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A B S T R A C T   

Contractors should conduct strict quality inspection of the steel bars used in concrete structures and need to 
automate the process of quality inspection. The objective of this study is to develop an Artificial Intelligence 
Quality Inspection Model (AI-QIM) that can execute quality inspection on steel bars at the construction site. The 
proposed AI-QIM is built on the Mask Region-based Convolutional Neural Network (Mask R-CNN) technique, 
which can perform instance segmentation of steel bars. This object detection technique is integrated with a stereo 
vision camera to generate information on steel bar installation. A contractor can use the proposed AI-QIM to 
estimate the quantity, spacing, diameter, and length of steel bars during quality inspection. A sample case study 
indicated that the AI-QIM yielded a maximum relative error of 3% when measuring steel bar spacing and a 
maximum relative error of 8% when measuring steel bar lengths within a range of 1–2 m from a stereo camera.   

1. Introduction 

Steel bars are installed in the construction of a reinforced concrete 
structure and resist tensile forces. The strength of the concrete structure 
can be significantly affected by the reinforcement being even slightly out 
of place [1]. Therefore, a contractor should conduct strict quality in-
spection of the steel bars to achieve the desired level of structural safety. 
However, improper placement of steel bars can occur and reduce the 
bearing capacity of the structure [2]. This can lead to surface cracking in 
the structure, early rebar corrosion, and eventually structural failure. 

Therefore, the contractor should ensure that all steel bars are 
installed in compliance with the corresponding shop drawings. Quality 
inspection should be performed continuously to reduce construction 
errors during the installation of steel bars. As the Concrete Reinforcing 
Steel Institute [1] stated, quality inspections should ensure that the 
quantity, size, location, and spacing of installed steel bars prior to 
concrete pouring. 

However, manual and visual quality inspection is a time-consuming 
and error-prone process. Moreover, the quality inspector must be able to 
access the temporary structure to measure and count the installed steel 
bars. Therefore, the process needs to be automated to improve inspec-
tion quality and safety, and reduce the manpower required for steel bar 
quality inspection. More effort should be exerted to improve the effec-
tiveness of steel bar quality inspection. 

Studies have been conducted to help the quality inspector with steel 
bar installation by using state-of-the-art technologies. For example, 
Zhang, et al. [3] applied a stationary machine vision system by utilizing 
a level sensor, proximity switch, and stepper motor mounted on a guide 
rail for quality inspection of steel bars and achieved diameter detection 
and vertical spacing measurement. This application comes with multiple 
sensors and devices, which lowers practicality at the construction site. 
Moreover, the height for the measurements is fixed, reducing mobility, 
and it is time-consuming to set up the stationary machine vision system. 

Han, et al. [4] used a laser scanning and vision-based 3D recon-
struction method to construct point cloud representations for detecting 
steel bars and their spacing distances. They identified the locations and 
configurations of steel bars to calculate the spacing between them using 
a mapping algorithm for object points. Kim, et al. [5] used a terrestrial 
laser scanner to retrieve 3D point clouds for measuring the dimensions 
of formwork and steel bars. They developed a preset terrestrial laser 
scanning technique that can automatically assess reinforcement con-
crete elements including steel bar spacing and concrete cover in concrete 
formwork. 

The unique aspect of these two approaches is that they use 3D point 
clouds to create 3D models for the steel bars to be installed for concrete 
structures. Although the 3D point cloud models afford precise assess-
ment of steel bar conditions, this type of 3D reconstruction comes with a 
heavy computational burden and is unsuitable for practical applications 
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at construction sites. 
Recently, the Convolutional Neural Network (CNN) has been widely 

used for object detection and segmentation in a variety of applications, 
such as the detection of workers and excavators at construction sites [6], 
safety guardrails [7], and concrete cracks [8]. CNNs are also applied to 
steel bar counting in construction. For example, researchers have 
applied a CNN-based deep learning artificial intelligence model to detect 
and count steel bar tips and heads [9–11]. However, all these re-
searchers tried to detect steel bar tips and heads using the object 
detection and segmentation technique. Their main goal was to count the 
number of steel bar heads in a bundle before installation. 

These previous studies showed that the existing models are effective 
for structured environments, such as precast concrete factories, but not 
for unstructured environments, such as construction sites. Steel bar 
quality inspection is often performed on the go, and the quality inspector 
should be able to use the information on steel bar installation directly at 
the construction site. Moreover, the quality inspector should be able to 
move around to evaluate the quality status. This mobility can help the 
quality inspector to assess the steel bar status. 

