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A B S T R A C T

The NASA Starlight and Breakthrough Starshot programs conceptualize fast interstellar travel via small re-
lativistic spacecraft that are propelled by directed energy. This process is radically different from traditional
space travel and trades large and slow spacecraft for small, fast, inexpensive, and fragile ones. The main goal of
these wafer satellites is to gather useful images during their deep space journey. We introduce and solve some of
the main problems that accompany this concept. First, we need an object detection system that can detect
planets that we have never seen before, some containing features that we may not even know exist in the
universe. Second, once we have images of exoplanets, we need a way to take these images and rank them by
importance. Equipment fails and data rates are slow, thus we need a method to ensure that the most important
images to humankind are the ones that are prioritized for data transfer. Finally, the energy on board is minimal
and must be conserved and used sparingly. No exoplanet images should be missed, but using energy erroneously
would be detrimental. We introduce simulator-based methods that leverage artificial intelligence, mostly in the
form of computer vision, in order to solve all three of these issues. Our results confirm that simulators provide an
extremely rich training environment that surpasses that of real images, and can be used to train models on
features that have yet to be observed by humans. We also show that the immersive and adaptable environment
provided by the simulator, combined with deep learning, lets us navigate and save energy in an otherwise
implausible way.

1. Introduction

Space travel, up until recently, was constrained by chemical pro-
pulsion, large spacecraft, and therefore, relatively slow speeds. Since
the main objective has been exploration of our solar system, these
methods were sufficient. In contrast, the recent Starlight program
(Kulkarni et al., 2017) has introduced methods for deep space travel
that utilize small discs, which travel at approximately one-fourth of the
speed of light via directed energy.

Alongside the prospect of fast deep space travel comes many new
challenges. The normal model for space travel includes spacecraft
capable of housing instruments, propulsion and navigational equip-
ment, telescopes, energy banks, and much more. Since the Starlight
program will be utilizing small wafersats that are approximately the
size of a coffee can lid, all of these features need to be reworked or
discarded.

Besides physical constraints, this new model of space travel in-
troduces feasibility constraints as well. The star of interest is beyond
four light-years away, meaning that transmission of data and response

command transmissions are a combined eight years or more. Thus, the
wafersats need to be able to make decisions without human interven-
tion, and for that, artificial intelligence (AI) is paramount.

The major hurdles that we will discuss are those concerning com-
puter vision via planetary detection, data and storage blockages via
novelty detection and ranking, and energy management via combining
simulator features with subtraction-algorithm-fed computer vision. For
all of these issues, taking advantage of a universe simulator will in-
troduce solutions that were otherwise ineffective or impossible to find.

1.1. Previous work

The effectiveness of machine learning, specifically deep learning via
TensorFlow and cuDNN, has been indisputably demonstrated in the last
decade (Abadi et al., 2016; Chetlur et al., 2014; Canziani et al., 2016).
The fight over the best model and the most accurate results, especially
between the most popular models like ResNets, DenseNets
(Huang et al., 2018), Inception (Szegedy et al., 2015), Masks (He et al.,
2018), and models that combine some of these together (Szegedy et al.,
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2016), is one that has produced a plethora of potent options to choose
from. Models that are more accurate than human beings at doing ex-
tremely difficult tasks are still being discovered (Rajpurkar et al., 2017).

The areas of deep learning and astronomy have come together in
recent years (Ruffio et al., 2018; Morad et al., 2018; Schaefer et al.,
2018; Pearson et al., 2017), mostly in the form of light curves (Shallue
and Vanderburg, 2017; Zucker and Giryes, 2018; Carrasco-Davis et al.,
2018). The results and general concepts promote a healthy symbiosis
between deep learning and the problems that arise in astronomy. Yet,
the processes are carried out from Earth, not space, and do not address
real images, two big issues that create a gap in comparability.

Outside of astronomy, simulators have been used to train data in
specific instances where the benefits outweigh the drawbacks.
Smyth et al. (2018) outlines some major drawbacks, namely that the
process takes a lot of time and knowledge, as well as a note that si-
mulator-based training may not generalize well to real images. Along-
side those concerns, McDuff et al. (2018) begins with a common issue in
machine learning models, which is that training data sets are often
biased. This bias arises when there are minorities in the training set,
which in turn produces poor results when the model is asked to eval-
uate a similar entity in the population. These issues are handled
throughout this paper and are shown to not be an issue with the specific
problem at hand.

