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A B S T R A C T   

In construction fields, it is common for workers to rely on hand signals to communicate and express thoughts due 
to their simple but effective nature. However, the meaning of these hand signals was not always captured pre
cisely. As a result, construction errors and even accidents were produced. This paper presented a feasibility study 
on investigating whether the hand signals could be captured and interpreted automatically with computer vision 
technologies. It starts with the literature review of existing hand gesture recognition methods for sign language 
understanding, human-computer interaction, etc. It is then followed by creating a dataset containing 11 classes of 
hand signals in construction. The performance of two state-of-the-art 3D convolutional neural networks is 
measured and compared. The results indicated that a high classification accuracy (93.3%) and a short inference 
time (0.17 s/gesture) could be achieved, illustrating the feasibility of using computer vision to automate hand 
signal recognition in construction.   

1. Introduction 

Maintaining good communication on a construction project site is 
crucial for keeping the site safe and the project running smoothly and on 
schedule [1–3]. One of common ways for workers at distance to 
communicate is through the use of radio transmission. However, it is 
easily interfered with other senders. Also, both sender and receiver need 
to be equipped with radio transmission devices kept in the same chan
nel. These limitations impact its wide use for all workers on construction 
sites. 

Hand signals, as another common way to communicate, are used on 
construction sites due to their simple but effective nature [3–5]. They 
help workers from different backgrounds and cultures to communicate 
with each other [6]. Also, consider that construction sites can be 
exceptionally noisy and words may not be heard clearly. Hand signals 
aid workers to receive correct directions without the need for compli
cated way-to-way communication devices [7]. 

However, hand signals may not always be captured timely or inter
preted correctly in the fields. The failure to capture and interpret hand 
signals easily leads to worker injuries/fatalities, work interruption, and 
stoppage, etc. For example, it was reported that a concrete buggy fell off 
a hoist platform and hit the ground 18′ below because a hoist engineer 
misinterpreted a signal and lowered the platform in advance [8]. 
Another accident was noted when a crew chief entered an active work 
area on an All-Terrain Vehicle (ATV). Although he was asked to leave by 

a foreman using a hand signal, the signal was not captured by the crew 
chief. As a result, the ATV was hit by a bulldozer and the chief suffered a 
fractured leg [9]. A concrete truck driver misread the hand signals given 
by an officer and hit a 27-year-old electrician, who was working on the 
replacement of traffic lights from the buck of his truck [10]. The incident 
made the electrician thrown from the bucket and left dangling in the air 
[10]. 

These accidents indicate the need to provide a complementary way 
to help workers capture and interpret hand signals in construction fields. 
So far, there are many research studies proposed for hand gesture 
recognition; and the methods in these studies were applied to identify 
traffic police hand signals, understand sign languages, promote human- 
computer interactions, etc. [11–13]. They either relied on hand-crafted 
visual features, such as Histogram of Origented Gradients (HOG) [14] 
and improved dense trajectories (iDT) [15], or deep neural networks 
including 2D convolutional neural networks (CNNs) [16,17] and 3D- 
CNNs [18,19]. The performance of these methods was measured by 
several datasets, such as NvGesture [20] and EgoGesture [16]. The re
sults illustrated the potential of deep neural networks to achieve hand 
signal recognition with excellent spatiotemporal learning ability. 

Although the performance of existing methods for hand gesture 
recognition is promising, it is still not clear whether they could be 
applied in the construction field to capture and interpret hand signals 
made by construction workers. It is due to the following two major 
reasons. First, construction scenarios are complex and cluttered with 
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tools, materials, machines, etc. Also, the hand signal recognition in the 
construction fields may be impacted by environmental conditions and 
the existence of other workers. These characteristics have not been fully 
represented in existing datasets for hand gesture recognition. In addi
tion, the datasets used for testing hand gesture recognition methods 
contain the video clips of hand gestures that were typically recorded 
when subjects were sitting or standing still. It is not clear whether 
existing recognition methods would work when workers are moving and 
making hand signals simultaneously. 

This paper presented a feasibility study on investigating whether 
hand signals in the construction field could be captured and interpreted 
automatically with computer vision technologies. First, we provided a 
literature review of existing hand gesture recognition methods devel
oped for traffic police hand signal identification, sign language under
standing, and human-computer interaction. After that, a new dataset 
containing 11 classes of hand signals for instructing tower crane oper
ations was created under different scenes (e.g. outdoor vs. indoor and 
single worker vs. multiple workers). To measure the recognition per
formance with the created dataset, two state-of-the-art 3D-CNNs, 
namely, ResNeXt-101 and Res3D + ConvLSTM+MobileNet were 
employed to achieve hand signal recognition. The recognition results 
demonstrated that a high classification accuracy (93.3%) and a short 
inference time (0.17 s/gesture) could be achieved, which illustrated the 
feasibility and potential of computer vision technologies to automate the 
hand signal recognition in the construction field. 

2. Related work 

2.1. Vision-based hand gesture recognition 

The hand gesture recognition is a hot topic in computer vision and 
pattern recognition, which plays an increasingly important role in nat
ural human-computer interface [21–23]. Currently, many efforts have 
been dedicated to hand gesture recognition. They generally relied on 
motion sensory data [24,25] and videos [16,18]. The motion sensory 
data usually can be collected by various motion sensors attached on 
human bodies. These sensors include Micro-electromechanical Systems 
(MEMS), Inertial Measurement Unit (IMU), electromyography (EMG) 
devices, etc. The video data contain visual information (e.g., RGB and 
depth images), which can be conveniently collected by smart phones, 
RGB-D cameras or stereo cameras. 