The objective of this study is to provide an Artificial Intelligence 
Quality Inspection Model (AI-QIM) that can assist the quality inspector 
with quality inspection during steel bar installation. The proposed AI- 
QIM is built using the Mask Region-based Convolutional Neural 
Network (Mask R-CNN) technique, which can perform instance seg-
mentation of steel bars. This object detection technique has been inte-
grated with stereo vision to measure the attributes of steel bars. 
Contractors can use the AI-QIM to detect the quantity, spacing, diam-
eter, and length of steel bars at the construction site for timely quality 
inspection. 

2. Overview of the state-of-the-art technologies 

In the application of artificial intelligence quality inspection to steel 
bar installation, efforts should be exerted to detect steel bars and esti-
mate their attributes, including quantity, diameter, spacing, and length. 
The AI-QIM described in this study has been developed by integrating 
the state-of-the-art technologies of CNN and stereo vision to meet the 
abovementioned requirements. In this approach, CNN performs object 
detection and stereo vision performs attribute estimation. In this section, 
these technologies are reviewed in the context of artificial intelligence 
quality inspection. 

2.1. Object detection and segmentation 

Convolutional Neural Network (CNN) is another technology that can 
be applied to steel bar quality inspection because this technique can 
execute instance segmentation to delineate steel bar shapes. CNN is a 
deep neural network architecture that provides object recognition and 
localization on images. In general, a trained CNN model can perform 
image classification [12], classification and localization [13], object 
detection and semantic segmentation [14], and instance segmentation 
[15]. 

Mask R-CNN [15] is an extended version of Faster R-CNN [16]. The 
Mask R-CNN model has the additional capability to generate object 
masks on each region of interest, while Faster R-CNN can output with 
only bounding boxes. These object masks are a binary representation of 
the objects detected on input images. The Mask R-CNN technique has 
been applied to construction worker tracking [17], concrete crack 
detection and localization [8,18,19], safety distance identification for 
crane drivers [20], and detection of leakage water in shield tunnel 
segments [21]. 

Mask R-CNN is used in this study because the model can distinguish 
all instances of steel bar objects on an image, along with their respective 
borders. A specially labeled dataset called Common Objects In Context 
(COCO) [22] was used for pre-training the Mask R-CNN model because 
the transfer learning training technique is less time consuming. For 

example, in this study, a custom dataset with steel bar objects was 
harvested before training. Then, the Mask R-CNN setup configuration 
was slightly adjusted and trained on the custom dataset by using the 
transfer learning technique. 

Fig. 1 shows the two stages of the Mask R-CNN model: 1) proposal 
and 2) segmentation. The proposal stage generates proposals as possible 
regions in which objects may exist. Feature Pyramid Network (FPN) 
[23] is an architecture that extracts rich semantic feature maps. Feature 
maps, also called activation maps, are rich semantic layers that are 
retrieved after the convolution process. Region Proposal Networks 
(RPN) [16] is a network that generates object proposals and the corre-
sponding objectness scores. The Region of Interest (ROI) align approach 
properly positions the features to the input by extracting the feature map 
of each ROI for the detection and segmentation tasks. 

After accepting the proposals generated in the proposal stage, the 
segmentation stage generates pixel-level object masks and bounding 
boxes and, subsequently, predicts the object classes of steel bars. 

2.2. General description of stereo vision technology 

Stereo vision is a technology for stereo image depth calculation. This 
technology detects an object in 3D space and determines its XYZ co-
ordinates relative to the cameras. Stereo vision technology can be used 
for distance calculation by calculating the heights, widths, and distances 
of and to an object [24–27]. In the construction domain, stereo vision 
has been used to detect the width of cracks in concrete beams [28]; 
measuring small deformations of bridge girders [29]; and 3D model 
reconstruction of structural collapses [30]. 

Stereo vision computes object depth by utilizing the binocular 
disparity between the object images captured by the left and right 
cameras (Fig. 2). That is, two parallel cameras located at a known sep-
aration distance (i.e., baseline) provide a set of two coplanar images. 
Full-image point-by-point search and calculation of these matching 
features are performed to generate depth images [31]. 

Stereo vision can be implemented using two methods: 1) rectified 
and 2) unrectified [32]. With the former, the axes of two cameras are 
parallelly aligned, while with the latter, they are converged onto the 
single point. In this study, the rectified method was used because it is 
more applicable in real-time applications at construction sites. The 
rectified method uses a stereo rig where two cameras are aligned having 
close to perfectly parallel optical axes. 

