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A B S T R A C T   

Using RGB-D cameras as an alternative motion capture device can be advantageous for biomechanical spine 
motion assessments of movement quality and dysfunction due to their lower cost and complexity. In this study, 
we evaluated RGB-D camera performance relative to gold-standard optoelectronic motion capture equipment. 
Twelve healthy young adults (6M, 6F) were recruited to perform repetitive spine flexion-extension, while 
wearing infrared reflective marker clusters placed over their T10-T12 spinous processes and sacrum, and motion 
capture data were recorded simultaneously by both systems. Custom computer vision algorithms were developed 
to extract spine angles from depth data. Root mean square error (RMSE) was calculated for continuous Euler 
angles, and intraclass correlation coefficients (ICC2,1) were calculated between minimum and maximum angles 
and range of motion in all movement planes. RMSE was low (RMSE ≤ 2.05◦) and reliability was good to excellent 
(0.849 ≤ ICC2,1 ≤ 0.979) across all movement planes. In conclusion, the proposed algorithm for tracking 3D 
lumbar spine motion during a sagittal movement task from one RGB-D camera is reliable in comparison to gold- 
standard motion tracking equipment. Future research will investigate accuracy and validity in a wider variety of 
movements, and will also investigate the development of novel methods to measure spine motion without using 
infrared reflective markers.   

1. Introduction 

Low back pain is one of the most prevalent and costly musculoskel
etal disorders in the world, affecting up to 80% of people at some point 
in their lifetime. While a small number of cases have a definitive diag
nosis and associated treatment, the vast majority of cases are classified 
as non-specific, meaning there is no known pathoanatomical cause [1]. 
For this group of patients, researchers and clinicians typically assess 
spine movement quality during a set of movement dysfunction tests with 
the goal of classifying normal and abnormal (i.e., dysfunctional or 
harmful) movements [2-3]. Clinical assessments often involve subjective 
visual appraisal of movement quality performed by a trained clinician; 
however, there is poor inter- and intra-rater reliability [3-6]. 
Conversely, researchers in laboratory settings typically utilize opto
electronic motion capture to obtain objective measurements of spine 
movement quality; however, these systems are costly and technologi
cally challenging, which limits their feasibility for use in clinics. 

To overcome these challenges and improve clinical spine movement 

assessment, researchers have investigated the feasibility of alternative 
devices to objectively measure spine motion in clinics. For example, 
wearable inertial measurement units (IMUs) have been validated for 
tracking trunk motion and assessing spine neuromuscular control during 
repetitive trunk flexion-extension (FE) tasks [7], as well as for assess
ments of common clinical movement dysfunction tests [8]. It was 
established in these studies that spine range of motion (ROM) mea
surements were within or slightly above the clinical benchmark for ac
curacy of human movement tracking (i.e., < 2◦ error, or between 2◦ and 
5◦ with additional subjective interpretation) [9], and that they were 
reliable for measuring typical movement dysfunction parameters [7-8]. 
While IMU performance is regarded as clinically acceptable for motion 
tracking, the sensors are subject to magnetic disturbance, and sensor 
location is also difficult to obtain (i.e., an IMU is only able to track 
orientation relative to itself, or another IMU). Many researchers attempt 
to track IMU location in global space (e.g., [10-11]); however, these 
procedures are computationally expensive and advanced, and are 
dependent on careful IMU-to-segment placement and calibration 
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techniques. Some commercially available devices are capable of 
providing estimates of lumbar spine ROM and movement quality in 
clinical settings (e.g., DorsaVi Professional Suite; DorsaVi, Victoria, 
AUS); however, these systems come with proprietary motion-tracking 
algorithms, which are prohibitive for conducting custom assessments 
of spine movement quality and dysfunction. As an alternative, re
searchers are exploring the use of depth sensors for tracking people’s 
movement, as these sensors are able to provide position and orientation 
data, and it is possible to customize methods of movement assessment 
from raw depth data. 

Red, green, blue, depth (RGB-D) cameras are gaining popularity as 
an alternative method for motion tracking in clinical and research set
tings. Many of these cameras use their depth data stream and native 
machine learning algorithms to locate pre-defined joint centres for 
tracking full-body motion (aka the built-in “skeletal model”). RGB-D 
cameras are less expensive and require less time than traditional opto
electronic motion capture equipment for tracking human motion, and 
they can be easily installed within clinical settings. The performance and 
implementation of these cameras have been studied for the assessment 
of various experimental and clinical outcome measures relative to gold- 
standard motion tracking equipment, such as: 1) clinical measurements 
of motor function and postural control [12-14]; 2) spatiotemporal gait 
parameters during overground and treadmill walking [14-15]; and 3) 
spatial accuracy (i.e., location and orientation) of landmarks during 
various movement tasks [12,16-17]. 