So far, the video data are widely adopted in the hand gesture 
recognition field due to their convenient and effective nature. Many 
vision-based methods have been developed to recognize hand gestures 
using hand-crafted features or through deep learning. Traditional 
methods generally relied on hand-crafted features, such as HOG [14], 
iDT [15] and Mix Features Around Sparse Keypoints (MFSK) [26]. Be
sides these features, many research studies were focused on deriving 
novel features to represent the appearance, shape, and motion changes 
of a gesture [27–29]. For example, Singha and Das [27] proposed an 
integrated system for recognizing hand gestures, which included three 
stages: separating skin-colored regions from non-skin colored ones in the 
preprocessing stage, calculating Eigenvalues for feature extraction and 
finally recognizing the gestures based on the Eigenvalues using the 
weighted Euclidean distance. Wang et al. [28] employed a Hidden 
Markov Model (HMM) based method for the modeling and recognition 
of hand gestures. The method included the following parts: detecting a 
palm from a video sequence, recording its center trajectory, extracting 
the discrete vector features from the trajectory, and classifying the 
gesture using HMM. Lin et al. [29] developed a statistical method to 
detect the hand region and derived a new feature descriptor from the 
hand shape. This feature descriptor was combined with a Gaussian 
Mixture Model (GMM) to recognize hand gestures. Overall, the key point 
of these methods is to derive these sophisticated features and then feed 
them into a classifier to achieve hand gesture recognition. 

Recently, the methods using deep learning have become mainstream 

in hand gesture recognition. Generally, their frameworks can be divided 
into four types. The first type is to use 2D-CNNs to extract features of 
single frames [17,30]. Oyedotun and Khashman [30] developed a hand 
gesture recognition system using three architectures of 2D-CNNs with 
different hidden layers. Kurmanji and Ghaderi [17] employed famous 
2D-CNNs including GoogleNet and AlexNet to identify hand gestures. 

The second framework type is to utilize 3D-CNNs to extract features 
of video clips and then aggregate clip features into video descriptors 
[18,31]. For instance, Miao et al. [31] proposed a multimodal gesture 
recognition method using a Res3D network. The extracted spatiotem
poral features from the Res3D were combined through canonical cor
relation analysis and the final recognition was made by a linear SVM 
classifier. Köpüklü et al. [18] proposed a hierarchical CNN structure to 
realize the real-time hand signal recognition. The proposed architecture 
firstly employed a detector which was a lightweight 3D-CNN (ResNet- 
10) to detect the existence of hand gestures and then utilized deep 3D- 
CNNs (C3D and ResNeXt-101) to classify the detected gestures. 

The third framework type is to combine CNNs with Long Short Term 
Memory (LSTM) layers to model the temporal evolution of sequences 
[20,32,33]. For example, Molchanov et al. [20] combined 3D-CNN 
(C3D) with recurrent layers to perform simultaneous detection and 
classification of dynamic hand gestures. The recurrent 3D-CNN enabled 
the gesture classification without requiring explicit pre-segmentation. 
Cao et al. [32] presented a framework of C3D + LSTM+RSTTM which 
augmented C3D with a recurrent spatiotemporal transform module. The 
presented framework could not only capture short-term spatiotemporal 
features but also model long-term dependencies. Zhang et al. [33] pro
posed a Res3D + ConvLSTM+MobileNet architecture to recognize hand 
gestures. In their work, Res3D was used first to learn the local short-term 
spatiotemporal feature maps. Then, two ConvLSTM layers were stacked 
to learn the global long-term spatiotemporal feature maps. Finally, parts 
of MobileNet were employed to learn deeper features based on the learnt 
two-dimensional spatiotemporal feature maps. 

The fourth framework type is to adopt a two-stream CNN architec
ture where two CNNs are employed to model spatial and temporal in
formation of sequences, separately [34,35]. Wu et al. [34] developed 
AlexNet network into a two-stream 2D-CNN structure to achieve hand 
gesture recognition. Huang et al. [35] designed a two-stream 3D-CNN 
based on C3D where one stream focused on the local, detailed hand 
gestures while the other stream was designed to extract global hand 
motions. The contributions of all the methods mentioned above have 
been summarized in Table 1. 

Table 1 
Summary of existing vision-based methods for hand gesture recognition.  

Categories Types Referred 
Methods 

Test Dataset Reported 
Accuracy 

Feature- 
based 

Hand- 
crafted 
features +
Classifier 

[14,15,26–29] CAD-60, ChaLearn 
MMGR, Indian sign 
language, Patch, 
etc. 

87.1% - 
96.2% 

Deep 
learning 
based 

2D-CNNs [17,30] VIVA HGD, 
Cambridge HGD, 
American sign 
language, etc. 

70.5% 
-92.8% 

3D-CNNs [18,31] EgoGesture, 
NvGesture, 
Chalearn IsoGD, 
etc. 

67.7% - 
91.9% 

CNNs +
LSTM 
layers 

[20,32,33] EgoGesture, 
NvGesture, Jester, 
Chalearn IsoGD, 
etc. 

56.0% 
-95.1% 

Two-stream 
CNNs 

[34,35] HandLogin, 
BodyLogin, 
German sign 
language, Chinese 
sign language, etc. 

61.7% - 
82.7%  
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2.2. Datasets for hand gesture recognition 

There are several datasets publicly available to evaluate hand gesture 
recognition performance. They could be classified into two categories, 
first-person view and second-person view, depending on how the hand 
gestures in the datasets are captured. In the first-person view dataset, the 
hand gestures are typically captured by mounting a camera on the 
forehead of a user, which simulates a natural viewpoint seen through the 
user’s eyes. Examples of the first-person view dataset could be found in 
the work of Starner et al. [36], Baraldi et al. [37], and Zhang et al. [16]. 
Starner et al. [36] proposed an egocentric gesture dataset which defined 
40 American sign language gestures. Baraldi et al. [37] presented an 
Interactive Museum dataset containing 7 gesture classes to allow visitors 
to interactively view the exhibits in a virtual museum environment. 
Zhang et al. [16] designed an EgoGesture dataset with 83 classes of hand 
gestures intended to interact with wearable devices. 