Stereo vision technology can generate depth map images using two 
cameras. This technology calculates the dimensions of the objects pre-
sent on the depth map images. When a CNN is integrated with stereo 
vision, the former detects the objects of steel bars, and the latter esti-
mates the attributes of the detected objects. Therefore, a CNN can be 
applied in conjunction with stereo vision to automate the process of steel 
bar inspection in real time. 

2.3. Stereo vision-based distance measurement 

Fig. 2 shows a visual representation of the rectified stereo vision 
where two aligned cameras with parallel optical axes are set up. The 
figure shows the parallel stereo geometry of the parallel optical axes 
using dash-dot lines. In this research, an Intel RealSense depth camera is 
used to implement the stereo vision technique. The focal length (f) and 
baseline (B) distance of the camera were set to 1.93 mm and 50 mm, 
respectively. The depth information retrieval resolution and RGB data 
resolution of the camera were 1280 × 720 px [33]. 

The Mask R-CNN technique is used in conjunction with the stereo 
vision technique for object detection and depth perception of steel bars. 
In the following section, the integration of these two techniques is 
discussed. 

The point coordinates relative to the depth image are used to perform 
measurements at a given point or between several points on the two- 
dimensional (2D) plane of a red, green, and blue (RGB) color image. 
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In this case, the RGB color image is aligned with the depth map image, 
which is relative to the center of a stereo camera. Then, the object can be 
detected to generate the information pertaining to heights, widths, and 
distances. Accurate measurement can be achieved when the input im-
ages are aligned precisely one with another. 

Eq. (1) shows the relationship between disparity and depth. Here, z 
denotes the depth to the object from the image plane, f the focal length 
of the camera in mm, B the baseline between parallel camera lenses axes 
in mm, and d the disparity of the point in pixels [31]. 

depth (z) =
f ∙B
d

(1) 

Eq. (2) is used to calculate the disparity d of a point between two 
images. 

disparity (d) = x1left − x1right (2) 

In the figure, point 1 is projected onto both cameras along the short- 
dashed line, and point 2 is projected onto both cameras with the long- 
dashed line. In the figure, the distance between two steel bars at 
points 1 and 2 can be measured using the Pythagorean theorem 
expressed in Eq. (3). 

Fig. 1. Structure of a mask R-CNN model.  

Fig. 2. Parallel stereo geometry with parallel optical axes (dash-dot line).  

Fig. 3. Conceptual diagram of AI-QIM.  
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distance (point 1, point 2) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − x2)
2
+ (y1 − y2)

2
+ (z1 − z2)

2
√

(3)  

3. Structure of artificial intelligence-applied quality inspection 

Fig. 3 shows the overall structure of the AI-QIM. The AI-QIM consists 
of two major parts: 1) Mask R-CNN and 2) stereo vision. The AI-QIM has 
been developed using multiple application programming interfaces 
(APIs), such as the TensorFlow API, Intel RealSense API, and Python 
libraries. After the model has been adequately trained, the program 
source codes can be uploaded to Google Drive cloud storage. 

The first Mask R-CNN stage detects and localizes the steel bar objects 
by using the Mask R-CNN technique. That is, the stereo depth camera 
connected to a laptop captures both RGB and depth data at the con-
struction site. The cloud computing service initializes the Mask R-CNN 
model. After initialization, the RGB data is handed to the trained Mask 
R-CNN model to perform object detection and segmentation of the steel 
bar objects. The detected and localized steel bar objects are subsequently 
handed to the stereo vision part. 

The second stereo vision part creates a depth map out of the stereo 
image data. The cloud computing service initializes and fetches all of the 
stereo-vision-related source codes. Here, the RGB data are aligned with 
the depth map. Then, the stereo vision source codes measure and 
calculate object attributes from the aligned pair of RGB images and 
depth maps. 

If the laptop has a built-in GPU with a sufficient VRAM memory and 
is CUDA-compatible, the AI-QIM can detect the steel bar objects in real- 
time for automated steel bar inspection at a construction site without the 
need to perform all of the actions in the cloud. 

4. Convolutional neural network training 

Convolutional neural network training is a crucial step in the 
development of the AI-QIM. The AI-QIM uses dataset of steel bar images 
to train itself. The training work should follow a preset procedure to 
achieve a high object detection capability. After the training work is 
completed, the AI-QIM should be validated to measure the level of 
model performance. When the training is completed, the newly captured 
data are used as inputs to AI-QIM, and the model, in turn, generates 
object detection masks. In this context, this section discusses the pro-
cedure for training the AI-QIM and the training results. 