Simulators also introduce a lot of benefits. One large one, also seen
in Connor and Leeuwen (2018), is that “the small catalogue of real
events is probably not yet a representative sample of the underlying.
population, nor is it big enough to build a meaningful training set for
machine learning, deep or otherwise.” An important theme throughout
this paper, and an extremely useful aspect of simulators, is that they
provide an untold amount of training data, assuming that one can
create realistic simulations.

1.2. Unsupervised learning for planetary detection

The intuition behind object detection, in particular planetary de-
tection, might point toward an unsupervised learning technique. After
all, one might reasonably think that detecting a nearby planet after
months of traveling through deep space would be easy. We test this idea
using an unsupervised technique called a Grow When Required (GWR)
Network (Marsland et al., 2002).

1.2.1. GWR setup
Using the worldwide telescope, we generated a 9000 frame series of

solar system images. It begins with Neptune, then it explores Mercury,
the Sun, and finally Mars. The majority of images contain only back-
ground stars.

The images were down-scaled to a 320x180 resolution in order to
improve computational speed. For learning, they were decomposed into
red, green, and blue channels and vectors were constructed of length

× × =320 180 3 172, 800.
Our challenge is to label each image as novel or regular. That is, we

wish to generate a classification n s.t. for each input x, n(x) ∈ {0, 1},
where a 0 indicates regularity and a 1 indicates novelty. Since the video
is composed of 9000 images, large objects like planets or the Sun will be
in view for a few hundred or thousand consecutive frames. During these
large bins when a planet or the Sun is clearly in view, the algorithm
should hopefully yield a large number of 1’s and should yield very few
1’s when the image is mostly distant stars.

1.2.2. GWR algorithm
Define A as the set of nodes in our network and C as the set of edges

between these nodes. We denote our inputs as ξ and the weight vector
for any node n as wn. Each node n has a habituation hn which represents
how familiar that node is to the system.

1. Initialize two nodes that represent two random samples from the

dataset. We set their habituations each to 1. The set of edges be-
tween nodes begins empty.

2. Iterate through the dataset. For each data sample ξ:
(a) For each node i in the network, calculate its distance from ξ,

which is wi .
(b) Find the node s with the smallest distance and the node t with

the second-smallest distance.
(c) Add an edge between s and t if it does not already exist.
(d) Calculate the activity = wa j j Cexp( ( [ ] [ ]) / ),j s

2 where C
= 29,203,200 was chosen to prevent an integer overflow. There
are 172,800 fields in each data vector, and since the average of
the quantities in each vector is close to 13, and =13 169,2 we
divide by × =172, 800 169 29, 203, 200.

(e) If a< aT and s’s habituation hs < hT (where aT is some insertion
threshold and hT is some habituation threshold), then add a new
node r. If a new node is added, data point is considered novel.
Set = +w w

r 2
s . Insert edges between s and r and r and t and

remove the edge between s and t.
(f) Otherwise, update the weight and habituation of s as follows:

= ×w w( )s b s and = × ×h h1.05 (1 ) ,s b s b where
ϵb and τb are parameters. Next, update the weight and habitua-
tion of s’s neighbors i as follows: = ×w w( )i n i and

= × ×h h1.05 (1 ) ,i n i n where ϵn and τn are other para-
meters.

(g) Remove any nodes without any neighbors.
Our chosen values are: = =a h0.7,T T

= = =0.1, 0.3, 0.1, 0.1,b n b and =n 0.01.

1.2.3. Results
Fig. 1 is a scatter plot that was generated to visualize the novelty

detected from the data. The x-axis is the id of each picture, and the y-
axis is the number of novel images that were detected in each bin of 100
images. Fig. 2 is a continuous representation of the same concept.

Moving along the Image ID axis, we see that novelty was detected in
clumps around 0–500, 900, 4000–4500, 6000–6500, 7000–7500,
7700–8000, and 8200–8500. We observed that novelty was detected
first on Neptune, then again on some particularly bright stars. No no-
velty is detected during the long period of only stars. Next we see in-
creased novelty detection when Mercury is plainly in view, and then
when the sun appears, and finally when we zoom into Mars.

We notice that Neptune’s collection of novelty is roughly one
quarter the size of the other three celestial objects that come into view.
We also notice a huge spike around image 8300. This is very interesting
because there are no large celestial objects in view at this time.

1.2.4. GWR discussion
A deep space exploration mission would come with many challen-

ging objectives. A small but connected subset of those would involve

Fig. 1. A scatter plot of the detected novelty of the data.
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detecting objects, deciding whether they are important, extracting key
features that we would want to study or observe, and prioritizing their
information retrieval.