Most of the datasets were prepared in a second-person view, where a 
camera is kept a short distance towards a user while recording his/her 
hand gestures. Several of them were designed for general symbolic hand 
gestures, such as Cambridge Hand Gesture Dataset [38] and Sheffield 
KInect Gesture (SKIG) Dataset [39]. Others were created to support 
human-computer interaction with touchless screens [19,40,41] or in 
vehicles [14,20], sign language interpretation for English [42] and 
Italian [43]. The ChaLearn IsoGD Dataset [44] covered various domains 
including Italian sign language, helicopter and traffic signals, panto
mimes and symbolic gestures, and body language. Table 2 summarizes 
those publicly available datasets in the field of hand gesture recognition. 

2.3. Comparison study 

To date, many comparison studies have been conducted for those 
hand gesture recognition methods. Molchanov et al. [20] compared the 
performances of state-of-the-art methods on the public dataset NvGes
ture. The comparison results indicated that the recurrent 3D-CNN ach
ieved the best performances in each individual modality (RGB, depth 
and RGB–D). Zhang et al. [16] evaluated the recognition performances 
of several representative methods based on hand-crafted features and 
deep learning technologies. The results showed that the methods based 
on deep learned features performed better in general. Among those deep 
learning approaches, the performances of the C3D-based methods were 
superior to others with accuracy improvement by more than 10%. In the 
studies of Köpüklü et al. [18] and Benitez-Garcia et al. [19], the results 
showed that the ResNeXt-101 achieved the best performance. In the 
work of Kurmanji and Ghaderi [17], the comparison results indicated 
that the 3D-CNNs could extract the changes in the consecutive frames 
and tended to be more suitable for the classification of hand gestures in a 
video sequence; however, they usually needed more time. 

Several findings have been noted from existing comparison studies. 
First, deep learning methods have become mainstream in hand gesture 
recognition tasks due to the following reasons. The methods based on 
deep learned features outperformed those based on hand-crafted fea
tures in recognition accuracy [16,20]. Also, the way to calculate hand- 
crafted features is usually computationally intensive and requires a 
high storage cost. As a result, the methods based on the hand-crafted 
features are not suitable when a recognition dataset is large-scale 
[16]. Second, as for those deep learning methods, 3D-CNNs (e.g. C3D, 
Res3D, ResNeXt-101) illustrated an excellent spatiotemporal learning 
ability [16,17,20] compared to 2D-CNNs. This is because 2D-CNNs 
typically process individual video frames directly. They can only char
acterize the visual appearance but not establish temporal relations be
tween consecutive frames. In addition, the recognition performance of 
the deep learning methods could be further improved through using a 
two-stream architecture for CNNs [17] or combing CNNs with LSTM 
layers [20]. These ways could enhance the ability of the method to 
capture the temporal information in the recognition process. 

3. Research gap, objective and scope 

As illustrated in the literature review, most of the scenes in existing 
datasets designed for testing gesture recognition methods are indoor 
environments. The outdoor environments were considered in few of 
them (e.g. EgoGesture [16] and ChaLearn IsoGD [44] dataset), where 
the video clips of hand gestures were typically recorded when subjects 
were sitting or standing still. They hardly contain the outdoor scenes 
with large background variations and the inference of moving objects (e. 
g. people and vehicles). As a result, these test scenarios do not fully 
represent construction environments, which are more complicated and 
filled with machines, buildings, workers, etc. Also, construction activ
ities typically occur under different weather conditions (e.g. sunny and 
cloudy days). Signalmen are always moving and making hand signals 
simultaneously in the construction field. 

So far, it is still not clear how exiting recognition methods perform 
when being used to capture and interpret hand signals automatically in 
the construction domain. The main objective of this paper is to fill this 
gap. It investigates the feasibility of hand signal recognition with com
puter vision technologies in construction fields. The study includes two 

Table 2 
Datasets in the field of hand gesture recognition.  

Datasets # of 
Samples 

# of 
Classes 

Data 
source 

Usage View 

Egocentric 
gesture 
dataset [36] 

2500 40 RGB Sign language First- 
person 

Interactive 
Museum [37] 

700 7 RGB Human 
interaction with 
exhibits in 
virtual 
environment 

First- 
person 

EgoGesture [16] 24,161 83 RGB-D Human 
interaction with 
wearable 
devices 

First- 
person 

Cambridge Hand 
Gesture 
Dataset [38] 

900 9 RGB General 
symbolic hand 
gestures 

Second- 
person 

SKIG [39] 1080 10 RGB-D General 
symbolic hand 
gestures 

Second- 
person 

ChAirGest [40] 1200 10 RGB- 
D, IMU 

Human 
interaction with 
touchless 
screens 

Second- 
person 

CVVR-HAND 
[14] 

886 19 RGB-D Human 
interaction with 
devices in a 
vehicle 

Second- 
person 

NvGesture [20] 1532 25 RGB- 
D, 
stereo- 
IR 

Human 
interaction with 
devices in a 
vehicle 

Second- 
person 

Jester [41] 148,092 27 RGB Human 
interaction with 
computer 

Second- 
person 

IPN Hand [19] 4218 13 RGB Human 
interaction with 
touchless 
screens 

Second- 
person 

MSRGesture3D 
[42] 

336 12 Depth Sign language Second- 
person 

ChaLearn 
MMGR [43] 

13,858 20 RGB-D Sign language Second- 
person 

ChaLearn IsoGD 
[44] 

47,933 249 RGB-D Sign language, 
helicopter and 
traffic signal, 
pantomimes and 
symbolic 
gestures, body 
language 

Second- 
person  
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components. First, a new hand gesture dataset for instructing tower 
crane operations on construction sites was created. Tower crane oper
ations are chosen as the study object due to their important role in 
construction projects, especially constructing high buildings. Then, two 
state-of-the-art hand gesture recognition methods were selected and 
tested with the new dataset. The selection was mainly based on the 
findings from existing comparison studies of recognition methods. The 
performance of both methods was further measured in term of classifi
cation accuracy and inference time to provide an in-depth analysis on 
the benefits and limitations of existing vision-based hand gesture 
recognition in construction scenarios. 