The majority of studies that utilize RGB-D camera systems for 
tracking human motion achieve adequate results using the integrated 
skeletal model [12,15,18]. Specifically, Otte et al. [12] found excellent 
reliability while evaluating the spatial accuracy of RGB-D cameras for 
clinical assessments of whole body motion, obtaining nearly perfect 
correlation (r > 0.99) with optoelectronic motion capture when tracking 
“spine base” (approximately L5/S1), “spine mid” (approximately 
T12/L1), and “spine shoulder” (approximately T4) landmark locations (as 
defined by the native skeletal model) in the sagittal plane, strong cor
relation in the frontal plane (r ≥ 0.85), and moderate correlation in the 
transverse plane (0.46 ≤ r ≤ 0.70). Clark et al. [18] compared mea
surements of spinal posture between the skeletal data relative to opto
electronic motion capture equipment; pairwise comparison of ICCs 
showed no significant differences between devices during single leg 
balance and both lateral and forward reach, and the correlation between 
systems was very strong across all movement axes (0.93 ≤ r ≤ 0.99). 
Lastly, Dolatabadi and colleagues [15] evaluated the performance of the 
native skeletal model in estimating spatiotemporal gait parameters (e.g., 
stance time, step time, step length, and velocity) relative to optoelec
tronic motion capture, and achieved moderate to excellent reliability 
between systems (0.73 ≤ ICC2,1 ≤ 0.98). Researchers in these studies 
recorded data using a frontal view of the participants; however, for 
evaluating lumbar spine movement tasks, the camera must be positioned 
in a posterior-anterior view (i.e., behind the participant) to capture the 
anatomical landmarks of interest, which restricts the ability to use the 
built-in skeletal model. Thus, development of custom motion tracking 
algorithms from raw depth data are necessary for clinical assessment of 
lumbar spine motion. Prior to clinical integration, these algorithms must 
be validated relative to gold-standard motion tracking equipment to 
meet the clinical benchmark for human motion tracking. 

In a meta-analysis conducted by Cuesta-Vargas and colleagues [19] 
concerning the use of IMUs as an alternative for human motion tracking, 
it was concluded that IMUs should be considered only as a tool, and that 
their validity for tracking human movement is task- and site-specific, 
and also heavily dependent on the specific pre-/post-processing algo
rithms used to assess motion from raw sensor data [19]. Applying the 
same premise to RGB-D cameras: they are tools for tracking motion, and, 
therefore, it is necessary to evaluate their performance according to the 
same standard. 

Some researchers have developed custom methods of tracking 
human motion from raw RGB-D camera depth data and achieved 

adequate results. Macpherson and colleagues [16] positioned the RGB-D 
camera behind participants and recorded depth data in order to measure 
pelvis and trunk kinematics during treadmill locomotion, finding weak 
to very strong correlations (0.3 ≤ r ≤ 0.9) during walking and running. 
Similarly, Cippitelli and colleagues [17] developed a method using the 
RGB-D camera’s depth sensor to measure changes in full-body posi
tioning using sagittal plane views, and achieved superior performance of 
their method over the built-in skeletal model when compared to 
gold-standard optoelectronic motion capture [17]. Lastly, Auvinet et al. 
[14] developed a custom framework to extract lower extremity kine
matics from the RGB-D camera’s depth data (using both anterior and 
posterior view points) to measure intersegmental coordination and gait 
asymmetry during treadmill walking. Results for this study showed 
excellent correlation between the RGB-D camera’s depth data and 
gold-standard optoelectronic motion capture equipment when 
measuring gait asymmetry from both view points; however, interseg
mental coordination computed with the RGB-D camera’s skeletal data 
was not reliable [14]. 