GWR wouldn’t be able to decide importance, extract features, or
prioritize information retrieval, yet if it could detect novel objects in
deep space, this would be useful. We can see from Figs. 1 and 2 that the
detection is inconsistent and unreliable. Neptune is almost completely
missed and the three smaller peaks at the Sun, as seen in Fig. 2, are
larger than Neptune. The largest peak of all happens while Mars is
minuscule and essentially not in view.

Although GWR had high novelty detection peaks while passing by
Mercury and the Sun, it failed to correctly activate at Mars or Neptune.
These observations, paired with its inability to do anything further with
the data, introduce a need for a more advanced model that can achieve
all of the above objectives.

1.3. Object detection vs. novelty detection

Throughout this paper, our main goals will constantly be alluding to
object detection and novelty detection. In a general computer science
setting, object detection is used to identify something in an image that
has already been trained via some algorithm. For example, we may feed
thousands of images of human beings into a YOLO algorithm (Redmon
et al., 2016), and then once it is trained, we can walk the streets of New
York and see if our algorithm can identify human beings. In this setting,
identifying a human being is a success, and not identifying a car or stop
sign as a human being would also be a success. Yet, identifying any-
thing non-human as a human being would be a failure. The accuracy of
a model, which is mathematically computed per identification, can be
used as a measure of how sure the algorithm is that the object being
identified is the correct type. In this paper, we will delve into why this is
difficult for our specific scenario, and we will test whether this can
benefit severely from the use of simulators.

On the other hand, novelty detection is used to attempt to identify
something that has never been seen before. One powerful example is
self-driving cars being able to see traffic signs that are unique to a
certain country, and therefore have never been seen or used during the
training process (Kim et al., 2017). In this example, the self-driving car
algorithm has never seen this specific sign before, and so identifying it
without any training data is very difficult. In our paper, unseen pla-
netary features are analogous to the unseen traffic sign in the example,
and we delve into methods of solving this via simulators.

2. The simulator

Although there are quite a few universe simulators available today.
Here, we utilized SpaceEngine (SpaceEngine.org) (Figs. 3 and 4) for its

realism, expansive set of options and customizations, and unique in-
formational tools.

2.1. Simulator features

One of the best features of the simulator is its extremely realistic
rendering capabilities. In combination with a 3840x2160 4K monitor
and GTX 1080 Ti, the simulator produces extremely detailed and rea-
listic images.

The simulator also includes the ability to edit any planet, so that
instantly rendering an exoplanet with a very particular feature set is
simple. Alongside image features are astronomical features, which are
tracked and shown for every body in the universe. Some of these fea-
tures are type, class, orbital period and mass, but most importantly,
distance.

2.2. Simulator options

Graphical options in the simulator are abundant, which allow for
complete control of the simulated universe. In general, the feature set
should be optimally set for realism while traveling through space, but
the ability to tweak these options speaks to greater breadth for learning
and adapting to unique situations that may arise in space. For example,
the image of an exoplanet while traveling at one-fourth of the speed of
light with a nebula in the background is a completely new concept. Yet,
two features in the simulator may be able to deal with that combina-
tion. First, the ability to toggle lens flares will provide the AI with

Fig. 2. A binned scatter plot of the novelty of the data. Image ranges that are
salient to the human eye are labeled on the plot.

Fig. 3. Examples of 3D-rendered randomly generated exoplanets.

Fig. 4. Eight lens options applied to the same star.
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training images that both contain and lack lens flares. Second, a feature
called overbright can drastically adjust how bright the background stars
and nebula appear. Training on images that embrace the entire spec-
trum of overbright will allow this machine to deal with novelty de-
tection in a very advanced manner. Having a plethora of options to
enable and tweak can introduce a much larger set of training images
and will let the AI absorb more information before embarking into deep
space.

Some other important options, besides those that deal with graphics
and rendering, are diffraction spike intricacy and size, lens effect on
stars, and planetary shine. Altering all of these settings and training on
the resulting images enables the capture of more information.

For these experiments, settings were chosen that were not too ex-
treme in any direction. Stars were kept as they randomly formed in
order to have natural deviation in the image background. All quality
parameters were turned to the highest setting to provide realism and
pixel definition. The following table outlines all display and graphics
settings.

2.3. Overall simulator importance

In this paper, we consider three main areas of deep space travel that
can be drastically improved with the use of a simulator.

