-DSN in real-world environments. For the two local feature
extraction modules, we experimentally find that the fused classic
feature is better at handling small-scale posed facial data, while
the lite-CNN is more flexible for large-scale real data.
s on in-the-wild datasets.
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5. Conclusion and future work

In this paper, we presented a novel model for FER, the Semantic
Graph-based Dual-stream Network (SG-DSN). This method gener-
ated a facial graph to represent significant facial changes and their
semantic relationships. In addition, SG-DSN exploited a network
with graph convolutional attention blocks (GCABs) to jointly learn
powerful features from both appearance and geometric expression
information. The proposed edge indexing initialization strategies
made full use of the semantic relationship based on prior knowl-
edge and improved the performance in expression recognition.
On both lab-controlled and in-the-wild challenging datasets, SG-
DSN achieved competitive FER results. In the future, a facial graph
representation without relying on landmarks can be explored to
account for more complex scenarios and the dynamic evolution
of facial expressions can be considered.
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Appendix A. Ablation Study: Effects on different numbers of
landmarks

Since landmark selection and addition are employed in this
work, we further conduct an experiment to evaluate its contribu-
tion. To fair comparison, we use the Euclidean distance here
because the hop distance of each graph node is indistinguishable.
As shown in Table A.8, the FER performance on both posed and
in-the-wild datasets obtains a significant increase after using the
landmark selection. One possible explanation is that the fully con-
nected graph based on all the detected landmarks contains unnec-
essary nodes and edges, which distracts the importance of crucial
graph nodes, especially when dealing with uncontrolled faces.
And the experimental results also reveal that the additional nodes
and accompanying edges provide important spatial and semantic
information.
Table A.8
Performance with or without landmark selection.

Method (lite-CNN) Accuracy(%)

CK+ SFEW

Without selection 95.48 45.70
Without addition 97.56 50.55
With both 98.36 53.14

1 Bold value denotes best.
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