Of the aforementioned studies, two looked at trunk kinematics using 
the built-in skeletal model (i.e., [12-13]), and one investigated lower 
back kinematics using custom motion tracking algorithms (i.e., [16]). To 
the best of the authors’ knowledge, there are no studies validating 
RGB-D camera depth data against an optoelectronic motion capture 
system when comparing lumbar spine motion during a dynamic trunk 
FE task. Therefore, the goal of this study was to develop and validate a 
computer vision method to track lumbar spine motion from an RGB-D 
camera’s depth data using infrared (IR) reflective markers during a re
petitive FE task relative to gold-standard optoelectronic motion capture 
equipment. Based on results from previous studies, as well as previous 
work that evaluated the performance of wearable IMUs for spine motion 
tracking using similar methods, it was expected that the RGB-D camera 
would achieve a similar level of performance (i.e., low root mean square 
error (RMSE) for continuous angles and excellent reliability when 
measuring minimum (min) and maximum (max) angles and ROM). 
RMSE values below 2◦ are considered low and clinically acceptable, and 
between 2-5◦ are clinically acceptable with additional subjective inter
pretation [9]; ICC2,1 values of below 0.5, 0.5-0.75, 0.75-0.9, and above 
0.9 correspond to poor, moderate, good, and excellent reliability, 
respectively [20]. 

2. Methods 

2.1. Participants 

Twelve healthy adults (6M/6F) were recruited from the general 
university population via poster-advertising and word of mouth. 
Participant demographics are reported in Table 1. Participants who were 
unable to complete the trunk movement tasks without experiencing pain 
or fatigue, and participants who had suffered from a low back injury 
within six months prior to data collection were excluded from this study. 
Informed consent was obtained from all participants prior to 
experimentation. 

2.2. Equipment and experimental setup 

Passive IR reflective marker clusters (12.7 mm, B & L Engineering, 
USA) were placed superficial to the T10-T12 vertebrae (i.e., “trunk”) and 

Table 1 
Mean (SD) Participant Demographics.   

Height (cm) Weight (kg) Age (years) BMI (kg/m2) 

Male 176.2 (5.2) 77.4 (2.6) 26.7 (6.0) 25.0 (1.6) 
Female 163.4 (6.1) 55.4 (11.1) 21.3 (2.5) 20.6 (2.9) 
All 169.8 (8.6) 66.4 (13.9) 24.0 (5.2) 22.8 (3.2) 

SD = standard deviation; BMI = body mass index. 
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the sacrum (i.e., “pelvis”; Fig. 1). During the data collection session, 
kinematic data were collected simultaneously from one RGB-D camera 
(Kinect v2, Microsoft Corporation, Redmond, WA, USA) at 30 Hz and a 
10-camera motion capture system (Vantage V5, Vicon, UK) at 120 Hz. 
The RGB-D camera was positioned 1.0 m behind the participant at a 
height of 1.70 m, with the camera pointing 30◦ downward from the 
horizontal towards the participant’s back (Fig. 2). This camera position 
allowed adequate visualization of the participant’s back during execu
tion of the movement task, avoiding camera occlusions and ensuring the 
detection of their full ROM. Prior to collection, the RGB-D camera was 

pre-heated for over 25 minutes in order to avoid temperature-induced 
fluctuations in depth accuracy [21]. Depth images were calibrated as 
per the intrinsic camera parameters provided by the manufacturer. The 
RGB-D camera’s depth data were captured using the “Kinect Image 
Acquisition Toolbox” from MATLAB (R2018b, The MathWorks Inc., 
USA). To synchronize both the RGB-D camera and the optoelectronic 
motion capture systems, a common temporal event was created by 
tapping a passive IR reflective marker placed behind the participant 
causing it to accelerate and signal start time. The starting frame for each 
system was determined by selecting the first frame where movement 
was detected (i.e., when the IR reflective marker leaves the stationary 
position; indicated by a sudden, drastic change in the position-time 
graphs). 

2.3. Movement protocol 

Participants performed 35 cycles of trunk FE at a rate of 30 beats/ 
minute controlled by a metronome (i.e., 15 cycles/minute) while con
strained at the hip; this was done to ensure the measured ROM repre
sents trunk FE movement exclusively, rather than combined ROM from 
the lower limbs, pelvis, and trunk. To control for ROM, participants 
touched targets placed at specific locations with arms outstretched in 
front of them; one target was located 50 cm anteriorly at knee height, 
oriented parallel to the floor, and the other at shoulder height and at 
arm’s length away, oriented perpendicular to the floor [7,22]. One cycle 
was defined as the participant moving from standing position (touching 
shoulder height target), into forward flexion (touching knee height 
target), and back to standing (touching shoulder height target; Fig. 2). 
All aspects of this protocol were approved by the University of Ottawa 
Research Ethics Board (H02-17-11; H08-17-26). 