4.1. Data acquisition 

CNN training requires a dataset consisting of many steel bar images. 
In this study, all 240 images were used in training the AI-QIM. The 

dataset was acquired using a GoPro camera and a stereo vision camera at 
two construction sites. To avoid repetition, the steel bar installations at 
the construction sites were filmed at different heights and later split into 
different frames apart from the captured images (Fig. 4). Moreover, 
videos of the steel bars were captured under different weather condi-
tions (i.e., cloudy and sunny) to increase the dataset diversity and avoid 
false positive detections due to shadows of the steel bars. 

The data used for actual distance measurements was recorded using 
an Intel Realsense Depth Camera. This camera has a special data file 
format called “rosbag”, which has the “.bag” extension. The .bag data 
file is used to hold a large amount of uncompressed data per second. The 
“.bag” file stores two data types, namely, 1) RGB stream and 2) stereo 
depth stream that can be used for the Mask R-CNN model and depth map 
construction, respectively, as well as for object mask alignment. 

4.2. Data labeling 

Once the dataset of steel bar images is obtained, the images in the 
dataset should be labeled manually. Here, labeling refers to the process 
of generating polygons that outline specific objects for each instance of 
steel bar on the image. An online image annotation tool is used to 
perform object labeling on the dataset images. Although labeling is a 
very time-consuming and tedious task, it is necessary to train the AI- 
QIM. The labeling process generates polygon object masks, and all of 
the data are stored in the JSON file format. This JSON file is later used to 
generate object masks and XML files for each respective labeled image. 

Fig. 5 shows the structure of the labeled data after labeling of the 
RGB image, namely, the polygon object masks and the point coordinates 
in the XML file. Fig. 5(a) shows the XML file that stores file path data, 
image dimensions, and polygon object mask positions. Fig. 5(b) shows 
the captured image used for labeling. Fig. 5(c) and (d) shows the poly-
gon object masks of the left and right steel bars, respectively. 

After all of the steps are completed, the resulting data are saved in 
the special TFRecord format, which is the standard format of the Ten-
sorFlow Object Detection API [34]. This TFRecord file stores all of the 
RGB images, PNG mask images, data from XML files, image list, and 
class list. Then, all of the data are combined to generate TFRecord files. 

In training and validation, most researchers split the dataset 70–30% 
[35] or 80–20% [11,36]. In this study, the dataset is split into the ratio of 
70–30% to focus more on verifying the accuracy of the AI-QIM. 

4.3. Training performance 

As aforementioned, all of the 240 images in the dataset were used to 
train the AI-QIM, and they were stored in two separate TFRecord files: 1) 
70% of the images were used for training and 2) 30% were used for 

Fig. 4. Acquisition of slab steel bar installation data at construction sites  
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validation; an extra 10 images were used for testing. All the generated 
TFRecord files were uploaded to Google Cloud. The Google Cloud AI 
Platform was used for CNN training on a Tesla K80 GPU with the Ten-
sorFlow 1.10 runtime version. 

Fig. 6 shows a learning curve with the training numbers (steps) on 
the horizontal axis and the mean Average Precision (mAP) on the ver-
tical axis. This graph is used to evaluate the precision of the trained 
model and indicates how well the model performs object detection. 
Here, the mAP is a measure of model performance during training. 

Shanmugamani [37] stated that a detection is considered to be a true 
positive if the mAP value is above 0.5. 

Fig. 7 shows a comparison of AI-QIM and manual labeling. Fig. 7(a) 
shows an AI-QIM-labeled image output obtained by using the test 
dataset as the input to the trained AI-QIM. Fig. 7(b) shows a manually 
labeled image, where polygons were drawn over the object boundaries 
of the steel bars. 

After the initial training has been completed, the k-fold cross vali-
dation method was done to confirm the model prediction capability 

Fig. 5. Labeling of object mask polygon.  

Fig. 6. AI-QIM training learning curves.  
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[38]. In this method, the dataset of 240 images was reshuffled in random 
orders to generate three extra datasets. Then, the AI-QIM was trained 
again using each of these datasets with 14,600 iterations over 23 h on 
average. 

Fig. 6 also shows cross training learning curves along with the initial 
training learning curve. In the figure, each cross training learning curve 
reached their peak performance after approximately 10,000–11,000 
steps. These results show that all the cross training achieved an average 
mAP = 0.75 with the lowest mAP = 0.75 and the highest mAP = 0.76. 
These mAP numbers are all above 0.5 and indicate the AI-QIM can 
perform consistently well in prediction. 