4. Feasibility study design 

4.1. Scenes design for dataset creation 

To capture the characteristics of construction site environments, 
several factors were considered including weather/environmental con
ditions, motions in the background, the way to make hand signals, etc. 
Following these factors, a total of 7 scenes have been designed. Three of 
them are indoors and the other four are outdoors. The indoor scenes are 
created as follows. In the first indoor scene, the subject who makes hand 
signals was requested to sit in a chair under a static but cluttered 
background. Then, the subject was requested to move when making 
hand signals as the second scene. In the third indoor scene, the subject 
was moving and making hand signals, and his or her background was 
cluttered with other moving persons. The outdoor scenes are classified 
into two categories: two of them are under sunny conditions and the 
other two are under cloudy conditions. The subjects in all these four 
scenes were moving and making hand signals with or without back
ground motions. Table 3 summarizes the characteristics of all the 
designed scenes mentioned above. 

The hand signals made by the subject in each scene are those 
commonly seen on construction sites. For example, tower cranes are the 
most frequently shared resources [45,46], which are mainly used for 
lifting heavy things and transporting them to other places. Hand signals 
for directing tower crane operations were selected here. According to 
the American Society of Mechanical Engineering (ASME) [4] and Na
tional Commission for the Certificate of Crane Operations (NCCCO) [5], 
there are 11 classes of hand signals that can be used for signalman to 
instruct tower crane operations, as indicted in Table 4. In addition, the 
hand signals in each scene were recorded in two modalities (RGB and 
depth) under a second-person view, where a camera is kept a short 
distance towards a subject and the subject is asked to perform hand 
signals to interact intentionally with the camera. 

4.2. Hand gesture recognition & evaluation metrics 

Based on the findings from existing hand gesture recognition studies 
[16,17,20,33], 3D-CNN based networks illustrated an excellent spatio
temporal learning ability. Thus, in this study, the selection of hand 
gesture recognition methods for testing is focused on state-of-the-art 3D- 
CNN based networks. Specifically, two networks, i.e., RsNeXt-101 and 

Res3D + ConvLSTM+MobileNet are considered, since they illustrated 
higher recognition accuracy than other 3D-CNN networks, such as C3D, 
ResNet-50, Res3D, and C3D + LSTM+RSTTM [18,19,33]. The robust
ness of ResNeXt-101 and Res3D + ConvLSTM+MobileNet architectures 
have been proven by various visual recognition tasks [18,31,33,47] and 
by non-visual tasks involving speech recognition [48,49] and language 
processing [50,51]. 

RsNeXt-101 refers to a 101-layer 3D-CNN constructed by repetitive 
ResNeXt building blocks that aggregate a set of transformations with the 
same topology. Table 5 shows the specific architecture of ResNeXt-101 
used for tests in this study. Res3D + ConvLSTM+MobileNet is an inte
grated architecture of 3D-CNN (Res3D) and Convolutional LSTM layers. 
Fig. 1 shows an overview of their architectures. More details of both 
networks could be found in the work of [33,47,52]. 

The recognition performance will be evaluated in terms of confusion 
matrix, gesture classification accuracy and inference time on the test set. 
The confusion matrix is a specific table layout that allows visualization 
of the performance of the method. Each row i of the matrix represents 
the predicted class while each column j means the actual class. The 
element (i, j) of the table refers to the percentage of the actual class j 
which is predicted as the predicted class i. The classification accuracy is 
defined as the percentage of correctly labeled gesture samples by the 
recognition method. This accuracy information will be further measured 
under different conditions to represent the robustness of a gesture 
recognition method. Inference time refers to the processing time of using 
a trained model to make a prediction. Although the inference time may 
vary with different computer hardware configurations, it provides an 
idea of how fast the recognition could be made. 

5. Results 

5.1. Datasets 

To create the dataset, a ZED 2 stereo camera [53] is selected as a 
recording device. The camera could capture the video clips under the 
RGB and depth modalities. The maximum resolution of the videos could 
reach up to 2208 × 1242 pixels at 15 frames per second (fps). When 
capturing the hand gestures into a video clip, a gesture list with a 
random selection of 5 gestures is generated first. Then, the subject was 
asked to continuously perform these gestures in the list at different lo
cations to make sure the gestures appear in different video regions. 

A total of 364 RGB-D video clips were collected which are equivalent 
to more than 426,602 frames in each modality. Among them, there are 
1820 gesture samples which are distributed in 7 scenes. Each hand 
signal category consists of 165 samples on average. The average length 
of a gesture is 110 frames. The minimum and maximum gesture lengths 
are 21 and 322 frames separately. The details of the dataset are listed in 
Table 6. Examples of the collected data were collected from real con
struction sites, as shown in Fig. 2. As indicated in Fig. 3, the subject may 
be self-occluded or partially occluded during the collection process. The 
start and end frame indices of the subject’s gesture in each video clip are 
manually labeled as shown in Fig. 4. The frames are further cropped to 
smaller ones which only contain the regions of subject. Taking Fig. 4 as 
an example, the resolution of the original frame is 2208 × 1242 while it 
becomes 420 × 868 after cropping. 