2.4. Data processing and analysis 

To compare spine kinematics between systems, each system under
went identical post-processing for direct comparison (as outlined in the 
following subsections). For the RGB-D camera’s depth data, an addi
tional step was required that involved a series of image processing al
gorithms to track the 3D location of IR reflective markers from depth 
data. Additionally, optoelectronic motion capture system data were 
down-sampled to ensure the trials for each system were synchronous 
and equal-length. Lastly, data from both systems were filtered using a 
2nd order dual-pass low-pass Butterworth filter, with a cut-off frequency 
of 2 Hz. 

2.4.1. Depth image computer vision algorithm 
Several steps were involved in the custom-developed computer 

vision algorithm; these included: 1) manually selecting a region of in
terest from the depth images where IR reflective markers would be likely 

Fig. 1. Marker placement and experimental setup.  

Fig. 2. Experimental setup and task protocol. (A) Participants begin in upright standing position with arms outstretched in front of them; then, (B) participants move 
into full flexion; and finally, (C) participants return to upright standing position for the completion of one full cycle. 
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to appear throughout the video; 2) applying a logical operator on each 
image to find pixels that had value equal to zero (indicating reflection of 
IR light and therefore the presence of markers); 3) filtering out pixel 
regions that do not match the IR reflective markers’ size and shape (i.e., 
12.7 mm diameter sphere) and are therefore not IR reflective markers, 
based on their morphological properties (i.e., major axis length and 
area; this was done using the “regionprops” function in MATLAB); 4) 
locating the centroid position (i,j) of each retained pixel region on the 
image plane and defining as (x,y) global coordinates for each IR 
reflective marker; and finally 5) calculating marker (z) global co
ordinates based on the average of the pixel values in the area sur
rounding each pixel region (i.e., a 1-pixel-thick perimeter around each 
IR reflective marker; this indirect method was required as the pixel value 
for x and y coordinates was zero). This process produced 3D global co
ordinates (x,y,z) for each IR reflective marker. 

2.4.2. Kinematics 
Both systems underwent identical calculation of lumbar spine kine

matic variables for direct comparison. First, individual local coordinate 
systems were defined using trunk and pelvis marker clusters [23]; in
dividual markers were labelled: TRupper, TRlower, TLupper, TLlower, PRupper, 
PRlower, PLupper, and PLlower (Fig. 3; where T and P refer to trunk and pelvis 
marker clusters, respectively, and subscripts R and L represent right and 
left markers, respectively, when facing the participants’ back). The 
origin of the trunk cluster was defined at TRlower. To create the medio
lateral x-component of the trunk, a unit vector î was defined using Eq. 1. 
Next, an auxiliary vector ̂v was created as a temporary y-component unit 
vector (i.e., inferosuperior direction; Eq. 2). This vector was used to 
create the z-component unit vector k̂ (i.e., anteroposterior direction), 
which was defined as the cross product between î and v̂ (Eq. 3). Finally, 
the y-component unit vector ̂j, was adjusted by taking the cross product 
between k̂ and î (Eq. 4). 

î =
TLlower − TRlower

||TLlower − TRlower||
(1)  

v̂ =
TRupper − TRlower

‖ TRupper − TRlower‖
(2)  

k̂ = î × v̂ (3)  

ĵ = k̂ × î (4) 

The resulting right-handed rotation matrix (Eq. 5) describes the 

orientation of the rigid body in 3D global space: 

RTrunk =

⎡

⎢
⎢
⎢
⎢
⎣

îx îy îz

ĵx ĵy ĵz

k̂x k̂y k̂z

⎤

⎥
⎥
⎥
⎥
⎦

(5) 

This process was repeated for the pelvis cluster (i.e., the origin was 
defined as PRlower, and the rotation matrix RPelvis was obtained identi
cally). A rotation matrix describing relative motion between trunk and 
pelvis marker clusters was calculated, and Euler angles were extracted 
using an X-Z-Y rotation sequence (corresponding to FE-lateral bend (LB)- 
axial twist (AT) axes). 