First, computer vision is an extremely useful tool for detecting ob-
jects and making decisions based on what is seen. The training process
consists of tagging images and providing a label for each tag, feeding
those images and tags into a model, and having that model learn the
associations. The model can then be given images, and based on how
successfully it was trained, it may be able to identify parts of the image.

Since we have never photographed exoplanets in detail, training a
model using real images is not feasible. Therefore, we rely on training
using images of planets that we have photographed, which would be
those in our own solar system. Yet, detailed photographs of planets are
not very abundant and would only teach the model to look for those
specific features. In realizing that this would not be sufficient, we may

move toward novelty detection, a branch of computer vision that tries
to classify data that deviates from the data used during training. Co-
domain embedding (Kim et al., 2017) has proven useful in some si-
tuations, such as those where a template design would resemble a real
image almost exactly, but planetary features do not translate well to use
in novelty detection. This is because planetary features, such as atmo-
spheric patterns, are extremely unique.

Simulators can provide very detailed and randomly generated
images of planets that obey universal physical laws. Therefore, we will
be able to generate countless images of planets that resemble real
images of possible exoplanets. Training on these images and features,
the model will learn an exorbitant amount of information. While tra-
veling through space and faced with an image of a real exoplanet, the
model will now have a much broader knowledge base.

Second, we introduce the notion of novelty ranking. A major hurdle
in deep space wafersat travel is data storage and transmission. On-
board memory is limited by physical constraints of the wafersat and
astrophysical exposure, while transmitting data from a wafersat to a
communications hub would be slow and dependent on energy reserves.

A system that can deal with this issue is one that prioritizes the most
important on-board data and sends that first. This not only ensures that
the critical images are sent in descending order of importance in case of
some malfunction, but that the most relevant data is quickly known for
the next wafersats in line.

With the overarching goal being the identification and transmission
of the most important data, novelty ranking will quantify the on-board
images based on importance. Simulators will provide the breadth of
planetary features that are needed to find out what importance means,
as perceived by humans, and then this information can be applied to
software.

Third and last, sending a small disc into deep space means that on-
board energy reserves will be very small. Yet, the objective of detecting
and imaging astronomical bodies while traveling must still be met.

3. Simulator for planetary detection

Our main objective here is to identify novel planets while traveling
through deep space. In order to do so, and for subsequent sections, we
will require a basic conceptual understanding of object detection in
order to logically progress. We should point out that the main backbone
of object detection, through a few core processes, is the same as that
used by humans when they naturally process information and identify
objects. We will discuss these fundamental core processes.

First, the object that we will try to have the model identify should be
seen beforehand in order to train the model. Unsupervised techniques
have their uses and do not require this training process, but we will only
deal with supervised learning models from here on out. Mainly, this is
done because planetary detection is the simplest task, so we need a

Table 1
Table of simulator settings used throughout the training process.

Settings Value

Resolution 3840×2160
Projection Perspective
Auto Exposure Simple
Bloom 0.600
Aurora Quality High
Black Hole Quality High
Ship Warp Quality High
Skybox/Impostors/FB Enabled
Diffraction Spikes Normal
Diffraction Spikes Size 0.1
Lens SE 0.95 Single
Point Sources Sprites
Scale 0.900
Overbright 4.467
Desaturate Dim Stars 0.1995
Landscape LOD −0.6
Planet Shine Super
Planet Shine Bright 2.512
Thermal Emission Shift 0.05
Real Sun Brightness Disabled
Real Planet Brightness Disabled

Table 2
Experiment #1 training image count for real images, simulated images,
and the combination of both real and simulated images.

Real Sim Real + Sim

120 122 242

Table 3
Experiment #1 detection Score for real images, simulated images, and the
combination of both real and simulated images.

Section Real Sim Real + Sim

1 99.875 99.375 99.875
2 98.889 100 100
Total 99.353 99.706 99.941

Bold values represent the strongest outcome among all groups.

Table 4
Experiment #2 detection score results.

Type Accuracy Detection errors

Planet 99.22 None
Rings 99.11 None
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model that can adapt afterwards in order to successfully identify pla-
netary features and rank novelty.

Second, the model will become more robust with more images. Of
course there are exceptions here, such as feeding poor images or images
that do not match the objects category. We will test this concept
thoroughly while we also test the importance of simulated images.

3.1. Setup

Here we will discuss the details of our model, our hypothesis, and
how we will go about testing the importance of simulator images. Our
main goals when choosing a model are finding one that has high ac-
curacy, low to medium computation time, and has been tested to be a
reliable model. Because of this, no new models that haven’t had time to
be tested thoroughly throughout the computer vision community will
be used. Also, the ideal model will sacrifice computation time for ac-
curacy, if needed.