4.4. Post-processing 

The prediction capability of the AI-QIM can be improved by con-
ducting post-processing to remove low-confidence predictions and 

overlapping predictions. The post-processing checks all of the pixel in-
tersections for longitudinally and transversely placed steel bars to avoid 
improper computations of steel bar diameters and spacings. These errors 
occur when one of the points used for distance measurement lands on 
one of these intersections, which results in either inaccurate diameter 
measurement or spacing calculation. 

Fig. 8(a) shows an example involving the fourth vertical steel bar 
from the left side, where two object masks are stacked on top of each 
other. In this study, the post-processing operation deleted objects of the 
same class when their object masks had more than 30% intersecting 
pixel values. Moreover, the post-processing operation deleted those 
detected object masks that had an area of more than 10% of total 
number of pixels on an image. This means that these steel bar image data 
were captured too close to the camera. When the image data were 
captured at distances of less than 30–40 cm away from the steel bars, no 
information was retrieved due to the limitations of stereo vision. 

Fig. 7. Test set validation.  

Fig. 8. Comprehensive input (upper half) output (lower half) window.  
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In addition, each object should have its own information separately 
in a proper object hierarchy because mask R-CNN invokes inferences in a 
random order. Therefore, the quantity, diameter, spacing, length of the 
steel bars were calculated sequentially from left to right and top to 
bottom. This post-processing was performed after the mask R-CNN 
inference in the first stage of the AI-QIM, and it can increase the pre-
dictability of the AI-QIM. Thus, the process can remove low-confidence 
predictions and overlapping predictions and enhance the prediction 
capability of the AI-QIM. 

4.5. Estimation of steel bar object attributes 

After training and post-processing, all of the required information 
can be calculated, including 1) quantity, 2) diameter, 3) spacing, and 4) 
length of the detected steel bars. First, it is relatively simple to count the 
number of steel bars because the quantity is equal to the total number of 
horizontally and vertically placed object masks. The steel bar length can 
be measured using the imaginary lines that should be placed over the 
object masks. The two tips at which the line intersects the object mask 
denote the end points of a steel bar. 

Second, determination of steel bar diameter requires the same 
imaginary line on top of the object mask and a certain number (e.g., 20) 
of equidistant imaginary lines perpendicular to the pivot line, which are 
bounded by the object mask, thus yielding two points (from each 
normalized line) to measure the diameter. Then, the steel bar diameter 
can be calculated using eq. 3. However, since the object mask is usually 
marginally larger than the steel bar, these points will yield incorrect 
measurements. Therefore, these points should be compressed within the 
object mask to be closer to the pivot line and away from each side of 
mask edges by 5–10%. 

Third, the bar spacing can be measured using the same imaginary 
pivot lines as those used to measure the length of the steel bars. In this 
case, the intersection points of the pivot line with its equidistant 
perpendicular lines constitutes a set of initial points. Fourth, the spacing 
distance can be calculated using eq. 3. 

Fig. 8 shows detailed input and output images of the AI-QIM. Here, 
Fig. 8(a) shows an input RGB image; Fig. 8(b) a depth map image; Fig. 8 
(c) the output object mask of the steel bars, as obtained using mask R- 
CNN; and Fig. 8(d) a computer window with statistics related to the steel 
bars. This window provides summary statistics about the quantity, 
length, diameter, and spacing of the vertical and horizontal steel bars. 

5. Example case study 

The AI-QIM was applied to a test bed comprising steel bar 

installation. For the evaluation, two 1 × 1 m testbeds comprising steel 
bars having two different diameters, 13 mm and 16 mm, were built. 
Fig. 9 shows a drawing representation of the assembled testbed. This 
testbed comprises 10 steel bars, with 5 steel bars placed vertically and 5 
steel bars placed horizontally. The spacing between two steel bars was 
200 mm. Small deviations of up to 10 mm were present when the steel 
bars were tied. Fig. 9(a) shows the top view, where “x” represents the 
horizontal distance from the camera to the edge of the testbed. Fig. 9(b) 
shows the side view, where “y” represents the vertical distance from the 
testbed to the stereo vision camera. 