2.4.3. Range of motion 
To obtain lumbar spine ROM (i.e., trunk relative to pelvis), the 

following steps were taken: 1) the FE, LB, and AT time-series were 
divided into individual movement cycles by automatically identifying 
peak angles (corresponding to upright standing) with a mean peak 
prominence of > 15◦ in the FE plane (so as not to capture local maxima 
that occur as a result of neuromuscular tremor) [7]; then, 2) each in
dividual cycle was normalized to 101 data points (i.e., 0-100% of the 
cycle); next, 3) the mean ensemble curve (representing the average 
movement across all cycles) was obtained by calculating the mean angle 
across all cycles, at each percentage of the movement; and finally 4) FE, 
LB, and AT ROM were calculated according to Eq. 6 - 8. 

ROMFE =
⃒
⃒θFE

max − θFE
min

⃒
⃒ (6)  

ROMLB =
⃒
⃒θLB

max − θLB
min

⃒
⃒ (7)  

ROMAT =
⃒
⃒θAT

max − θAT
min

⃒
⃒ (8)  

2.5. Statistical analysis 

To quantify the magnitude of error of the RGB-D camera relative to 
optoelectronic motion capture system, RMSE was calculated across the 
entire trial; two-way random intraclass correlation coefficient’s (ICC2,1) 
were used to assess reliability between the min and max angles and 
ROM, and Bland-Altman plots were constructed to assess absolute 
agreement between ROM measurements obtained by each system. All 
statistical analyses were performed using SPSS statistical software for 
windows (SPSS 23, IBM Corporation, USA) and custom MATLAB scripts. 

Fig. 3. Infrared reflective marker setup. (A) Trunk and pelvic marker clusters with individual marker labels. The trunk marker cluster with the local coordinate 
system is shown in the zoomed-in image. The global coordinate system is shown in the bottom right. (B) Depth image with local coordinate systems defined over each 
marker cluster. The global coordinate system is shown in the bottom right. 
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3. Results 

RGB-D camera and optoelectronic motion capture system relative 
lumbar spine angles were extracted and compared. RMSE of continuous 
planar angles, and ICC2,1’s of min, max, and ROM angular measurements 
were calculated to quantify performance of the RGB-D camera depth 
data and proposed image processing algorithms relative to the opto
electronic motion capture system. Overall, our method of extracting 
angles from the RGB-D camera’s depth data produced very low RMSE in 
comparison with the optoelectronic motion capture system across all 
participants (RMSEFE = 2.05◦ ± 0.97◦; RMSELB = 0.65◦ ± 0.37◦; RMSEAT 
= 0.84◦ ± 0.38◦). Mean ensemble curves (i.e., representing the average 
motion across all cycles and across all participants) and associated 
standard deviations (SDs) were plotted for visual appraisal (Fig. 4). 

Cycle-to-cycle min and max angles and ROM and their respective SDs 
from both systems were calculated and directly compared; they are 
organized and presented in Table 2. For analysis of reliability between 
systems, ICC2,1’s for relative min and max angles and ROM of cycle-to- 
cycle data were compared across the FE, LB, and AT movement axes, 
and exhibited good to excellent reliability (0.849 ≤ ICC2,1 ≤ 0.979) in 
comparison with gold-standard motion capture equipment; specific re
sults are listed in Table 3. Bland-Altman plots were also constructed to 
identify any instrument bias when measuring planar ROM (Fig. 5); these 
plots show that the RGB-D camera systematically underestimated ROM 
in the FE plane, and overestimated ROM in the LB and AT planes. 

4. Discussion 

In this study, we developed a custom image-processing method to 
track lumbar spine motion from RGB-D camera depth data during re
petitive spine FE, and we were able to show that our method performs 
well when compared to a gold-standard optoelectronic motion capture 
system. RMSE of continuous motion, and absolute agreement and reli
ability of lumbar spine angular measurements were assessed across all 
movement axes between systems. Overall, our method of tracking 
lumbar spine motion from RGB-D camera’s depth data produced low 
RMSE (RMSE ≤ 2.05◦ ± 0.97◦) with optoelectronic motion capture 
system data. Although RMSE was highest overall in the FE plane, the 
error as a percentage of total ROM was lowest (i.e., ~ 4%); percentage 
error in the LB and AT planes was relatively high (i.e., ≥ 26%), but a 
large proportion of this can likely be attributed to random measurement 
noise, as the out-of-plane movement during FE is minimal [7]. Addi
tionally, the values obtained for min, max, and ROM in the current study 
are comparable to similarly collected data from previous research [7]. 
ICC2,1’s were good to excellent between systematic measurements of 
min and max angles, and ROM it was excellent in the FE plane (i.e., 
along the main axis of movement; ICC2,1,FE ≥ 0.930), and good to 
excellent in LB and AT planes (0.865 ≤ ICC2,1,LB ≤ 0.914; 0.849 ≤ ICC2,1, 