Our hypothesis stems from our second core process and states that
simulator images will not decrease accuracy for planetary detection and
planetary features. These two processes, the detection of planets while
traveling through space, as well as the detection and recognition of
features on those planets, are the inspiration for the two main experi-
ments that are set up. Currently, our collection of useful astronomical
images is very limited. Therefore, using only real images of planets
would limit us to those found in our solar system. Also, planetary fea-
tures would suffer since our solar system contains very few features out
of the set of total planetary feature combinations.

The first experiment will test the validity of simulator images in
general. It is set up in three different stages using the same object de-
tection framework and always testing on the set of real images of
Jupiter. First, we will train on real images of every planet in our solar
system except for Jupiter. These images will be collected from NASA
image repositories and will not include composite images, artist ren-
ditions, or any other variations except for true unaltered images.
Second, we will train on only simulator images with the goal of soli-
difying whether simulator images alone are useful in detecting real
planets. Third, we will combine the first and second training sets,
comprised of simulator images and all real images (excluding
Jupiter),to determine whether simulator images and real images to-
gether provide the best of both worlds.

The second experiment will introduce and test an extremely im-
portant feature of using simulator images - the ability to detect novel
planetary features, i.e. those which have never been seen in any real
images. Since simulators can be programmed to emulate real physics,
the outcome can give us an extremely large number of realistic looking
planets with features that have never been observed. In order to pro-
ceed, we need to use a planetary feature that exists in our solar system
so that we can train using simulator images and test using real images.
Planetary rings have a solid theoretical foundation and would easily
appear in any physics-based simulator, while also being present around
Saturn. Rings are also fairly complex, as they contain extremely unique
striation patterns, can look wildly different depending on the viewing
angle, and can even co-exist with other rings around the same host
planet.

3.2. The model

When using deep learning models for a specific purpose, it is im-
perative that a model is chosen that optimizes what it can while
prioritizing what it must. For example, an object detection model that
may be implemented on a smart phone for real-time detection of human
faces might prioritize speed and give up a small amount of accuracy.

For our purposes, a model should be able to identify planets in deep
space and features on that planet. As seen in Section 1.2.3, this task is
not trivial. Experiment #1 will utilize the model for identifying the
existence of a planet with a strong accuracy. Experiment #2 will utilize

the model for identifying novel features, either on planets or near
planets, such as rings. This model does not incorporate bodies other
than planets during these experiments.

For our purposes, accuracy is of the utmost importance, while op-
eration count is also of some importance. In deep space, we have plenty
of time to do calculations, but we also have very little energy.
Therefore, reaching maximum accuracy with a small amount of op-
erations is the ideal scenario.

As we can see from Fig. 5, originally presented in
Canziani et al. (2016) whereas the authors compared many models for
practical applications like this one, there are few models that fit into the
optimal space of accuracy and operations. The main choice was ResNet
architecture vs. Inception architecture. The accuracy and operations for
both models are almost identical, yet the residual neural network
(ResNet) architecture provides a shortcut in case the training phase
introduces the vanishing gradient problem (He et al., 2015). Along with
this feature, ResNet is a very established model in many domains, and
for these reasons, will be our model of choice going forward.

In terms of ResNet choices, Resnet-34 and ResNet-50 do not provide
enough accuracy for this setting. The best options are ResNet-101 and
ResNet-152, and while both provide approximately the same level of
accuracy, ResNet-152 is much more computationally taxing. Therefore,
ResNet-101 is the optimal blend of accuracy and operations, utilizing
101 layers.

Improvements to base ResNet-101 have been achieved via Fast R-
CNN (Girshick, 2015) and then Faster R-CNN (Ren et al., 2016). The
final model that we use is a hybrid that incorporates the advanced
methods of Faster R-CNN with the strong foundations of ResNet-101,
aptly named Faster R-CNN with ResNet-101.

During our experiments, this model was run on a GTX 1080 Ti. In
order to achieve 60,000 iterations, the runtime was approximately
24–30 h. During the testing phase, each image was evaluated in ap-
proximately 1–2 s. Again, this was using a GTX 1080 Ti, which is
presumably much more powerful than any technology that will be used
to evaluate images on board the wafersat. Faster R-CNN with ResNet-101
is used throughout the paper, no model changes occur.

3.3. Experiment #1 - planetary detection

In this experiment, we tested the theory that simulator images could
be used to train a model that could then detect real objects, and in
particular, planets. Our hypothesis is that simulator images are at least
as good as real images in terms of information gain during training.
Although simulator images can be produced in bulk, the idea was to test
the theory using similar image count in order to avoid any bias. The
table below shows the number of images used for each model and for
their testing phase.