5.2. Recognition performance of the methods 

5.2.1. Implementation 
The recognition methods have been implemented on an Ubuntu 

Linux 64-bit operating system with the support of the Pytorch [54] and 
Tensorflow [55] platforms. Both platforms provide the critical algo
rithms, functions, and tools required for the methods. The hardware 
configuration includes an Intel® Core™ i7-4820K CPU (Central Pro
cessing Unit) @ 3.70 GHz, a 32 GB memory, and an NVIDIA Titan Xp 
DDR5X @ 12.0 GB GPU (Graphic Processing Unit). 

Table 3 
The characteristics of the designed scenes.  

No. Scene Subject status Weather 
conditions 

Background 
conditions 

1 Indoor Sitting on a 
chair 

– Static 

2 Indoor Moving – Static 
3 Indoor Moving – Dynamic 
4 Outdoor Moving Sunny Static 
5 Outdoor Moving Sunny Dynamic 
6 Outdoor Moving Cloudy Static 
7 Outdoor Moving Cloudy Dynamic  
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5.2.2. Training 
In order to train and test gesture recognition methods, the dataset is 

randomly split into the training subset (60%), validation subset (20%) 

and testing subset (20%). The training subset includes 210 video clips 
and 1050 gesture samples for the training of the network parameters in 
the gesture recognition methods. The validation subset includes 70 
video clips and 350 gesture samples for providing frequent evaluations 
of the recognition methods while tuning the hyperparameters of the 
methods. The test subset includes 84 video clips and 420 gesture samples 
which were used to test the final recognition performance of the 
methods. About 17% of test video clips contain the background sce
narios which are never seen in the training and validation sets. 

The number of parameters for 3D-CNNs is much more than 2D-CNNs, 
which typically requires more training data to prevent underfitting. 
Here, the transfer learning strategy is adopted. Both ResNeXt-101 and 
Res3D + ConvLSTM+MobileNet are pretrained firstly using the Jester 
dataset [41], which is the largest hand gesture dataset publicly avail
able. However, the Jester dataset does not include any hand signals 
related to construction. The dataset collected in this study is used to fine- 
tune both networks to increase the accuracy of recognizing hand signals 

Table 4 
Hand signals for instructing tower crane operations adapted from [4,5]. 

Table 5 
The architecture of ResNeXt-101.  

Layer 
name 

Conv1 Conv2_x Conv3_x Conv4_x Conv5_x – 

Output 
size 

112 ×
112 

56 × 56 28 × 28 14 × 14 7 × 7 1 × 1 

ResNeXt- 
101 

Conv(3 
× 7 ×
7) 
stride 
(1,2,2) 

N: 3 N: 24 N: 36 N: 3 Average 
pooling, 
fc layer 
with 
softmax 

F: 128 F: 256 F: 512 F: 1024 

Note: F – the number of feature channels and N - the number of blocks. 

Fig. 1. The architecture of Res3D + ConvLSTM+MobileNet.  
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Table 6 
Dataset configurations.   

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 

Duration (s) 2170.7 3909.1 3985.7 4291.1 4797.1 4383.8 4902.7 
# of total frames 32,560 58,637 59,785 64,366 71,956 65,757 73,541 
Gesture category (# of samples/# of frames) Hoist 23/1713 22/2427 22/2836 26/2512 23/2916 24/2874 23/3170 

Lower 21/1415 22/2354 22/2741 24/2485 23/2939 24/2617 25/3103 
Tower travel 25/1561 22/2334 23/2706 24/2316 23/2891 24/2277 24/2988 
Trolley travel right 22/1426 23/2649 22/2645 24/2524 23/3057 25/2525 25/3432 
Trolley travel left 24/1880 23/2732 23/2681 26/2747 24/3154 23/2676 25/3169 
Stop 23/1483 23/2451 23/2519 24/2553 26/2916 24/2704 24/3058 
Dog everything 24/1433 23/2460 23/2624 26/2675 25/3314 24/3129 22/2881 
Move slowly 21/1622 23/2519 23/2619 22/2374 25/3248 25/2540 24/3022 
Swing right 23/1373 23/2671 23/2712 24/2811 25/3083 27/2800 24/3584 
Swing left 22/1458 23/2511 23/2845 25/2638 24/2858 25/2847 24/2997 
Emergency stop 22/2018 23/2464 23/2799 25/2851 24/3509 25/2773 25/3501  

Fig. 2. The examples of the collected data (top: RGB; bottom: depth).  

Fig. 3. The subject being self-occluded or partially occluded (left: RGB; right: depth).  

Fig. 4. The manual labeling and cropping process.  
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in construction and meanwhile shorten the training durations required. 
Table 7 summarized the parameters set for the training. The specific 

training process is conducted as follows. The learning rate and the batch 
size are initially set as large as possible. When the training loss is steady, 
the learning rate is reduced with a fixed decay factor. Stochastic gradient 
descent (SGD) with Nesterov momentum of 0.9, damping factor of 0.9, 
and weight decay of 0.001 is employed as the optimizer. Moreover, all 
images of hand gesture samples are randomly cropped with a spatial size 
of 112 × 112 as the inputs for the data augmentation purpose. Fig. 5 
shows the loss reduction along with the training progress. The training 
loss is higher than the validation loss since the data augmentation pro
cess during the training increases the diversity of the training subset and 
results in more learning difficulties. Taking the depth modality as an 
example, the training for ResNeXt-101 is completed after 20 epochs and 
achieves the best validation performance at epoch 18. For Res3D +
ConvLSTM+MobileNet, the training is finished within 240 epochs and 
obtains the highest validation accuracy at epoch 216. 