AT ≤ 0.921). Lastly, Bland-Altman plots revealed that measurement 
agreement between systems was excellent [24], but there was minor 
systematic bias when measuring ROM; nevertheless, this difference was 
within the acceptable limits for clinical motion tracking (i.e., less than 
2◦) [9]. These results combined show that using RGB-D cameras is a 

Fig. 4. RGB-D camera (blue) vs optoelectronic motion capture system (red) averages (solid) and standard deviations (dashed) of the lumbar spine joint angle for (A) 
flexion-extension, (B) lateral bending, and (C) axial twisting movement axes. Y-axis range for (B) and (C) are different than (A) for better visualization. 

Table 2 
Mean (SD) minimum and maximum angles and range of motion.   

Flexion-Extension  Lateral Bending  Axial Twisting  

Vicon Kinect  Vicon Kinect  Vicon Kinect 

ROM (◦) 53.4 (7.7) 51.5 (7.6)  1.9 (1.0) 2.5 (1.4)  2.7 (1.8) 3.0 (1.4) 
max (◦) 52.9 (8.6) 51.2 (8.5)  0.9 (1.2) 1.0 (2.0)  1.5 (1.6) 1.4 (2.4) 
min (◦) -0.4 (3.5) -0.3 (4.1)  -1.0 (1.1) -1.5 (1.6)  -1.2 (2.3) -1.6 (2.7) 

ROM = range of motion; max = maximum; min = minimum; SD = standard deviation. 

Table 3 
Reliability analysis (ICC2,1; 95% CI bounds) between optoelectronic and RGB-D lumbar spine angles.    

Flexion-Extension Lateral Bending Axial Twisting  

ROM 0.979 (0.453-0.996) 0.889 (0.290-0.973) 0.898 (0.654-0.970) 
ICC2,1 max 0.973 (0.851-0.993) 0.914 (0.700-0.975) 0.849 (0.460-0.957)  

min 0.930 (0.754-0.980) 0.865 (0.521-0.961) 0.921 (0.736-0.977) 

ROM = range of motion; max = maximum; min = minimum; ICC2,1 = intraclass correlation coefficient; CI = confidence interval. 
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realistic and feasible option for clinical motion capture of the spine. 
Similar to the current study, Macpherson and colleagues [16] 

tracked an RGB-D camera’s depth data with a custom developed algo
rithm that identified the centroid of individual IR reflective markers. 
They compared linear and angular displacements of the trunk and pelvis 
between the RGB-D camera and the optoelectronic motion capture 
system during walking and running on a treadmill. While correlations 
between linear displacements were very strong to nearly perfect, cor
relations of angular displacements ranged from moderate to strong. It is 
likely that their methods to obtain angular displacement from linear 
marker trajectories lacked the sophistication needed to accurately 
obtain these angles; that is, Macpherson and colleagues [16] utilized 
only 4 IR reflective markers (placed over the right and left posterior 
superior iliac spines and bilaterally over the 10th rib) to track motion of 
the trunk and pelvis, and for each marker, a 42-point rectangular cloud 
was superimposed onto the image surrounding the marker. The mean 
marker depth was used as the camera-marker distance (i.e., 
anterior-posterior direction), and the medial-lateral and 
superior-inferior locations of the marker were calculated using trigo
nometry and manufacturer information regarding the field of view. To 
calculate angular positions, vectors joining left-sided and right-sided 
markers were created (representing the FE plane axis), and the pro
jected angles of these vectors on the LB and AT planes were recorded for 
the trunk and pelvis rotations. This process was quite different than the 
method proposed in our study, with the main difference being the uti
lization of synthetic superimposed marker data to track angular posi
tions. The use of synthetic data was necessary in their study as their 
marker setup involved only 2 markers per anatomical region (their 
marker tracking algorithm was unable to discern more closely posi
tioned markers). We believe that the method used in the current study 
performed better as it did not involve the use of synthetic markers (it is 
recommended that 4 markers – or at least 3 – are sufficient for posi
tion/orientation tracking of marker clusters), and the process for 
obtaining rotations from rigid-body marker clusters placed over the 
trunk and pelvis has been used extensively in literature [25–27]. Addi
tionally, Macpherson and colleagues [16] used a different RGB-D cam
era (i.e., the Kinect v1), which was a previous version of the system; our 
study used the Kinect v2 which has been proven to have better accuracy 
and precision when tracking motion, [21,28]. Lastly, Macpherson and 
colleagues’ [16] movement protocol for the involved fast-paced tread
mill running, which can cause excess skin-motion artifact noise at heel 
contact, and can affect motion tracking; we believe that our movement 
protocol is less strenuous and therefore likely to avoid excessive noise 
caused by skin-motion. 