Concerning the testing images, the images were broken down into 2

Fig. 5. Results shown in Canziani et al.(2016) that compare model accuracy vs.
operation count during the ImageNet challenge.
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sections. The first section was comprised of independent images taken
at differing angles. The second section was the exact same frame of
reference, including angle and distance, but included a time-lapsed
series of images.

The results of the testing phase produced a detection score. This
score is a built-in function of TensorFlow and represents the mathe-
matical certainty that the model has identified the correct object. The
table below shows the final detection score results.

The table shows quite a few compelling results right off the bat. The
most direct one being that Real + Sim has achieved equal or better
results than Real or Sim alone did in all categories. Besides Real + Sim,
we can also say something about Real vs. Sim. Although Real achieved
slightly better scores in Section 1, Sim not only achieved better scores in
Section 2, the total score of Sim was also higher and Sim contained at
least one section that had perfect scores.

Our initial hypothesis was that using simulator images would be as
good as real images. Different models and training image sets will al-
ways produce different results, but considering the total scores with our
two sections, Sim produced equal or better results when compared to
Real.

3.4. Experiment #2 - novel features

In order to be able to show the importance of using a simulator for
novel planetary features, we use the results from Experiment #1 as
proof of concept. Those show that Sim images do not decrease detection
scores on real testing images, with the added benefit of being able to
mass produce them and customize feature information in each image.

With this in mind, Experiment #2 will gather 65 simulator images of
ringed planets and train a new model with the same framework as
Experiment #1. We will then test novel feature detection on real images
of Saturn. The machine will have never seen any real image and will
have never been exposed to prior knowledge of Saturn or our solar
system at all. This experiment is, in theory, identical to training a model
with simulator images on Earth and sending it out into deep space in
order to identify novel, never-before-seen features found on real exo-
planets and in real images.

One of the main benefits of simulator images can be observed here.
Even a planetary feature that we can observe will be found once, or
perhaps a few times at best. Therefore, we have limited variability to
work with in terms of ring structure, width, pattern, count, etc. Yet, if
this experiment produces promising results, we can simply build a
physics-based simulator that generates planets, filter by the presence of
rings, capture an image, and repeat the process any amount of times.
From Experiment #1, we know that training on these simulator images
will provide approximately-equivalent information gain when com-
pared to real images of ringed planets. Since our simulator is physics-
based, it should produce many features that we have not even seen
before, transforming this problem from novelty detection into object
detection.

The experiment was set up in parallel to what would hypothetically
happen during deep space exploration. The training was done on a
small batch of simulated images of ringed planets. The idea in the ex-
periment is that, in theory, we have never seen a ringed planet before.
Yet, our physics-based models of planet formation dictate that they
would naturally occur. So we collect simulated images, train on that,
and then send it deep into space. Upon finding a ringed planet for the
first time, it would need to recognize those planets. Normally, we
wouldn’t be able to do this since we have no ringed planets to train on
(in this hypothetical experiment), but since we used simulated images,
we now have a model to deal with this. The experiment goes through
this entire process, and even tests the model on real images of Saturn.
Again, the machine has only seen a small batch of randomly generated
simulated images of hypothetical ringed planets, never a real image of a
planet. The results of the experiment are extremely positive and can be
seen in the table below.

As we can see, the model is dependably accurate based on solely
simulated images. This experiment shows a key point of using simula-
tors - by combining planet generation theory and realistic rendering, we
have turned a novelty detection problem into an object detection pro-
blem, which is significantly easier to deal with. Now, instead of having
to detect unknown features, we can simply construct planets randomly
based on physical laws and train a model using those simulator images.
This would introduce a more complex model with multiple classifica-
tions, increasing its complexity, size, and run-time.

4. Foundations for future work

4.1. Simulator for novelty ranking

We have shown previously that simulator images can be used with
astounding accuracy, and with mass production, can make training via
real images unnecessary. Therefore, we can train using hundreds or
thousands of simulated images and when we encounter a planet, we can
detect it, image it, and send those images back to Earth.

Say, for instance, that the wafer passes and images the five planets
in a hypothetical solar system. Soon after that, it may be on an in-
evitable course toward that solar system’s star, which will destroy the
wafer and all of the images. One downside to small wafers is that they
are easily destroyed or corrupted. This makes a priority system vitally
important, as it would allow the wafer to possibly send back one or two
images from the five that it collected before it is destroyed. This section
is dedicated to figuring out which images should be sent back, and
discussing the approach in doing so.