5.2.3. Experimental results 
The overall classification accuracy of ResNeXt-101 achieves 93.3% 

while it is 84.8% for Res3D + ConvLSTM+MobileNet. Tables 8 and 9 
presented the confusion matrix of ResNeXt-101 under the RGB and 
depth modality, separately. Dog everything gesture in RGB modality and 
lower, swing right, emergency stop gestures in depth modality obtain 
the highest accuracy (100%). Table 10 indicated the classification ac
curacy and inference time of the ResNeXt-101 network in different 
scenes. The network achieves the classification accuracy of 91.9% and 
the average inference time of 0.26 s/gesture when processing the RGB 
data. The classification accuracy is 93.3% and the average inference 
time is 0.17 s/gesture when processing the depth data. In each modality, 
a higher classification accuracy happened on the recognition of hand 
gestures in the indoor scenes, and meanwhile, it required less inference 
time. Take the depth modality for an example. The average classification 
accuracy for the indoor and outdoor scenes is 96.7% and 91.5%, sepa
rately. The average inference time for the indoor and outdoor scenes is 
0.13 s/gesture and 0.20 s/gesture, respectively. 

Tables 11 and 12 showed the confusion matrix of Res3D + Con
vLSTM+MobileNet under the RGB and depth modality, respectively. 
Dog everything gesture achieves the highest accuracy (91.9%) in RGB 
modality while the accuracy of emergency stop gesture is the highest 
(87.5%) in the depth modality. Table 13 presented the classification 
accuracy and inference time of Res3D + ConvLSTM+MobileNet in both 
RGB and depth modalities. Specifically, the classification accuracy is 
84.5% and the average inference time is 4.82 s/gesture when processing 
the RGB data. The network achieves the classification accuracy of 84.8% 
and the average inference time of 4.60 s/gesture when processing the 
depth data. In each modality, the network achieves a higher classifica
tion accuracy in the indoor scenes compared to the outdoor scenes. 
Taking the depth modality as an example, the classification accuracy 
keeps 90.0% in the indoor scenes while it is 81.9% in the outdoor scenes. 
Besides, more inference time is needed for the outdoor scenes under 
both modalities. For example, the average inference time for the indoor 
and outdoor scenes is 4.72 s/gesture and 4.89 s/gesture, respectively, in 
the RGB modality. 

Table 14 compared the inference time of each hand signal category 
under RGB and depth modalities. As for ResNeXt-101, the average 
inference time when processing the RGB and depth data is 0.26 s/ 

gesture and 0.17 s/gesture, separately. Compared to ResNeXt-101, it 
required more inference time for Res3D + ConvLSTM+MobileNet. The 
average inference time in RGB and depth modality is 4.82 s/gesture and 
4.60 s/gesture, respectively. Among all the hand signals, an emergency 
stop is the gesture which needed the most inference time to be recog
nized. Take the RGB modality as an example. The inference time of 
emergency stop for ResNeXt-101 and Res3D + ConvLSTM+MobileNet is 
0.43 s/gesture and 6.48 s/gesture, separately. 

6. Discussion 

It was noted by comparing Tables 10 and 13 that the recognition 
performance of ResNeXt-101 was superior to Res3D + Con
vLSTM+MobileNet under both RGB and depth modalities. The higher 
classification accuracy of ResNeXt-101 indicates that ResNeXt-101 is 
more feasible to model the spatiotemporal learning tasks in the dataset 
created for construction gestures. In the meantime, ResNeXt-101 
required much less inference time due to its different strategies adop
ted to form a deep learning network architecture. Res3D +

Table 7 
Network parameters.  

Network Learning 
rate 

Step 
size 

Batch 
size 

Length of input 
video frames 

ResNeXt-101 0.01 15 20 32 
Res3D +

ConvLSTM+MobileNet 
0.001 10 20 32  
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(b) Res3D+ConvLSTM+MobileNet

Fig. 5. The loss reduction along with the training progress for depth modality.  
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ConvLSTM+MobileNet combined ConvLSTM layers with Res3D 
network for performance improvement [33] but it increased the 
network complexity. On the contrary, ResNeXt-101 refined the original 
ResNet block by introducing a new dimension called “cardinality” to 
provide a new way of adjusting the network capacity [47]. It prevents 
the network from going deeper or wider to increase the recognition 
performance. 

As for the comparison between different modalities, the classification 
accuracy on RGB data is slightly better than that on depth data in the 
indoor environment but becomes worse in the outdoor environment. It 
may be due to the following reasons. Generally, the depth data filters out 
the background motion, and allows the networks to focus more on the 
hand motion. However, the formation of the depth image is easy to be 
impacted by illumination conditions. As shown in Fig. 6, the depth 

information is not clearly identified in low-light environments of the 
indoor scenes. Besides, it required more inference time to process RGB 
data. RGB images generally contain more information for recognition 
since they include three channels while depth images have only one 
channel. It is possible to fuse both modalities to further improve 
recognition accuracy. Taking ResNeXt-101 as an example, the network 
achieved a higher overall classification accuracy (93.8%) but needed a 
longer inference time (0.38 s/gesture) in the RGB-D modality, as shown 
in Table 15. 

When analyzing the results in different scenes, it can be found that 
the classification accuracy in indoor scenes is generally higher than that 
in outdoor scenes. Besides, the network achieves better performance in 
cloudy conditions compared to sunny conditions. These indicate the 
impacts of different illumination conditions. The outdoor environmental 
lights are diverse, which may affect the RGB and depth data more easily 
[16]. The strong illumination conditions in the sunny days have negative 
impacts on the quality of input images. The images with poor illumi
nation quality are easier to cause false recognition of computer vision 
technologies. 