Accuracy tests were conducted at the [(x, y, z)] positions, where x 
denotes the horizontal distance from the camera, y the camera height, 
and z the side shift from the center of the testbed. The z value was varied 
from − 20 cm to +20 cm during image capture to improve visibility. The 
observation camera was located at a height of 1.1 m, which is the typical 
height at which people hold mobile devices such as phones and tablets. 
This configuration provided appropriate visibility for capturing images 
of the steel bars used in this case study. 

Performance evaluation of the AI-QIM was conducted at different 
ranges by using the testbed. Table 1 summarizes the results of the per-
formance evaluation in terms of four performance factors: 1) quantity, 
2) diameter, 3) spacing, and 4) length. 

First, the AI-QIM estimated the quantity of steel bars accurately as 5 
each in the horizontal direction and 5 each in the vertical direction. 
Second, the maximum relative error in the estimated diameter was 
15.4%, and the absolute error ranged from 0 to 2 mm. However, the 
conditions at the test site were considerably good, thus providing good 
output results. Third, the estimated spacing between two steel bars had a 
maximum relative error of 3% and a 11% maximum error when 
detecting a single steel bar spacing distance between two bars within a 
range of 1 and 2 m from the placed steel bars. Fourth, the maximum 
relative error in the estimated steel bar length was 8%, with the absolute 
error ranging from 0 to 80 cm. 

Overall, the AI-QIM showed fluctuations in estimating the diameter. 
These errors occurred due to the small image resolution of the depth 
map images, which was only 1280 × 720 px in this study. The depth map 
image resolution is important because a large pixel does not allow one to 
retrieve precise object positions, especially at longer distances. Yet 
another source of error is the detection model itself. That is, when the 
object mask is received, it has jagged edges that do not usually match 
with the positions of the steel bars. Some optical distortion also 
contributed to the error. 

For example, the accuracy of a stereo vision camera gradually de-
creases with increasing distance from the object to be imaged. There-
fore, the steel bars in the middle were detected quite precisely, whereas 

Fig. 9. Test bed setup (in millimeters).  
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the ones to the sides were detected relatively imprecisely. Table 1 shows 
that the AI-QIM has better precision at shorter distances. Moreover, the 
object mask size is usually larger than the object itself, which adds to the 
error. Although these extra spaces were removed during post- 
processing, the error did affect model performance. 

This case study demonstrates the three main benefits of the AI-QIM. 
First, the AI-QIM can assist the quality inspection process in steel bar 
installation because the real-time inference in the model can detect and 
segment steel bar objects directly at construction sites. As the case study 
results show, the automated quality inspection can help the human 
quality inspector to better understand the quantity, diameter, spacing, 
and length of the steel bars. Second, the quality inspector can use the AI- 
QIM in an unstructured environment at the construction site during steel 
bar installation. The quality inspector can videotape the status of steel 
bar installation and extract quality inspection data directly at the con-
struction site. Third, the AI-QIM can provide mobility in quality in-
spection because the quality inspector needs to carry only the stereo 
vision camera and laptop computer or even a tablet to evaluate the 
quality status. The fifth-generation internet connection available 
nowadays enables the AI-QIM to be wirelessly connected to the internet 
from construction sites. 

6. Conclusion 

In this study, the AI-QIM is presented by integrating two state-of-the- 
art technologies: 1) mask R-CNN and 2) stereo vision. Based on artificial 
intelligence, the AI-QIM can detect steel bars that are installed for 
concrete placement. This combined effort is the first step in replacing 
manual and visual inspection with automated inspection. When the AI- 
QIM is fully implemented, this automated inspection system can assist a 
human inspector with steel bar inspection. 

The case study indicated that the AI-QIM must be refined for full 
implementation in practice. Nevertheless, the AI-QIM can 1) reduce the 
labor requirement compared to manual and visual inspection; 2) assist 
the quality inspector with automated data output; 3) improve safety by 
reducing the need for human quality inspection to access dangerous 
work zones for observing the installation of steel bars; and 4) provide 
opportunities for various applications, such as drone inspection. Other 
than these benefits, the AI-QIM can reuse the data collected during steel 
bar inspection for training to improve its prediction capability. 

In future, the object detection capability of the AI-QIM can be 
enhanced by overcoming certain limitations. For example, the low depth 
image resolution of 1280 × 720 px does not permit precise detection at 
distances greater than 2 m from the viewer. Moreover, the object mask 
precision decreases because of its jagged edges and the low image res-
olution, which introduces additional errors. Furthermore, the mAP of 
the AI-QIM can be improved by using a larger dataset for training. When 
these limitations are overcome, the AI-QIM can be generalized and 
potentially be used for steel bar inspection in practical scenarios. 
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