4.1.1. The concept
We will assume that we have a small storage of images that we need

to send back to Earth in an order that is based on importance. Wafers
could be destroyed relatively easily and data transmission rates in space
are very slow, so sending data based on a notion of importance is
paramount.

Fig. 6 helps show us the extremely abstract definition of importance
that we, as humans, may place on new planets. The top planet is col-
orful and full of land and different bodies of liquid, while the bottom
planet has a unique double ring, an atmosphere, and a single large
ocean, one that may be assumed to be water by visual inspection alone.
The main question we want to ask here is: If you could only send one of

Fig. 6. Hypothetical storage of two images that need to be ranked based on
importance.

J. Bird, et al. New Astronomy 84 (2021) 101517

6



these images back to humanity, which would you send?
An astrobiologist might choose the top planet since the presence of

land and many differently-composed bodies of liquid exist, giving
multiple opportunities for life to possibly flourish. Yet, someone inter-
ested in another planet that may be able to accommodate human ex-
istence might choose the bottom planet since it seems to offer two
important features for us, water and an atmosphere. The question of
importance to humans is very subjective, yet we need a solution that
would be able to rank these two planets, and many more, in order of
importance.

4.1.2. The human experiment
The implausibility of teaching vast conceptual knowledge to a ma-

chine in hopes of it gaining context made us seek out a different ap-
proach:

1. Generate simulated images of planets that range in features. This
will remove the bias that some people may have about our own solar
system, since we are not using any real images of our own planets. It
will also allow data to be gathered about features that do not cur-
rently exist in our solar system, but based on astrophysical theory,
could exist in the universe.

2. Ask experimental subjects to rate each planet by Importance. This is
posed via the question: “On a scale from 1 to 7, how important
would it be for humankind to see this image if it were gathered by a
spacecraft during deep space exploration?”

3. Ask experimental subjects to rate each planetary feature. This will
comprise our total planetary feature set. For instance: On a scale
from 1 to 7, how much does this planet exhibit the presence of
rings? of an atmosphere? of moons? of a livable environment for
humans?

4. Using the data gathered from human thought processes and in-
dividual analysis of importance and interestingness of a planet, train
a model to predict importance given a feature set.

5. Rank all planets in storage based on importance and send them back
to Earth via this priority system.

Essentially, the process would generate a plethora of novel planets
via the simulator. Subjects would participate in the experiment, and in
doing so, would give us vital information about each planets perceived
features and the planets overall importance. This information would
then be fed into a machine learning algorithm, with the output being
importance and the input being feature strength. The wafer would then
see a planet, extract information about each feature via a model like
that seen in Experiment #1, plug it into the machine learning model,
and from there, it would have an accurate prediction of importance.

This process takes in human definitions and thought processes in
order to break down the concept of what we find interesting in planets
that we have not even seen before. Using this method, we can bypass a
problem of novelty detection, which is difficult, and machine con-
textual learning, which is extremely difficult, and turn it into a problem
of human information gain via experiments and subject participation,
which is easy, and object detection, which is also easy.

Future work will show experimental results beyond this proof of
concept solution.

4.2. Simulator for energy management

During a deep space voyage, the wafersat will need to be supplied
with enough energy to perform necessary functions, such as imaging,
analyzing the images, and transmitting data. We don’t assume that the
system is perfect, nor do we need certain restrictions on the amount of
energy available. We have one goal: minimizing the amount of energy
needed while ensuring planetary detection. At one end of the spectrum
is full energy conservation, which would mean that the camera never
turns on and therefore we never collect any data. On the other end of

the spectrum is full energy use, meaning that the camera never turns off
until the energy runs out, which would yield us many images but most
likely none with important findings. Somewhere in between is optimal,
but how do we find it?

4.2.1. The two phases
Simulators open a whole new universe that can be utilized in order

to make a virtual interstellar journey to Alpha Centauri hundreds of
times in the span of a day. By doing this process, we can train our
models to identify stars, predict distances, swap between the two pos-
sible phases, and in doing so, save energy while capturing meaningful
images.

Phase One is essentially comprised of time spent in open-space
travel. This would mean that the probe is beyond a ‘fair’ distance away
from any nearby star and that planetary detection would be a fruitless
endeavor. Yet, during this phase, the main objectives would be nearby
star detection and star distance predictions.