Compared with other hand signals, emergency stop, swing left, swing 
right, and stop required more inference time. The length of inference 
time may be related to the input size of images. It usually takes more 
time for a trained network to predict if the input size of data is large. 
Fig. 7 exhibited the average input pixel points per image in different 
hand signal categories. The input images of the signals of emergency 
stop, swing left, swing right, and stop generally occupy more pixel points 
because a signalman needed to swing his or her arms when conducting 
these gestures. 

Overall, a high classification accuracy (93.3%) and a short inference 
time (0.17 s/gesture) could be achieved with ResNeXt-101 network 
under the depth modality. The high accuracy indicates that computer 

Table 8 
The confusion matrix of ResNeXt-101 under the RGB modality (%).   

Actual 

Prediction Hoist Lower Tower 
travel 

Trolley travel 
right 

Trolley travel 
left 

Stop Dog 
everything 

Move 
slowly 

Swing 
right 

Swing 
left 

Emergency 
stop 

Hoist 90.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lower 0.0 97.8 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 
Tower travel 0.0 0.0 92.9 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0 
Trolley travel 

right 
4.7 0.0 0.0 88.1 0.0 5.0 0.0 0.0 0.0 0.0 0.0 

Trolley travel left 0.0 0.0 0.0 0.0 97.7 0.0 0.0 0.0 0.0 0.0 0.0 
Stop 0.0 0.0 0.0 2.4 0.0 80.0 0.0 0.0 2.5 0.0 0.0 
Dog everything 0.0 0.0 3.6 4.8 0.0 0.0 100.0 9.7 0.0 3.4 0.0 
Move slowly 0.0 0.0 0.0 2.4 0.0 0.0 0.0 77.4 0.0 0.0 2.5 
Swing right 0.0 2.2 0.0 0.0 0.0 2.5 0.0 3.2 92.5 0.0 0.0 
Swing left 0.0 0.0 3.6 0.0 2.3 2.5 0.0 6.5 5.0 96.6 2.5 
Emergency stop 4.7 0.0 0.0 2.4 0.0 2.5 0.0 0.0 0.0 0.0 95.0  

Table 9 
The confusion matrix of ResNeXt-101 under the depth modality (%).   

Prediction 

Actual Hoist Lower Tower 
travel 

Trolley travel 
right 

Trolley travel 
left 

Stop Dog 
everything 

Move 
slowly 

Swing 
right 

Swing 
left 

Emergency 
stop 

Hoist 95.3 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lower 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tower travel 0.0 0.0 85.7 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 
Trolley travel 

right 
2.3 0.0 0.0 88.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Trolley travel left 0.0 0.0 0.0 0.0 95.5 0.0 0.0 0.0 0.0 0.0 0.0 
Stop 0.0 0.0 0.0 0.0 0.0 87.5 0.0 0.0 0.0 0.0 0.0 
Dog everything 0.0 0.0 10.7 2.4 0.0 0.0 91.9 3.2 0.0 3.4 0.0 
Move slowly 0.0 0.0 0.0 0.0 2.3 0.0 0.0 80.6 0.0 0.0 0.0 
Swing right 0.0 0.0 3.6 0.0 0.0 12.5 2.7 12.9 100.0 0.0 0.0 
Swing left 2.3 0.0 0.0 0.0 2.3 0.0 2.7 0.0 0.0 96.6 0.0 
Emergency stop 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 100.0  

Table 10 
The classification accuracy and inference time of ResNeXt-101.   

RGB Depth  

Classification 
accuracy (%) 

Inference 
time (s/ 
gesture) 

Classification 
accuracy (%) 

Inference 
time (s/ 
gesture) 

Indoor Scene 1 94.0 0.11 94.0 0.09 
Scene 2 98.0 0.24 96.0 0.15 
Scene 3 100.0 0.23 100.0 0.15 
Average 97.3 0.19 96.7 0.13 

Outdoor Scene 4 87.7 0.27 89.2 0.17 
Scene 5 81.5 0.32 89.2 0.21 
Scene 6 97.1 0.29 95.7 0.18 
Scene 7 88.6 0.36 91.4 0.23 
Average 88.9 0.31 91.5 0.20 

Average 91.9 0.26 93.3 0.17  
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vision technologies are capable of ensuring safety when they are adop
ted to recognize hand signals on construction sites. The short duration 
allows the construction equipment to make actions in real time based on 
the recognized hand signal. The recognition results illustrate the feasi
bility and potential of employing computer vision technologies to 
automate the hand signal recognition in construction field. 

7. Conclusions and future work 

On construction sites, it is common for workers to rely on hand 
signals to communicate and express thoughts due to their simple but 
effective nature. However, hand signals may not always be captured 
timely or interpreted correctly in the fields, which easily leads to 

construction errors and even accidents. This paper presented a feasi
bility study on investigating whether the recognition of hand signals 
could be automated with computer vision technologies in the con
struction field through creating a new dataset with 11 classes of hand 
signals in construction and evaluating two state-of-the-art recognition 
networks, ResNeXt-101 and Res3D + ConvLSTM+MobileNet in terms of 
confusion matrix, accuracy and inference time. The results indicated a 
high classification accuracy (e.g. 93.3%) and a short inference time (e.g. 
0.17 s/gesture) could be achieved and illustrated the feasibility of 
employing computer vision technologies to automate the hand signal 
recognition on construction sites. 

Future work will focus on two aspects. First, more construction hand 
signals will be included into the dataset to make the training and testing 

Table 11 
The confusion matrix of Res3D + ConvLSTM+MobileNet under the RGB modality (%).   