While the results from the current study are promising, there are 

some limitations to consider. First, the spatial resolution of the selected 
RGB-D camera decays with distance [29]; as such, there may be 
increased error (and poorer agreement and reliability) as a direct result 
of the nature of the given task (i.e., as the participant moves farther 
away into a fully flexed position, spatial resolution decays). To address 
this in future studies, the utilization and synchronization of two or more 
RGB-D cameras that are capable of recording the full capture volume 
with high-quality spatial resolution may be a feasible option. This may 
also help to reliably capture more complex movements in future studies 
(e.g., repeated LB, multidirectional movements, etc.). In addition, the 
method to obtain z global coordinates relies on a heuristic approxima
tion, which has potential to influence accuracy. For example, if a larger 
pixel vicinity is selected, it is possible that some data points that do not 
represent the pixel cluster region could be included (e.g., participants’ 
garment), introducing uncertainty into the measured shape and posi
tioning of these pixel values. Our method accounts for this uncertainty 
by: 1) selecting a pixel vicinity region that is 1 pixel thick (i.e., not too 
large so that it includes the participants’ clothing or other objects 
outside of the marker cluster), and 2) optimizing camera position and 
orientation so that the flat rigid base of the vicinity of the IR reflective 
marker clusters is visible throughout the entire movement protocol (i.e., 
to ensure smaller pixel regions within the vicinity of the IR marker 
cluster are always visible, without capturing clothing or other possible 
artifacts). Therefore, it is not expected for these factors to have a sig
nificant affect on accuracy. Furthermore, although the selected RGB-D 
camera has been discontinued, our methods and algorithms are 
directly usable and transferable to other RGB-D time-of-flight cameras, 
including the Azure Kinect (Microsoft Corporation, Redmond, WA, USA) 
which contains an RGB-D camera with advanced AI sensors for building 
computer vision models, and can be connected to Azure cloud databases 
for future big-data analyses. Lastly, this study aimed to validate the use 
of RGB-D cameras as quantitative tools for measuring spine kinematics 
during a repetitive trunk FE task on healthy participants; in order to be 
considered feasible for clinical motion tracking of the spine in people 
with low back pain, it must first be validated on this group of patients. 
Overall, this study generates evidence of low levels of error, and good to 
excellent agreement and reliability between systems, making it a 
feasible option for lumbar spine motion tracking in clinical settings. 

5. Conclusion 

The proposed method performed well (i.e., low error and good to 
excellent agreement and reliability) for tracking lumbar spine motion 
using a single RGB-D camera’s depth data in a standardized setting 
compared to optoelectronic motion capture equipment; thus, the 

Fig. 5. Bland-Altman plots for lumbar spine (A) flexion-extension, (B) lateral bending, and (C) axial twisting range of motion measurements between optoelectronic 
and RGB-D systems. The red lines represent the mean measurement difference between systems, and the blue lines represent mean ± 1.96SD (standard deviation). 
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proposed method can be considered as a valid method for quantifying 
lumbar spine FE movement using one RGB-D camera, and can be 
extended to various applications beyond spine motion assessment (e.g., 
other anatomical segments which require custom camera setup and 
post-processing that deviates from the standard full-body skeletal 
model). Further work is being conducted to develop deep learning 
methods to automatically segment and classify trunk/spine anatomical 
landmarks, reducing the amount of time and specific expertise required 
to process data, and allowing similar kinematic analysis to be done 
without the use of IR reflective markers. Future studies should investi
gate the validity of using RGB-D cameras to track human movement in a 
wider variety of settings (i.e., alternate camera positions and angles), 
during additional movement tasks (e.g., repeated LB and AT, and ac
tivities of daily living), and on clinical populations. 
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