Phase Two would be a rare occurrence whereas the probe has tra-
veled within a ‘fair’ distance of a star and we no longer need to deal
with nearby stars until we have left that star’s system. Instead, this
phase would prioritize planetary detection, imaging, and ranking.

4.2.2. The process
The trip from Earth to Alpha Centauri can be done in approximately

20 years. But, in the simulator, one can travel at any speed and cut out
the majority of the time spent in an uneventful space. This makes it
possible to simulate a 20 year journey in a few hours, or many journeys
in just a single day.

Once these are done, we can train a machine learning model using
star type, the section of the image containing the star, and the distance
from the probe to the star (a simulator feature). Combined with a
subtraction algorithm, and only using enough energy to take two
images, the machine will be able to identify stars and predict their
distance from the probe.

Using this information, the probe will know the approximate dis-
tance to the nearest star in its forward path. A simple calculation can
tell it a safe amount of time to wait until it should take two more
images, confident that the time it has waited has been uneventful.

Repeating this process is extremely energy efficient, and should
eventually lead to coming within a reasonably ‘fair’ distance from a
star. When this occurs, we would change into Phase Two.

Phase Two would use the same intuition except that instead of stars,
we substitute in planets. Once identified, instead of being interested in
distances, we would prioritize imaging. Details on planetary detection,
imaging, feature extraction, and ranking have been detailed in earlier
sections.

4.2.3. An example of phase one
One extremely difficult concept in this entire process is making sure

that the probe can successfully understand what is close to it versus
what is very far away. The concept used is straight-forward: bodies that
are closer will tend to shift more while the probe travels in a straight
path. As an extreme example, a body that is 1 AU away from the probe
will shift from center screen to completely off screen in approximately
33 s. Yet, a very distant star could go without changing position for
months or years.

In order to deal with this, a subtraction algorithm is implemented.
The probe will take a photo, wait a certain amount of time, and take
another photo. Then, the first will be subtracted from the second and
the resulting image will show any pixels that have shifted state during
the elapsed time. If enough of these pixels shift, we will get a clear
image of something that is relatively close.

The main problem here, again, is that nobody has any concept of the
“wait a certain amount of time” part of the process. How much time is
the right amount of time? If you do not wait long enough, nothing will
move and your subtracted image will be all black. If you wait too long,
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even things that are very far away will begin to shift and you will be left
with a large amount of stars, still unsure about which of those are ac-
tually close. This difficult part becomes approachable with the use of
simulators.

The example deals with a simulated star that exists 0.08 light-years
away from the probe. We travel at 500c and perform a subtraction al-
gorithm in 10 s intervals, resetting after each one. This equates to
traveling at 0.25c and performing a subtraction algorithm every
20,000 s, or approximately every 5.55 h. So, the first image is 5.55 h in
real-time, the second image is 11.11 h in real-time, then 16.66 h, and so
on. The goal is to see if simulators can be useful, and if so, at what point
we would want to optimally take images in order to ensure we capture
bodies that are nearby while also saving energy.

As we can see in Fig. 7, the first few bins produce a hazy image of
the target star. At the fifth image, which would have the probe waiting
approximately 28 h between images, we can see a full image of the star.
By the last image, which is represented by approximately 50 h of real
time, other nearby stars were showing very hazy signs of recognition
from the subtraction algorithm.

This proof of concept is extremely vital to star recognition and en-
ergy management. Depending how far away from a star we want the
probe to be when it is able to recognize it, this process can be altered
and honed easily.

5. Conclusion

We began with a set of new challenges that arise from the Starlight
program and the ability to perform fast interstellar travel. These include
identifying stars, identifying new planets, extracting never-before-seen
features, conceptually ranking these new planets against each other in
terms of importance, understanding what importance means in the

context of planets, and conserving energy while performing needed
tasks.

We started off by showing that a simple classification model would
not suffice. Not only does it perform poorly, but it does not come with
the range of tools that are needed for further processes down the line.

We show that while training on simulated images, our accuracy on
real images does not suffer, which is an astounding concept for such an
application. Along with this, we provide results and many reasons why
simulators enable us to identify features that we have yet to observe in
actual images. With the use of simulators, we can run experiments on
humans in order to extract the features of an important planet and use
that knowledge to dictate decisions for planetary importance rankings.

Lastly, we demonstrate how simulators can be utilized to save en-
ergy while ensuring that all necessary functions are completed.

There is much planned future work on this topic. This includes
optimizing simulators for this specific task, choosing the best hardware
given restraints such as size and the harsh environment of space, and
incorporating more human knowledge gain into the AI process.
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