Prediction 

Actual Hoist Lower Tower 
travel 

Trolley travel 
right 

Trolley travel 
left 

Stop Dog 
everything 

Move 
slowly 

Swing 
right 

Swing 
left 

Emergency 
stop 

Hoist 81.4 2.2 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lower 0.0 84.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tower travel 0.0 0.0 82.1 0.0 0.0 0.0 5.4 9.7 0.0 0.0 0.0 
Trolley travel 

right 
11.6 0.0 0.0 85.7 0.0 7.5 0.0 0.0 0.0 0.0 0.0 

Trolley travel left 0.0 6.5 0.0 0.0 84.1 0.0 0.0 0.0 0.0 3.4 0.0 
Stop 0.0 2.2 0.0 0.0 0.0 82.5 0.0 0.0 10.0 0.0 7.5 
Dog everything 0.0 0.0 10.7 4.8 0.0 0.0 91.9 12.9 0.0 10.3 0.0 
Move slowly 0.0 0.0 0.0 4.8 0.0 0.0 2.7 77.4 0.0 0.0 0.0 
Swing right 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 85.0 0.0 5.0 
Swing left 0.0 0.0 7.1 0.0 11.4 2.5 0.0 0.0 0.0 86.2 0.0 
Emergency stop 7.0 0.0 0.0 0.0 4.5 7.5 0.0 0.0 5.0 0.0 87.5  

Table 12 
The confusion matrix of Res3D + ConvLSTM+MobileNet under the depth modality (%).   

Prediction 

Actual Hoist Lower Tower 
travel 

Trolley travel 
right 

Trolley travel 
left 

Stop Dog 
everything 

Move 
slowly 

Swing 
right 

Swing 
left 

Emergency 
stop 

Hoist 86.0 0.0 0.0 11.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Lower 0.0 87.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Tower travel 0.0 0.0 78.6 0.0 0.0 0.0 8.1 9.7 0.0 0.0 0.0 
Trolley travel 

right 
11.6 0.0 0.0 83.3 0.0 10.0 0.0 0.0 0.0 0.0 0.0 

Trolley travel left 0.0 8.7 0.0 0.0 86.4 0.0 0.0 0.0 0.0 6.9 0.0 
Stop 0.0 0.0 0.0 0.0 2.3 85.0 0.0 0.0 7.5 0.0 7.5 
Dog everything 2.3 0.0 14.3 0.0 0.0 0.0 86.5 6.5 0.0 10.3 0.0 
Move slowly 0.0 0.0 7.1 0.0 0.0 0.0 5.4 83.9 0.0 0.0 0.0 
Swing right 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 82.5 0.0 5.0 
Swing left 0.0 4.3 0.0 4.8 9.1 0.0 0.0 0.0 2.5 82.8 0.0 
Emergency stop 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 7.5 0.0 87.5  

Table 13 
The classification accuracy and inference time of Res3D +

ConvLSTM+MobileNet.   

RGB Depth  

Classification 
accuracy (%) 

Inference 
time (s/ 
gesture) 

Classification 
accuracy (%) 

Inference 
time (s/ 
gesture) 

Indoor Scene 1 96.0 4.64 90.0 4.56 
Scene 2 92.0 4.77 82.0 4.56 
Scene 3 94.0 4.76 98.0 4.55 
Average 94.0 4.72 90.0 4.56 

Outdoor Scene 4 78.5 4.84 81.5 4.58 
Scene 5 76.9 4.91 83.1 4.65 
Scene 6 82.9 4.89 82.9 4.63 
Scene 7 78.6 4.93 80.0 4.68 
Average 79.3 4.89 81.9 4.64 

Average 84.5 4.82 84.8 4.60  

Table 14 
The inference time of ResNeXt-101 and Res3D + ConvLSTM+MobileNet (s/ 
gesture).   

ResNeXt-101 Res3D + ConvLSTM+MobileNet 

RGB Depth RGB Depth 

Hoist 0.22 0.13 3.75 3.58 
Lower 0.19 0.15 6.45 6.17 
Tower travel 0.27 0.16 5.62 5.37 
Trolley travel right 0.17 0.11 3.39 3.28 
Trolley travel left 0.20 0.12 3.71 3.54 
Stop 0.25 0.18 4.35 4.18 
Dog everything 0.26 0.14 4.31 4.05 
Move slowly 0.28 0.18 5.68 5.47 
Swing right 0.33 0.19 4.76 4.48 
Swing left 0.30 0.18 4.56 4.35 
Emergency stop 0.43 0.38 6.48 6.17 
Average 0.26 0.17 4.82 4.60  
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of different types of construction hand signal detectors and classifiers. 
Second, it will investigate what will be an effective way to transmit the 
signal meanings to the corresponding receivers, after the automatic 
recognition of hand signals. 
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Fig. 6. The examples of the RGB and depth data in scene 2 (left: RGB; 
right: depth). 

Table 15 
The recognition performance of ResNeXt-101 in RGB-D modality.   

RGB-D  

Classification accuracy (%) Inference time (s/gesture) 

Indoor Scene 1 96.0 0.16 
Scene 2 98.0 0.34 
Scene 3 100.0 0.33 
Average 98.0 0.28 

Outdoor Scene 4 95.4 0.39 
Scene 5 87.7 0.47 
Scene 6 95.7 0.42 
Scene 7 87.1 0.54 
Average 91.5 0.46 

Average 93.8 0.38  

Hoist
Lower

Tower tr
avel

Trolley tra
vel ri

ght

Trolley tra
vel le

ft
Stop

Dog everything

Move slo
wly

Swing rig
ht

Swing left

Emergency sto
p

0

100000

200000

300000

400000

500000

600000

e
ga

mi
re

p
st

ni
o

p
le

xi
p

t
u

p
ni

e
gare

v
A

Fig. 7. The average input pixel points per image in different hand 
signal categories. 
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