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� A method combing NIRS and a
computer vision system were
proposed in this study.

� The method (a sensor fusion strategy)
is used for grading Keemun black tea.

� A CNN model was constructed to
extract NIRS features.

� The accuracy of the proposed strategy
was higher than that of a single-
sensor strategy.

� The sensor fusion strategy nearly
attained 100% in grading black tea
samples.
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a b s t r a c t

Keemun black tea is classified into 7 grades according to the difference in its quality. The appearance and
flavour are crucial indicators of its quality. This research demonstrates a rapid grading method of jointly
using near-infrared reflectance spectroscopy (NIRS) and computer vision systems (CVS) to evaluate the
flavour and appearance quality of tea. A Bruker MPA Fourier Transform near-infrared spectrometer
was used to record the spectrum of samples. A computer vision system was used to capture the image
of tea leaves in an unobstructed manner. 80 tea samples for each grade were analyzed. The performance
of four NIRS feature extraction methods (principal component analysis, local linear embedding, isometric
feature mapping, and convolutional neural network (CNN)) was compared in this study. Histograms of six
geometric features (leaf width, leaf length, leaf area, leaf perimeter, aspect ratio, and rectangularity) of
different tea samples were used to describe their appearance. A feature-level fusion strategy was used
to combine softmax and artificial neural networks (ANN) to classify NIRS and CVS features. The results
indicated that for an individual NIRS signal, CNN achieved the highest classification accuracy with the
softmax classification model. The histograms of the combined shape features indicated that when the
softmax classification model was used, the classification accuracy was also higher than ANN. The fusion
of NIRS and CVS features proved to be the optimal combination; the accuracy of calibration, validation
and testing sets increased from 99.29%, 96.67% and 98.57% (when the optimal features from a single-
sensor were used) to 100.00%, 99.29% and 100.00% (when features from multiple-sensors were used).
This study revealed that the combination of NIRS and CVS features can be a useful strategy for classifying
black tea samples of different grades.
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1. Introduction

Keemun tea, Assam tea, Darjeeling tea, and Ceylon tea are
prominent types of black tea worldwide and have excellent quality
[1]. Tea quality considerably affects the market price of and con-
sumer satisfaction with a tea product. Therefore, tea quality con-
trol is essential. In general, the appearance (an external
indicator) and chemical composition (an internal indicator) of tea
are the main indicators of tea quality. The traditional method for
assessing the quality of black tea is organoleptic evaluation. In this
method, experts grade the quality of tea samples on the basis of the
samples’ appearance, aroma, liquor colour, and taste. However, this
method is subjective [2]. Although gas chromatography-mass
spectrometry (GC–MS) or liquid chromatography-mass spectrome-
try (LS-MS) is an objective assessment procedure, both procedures
involved a complex process for detecting the chemical components
of tea [3,4]. Accordingly, an objective and intelligent evaluation
method is required to replace organoleptic evaluation approaches.
Among various nondestructive detection technologies, near-
infrared reflectance spectroscopy (NIRS) and computer vision sys-
tems (CVSs) have been widely used.

Several studies have used NIRS and CVS technologies to assess
the quality of many agricultural products, such as meat [5], honey
[6], and fruit [7,8]. NIRS technology can be used to evaluate the
quality of tea. NIRS data can reflect the content of amino acids,
tea polyphenols, and other substances, which constitute the fla-
vour quality of tea [9].

NIRS data are characterised by strong correlations and high
redundancy. These characteristics bring a lot of problems with data
processing. The method of NIRS feature extraction has become very
important. Principal component analysis (PCA) can maximise the
data structure characterisation of original variables without losing
unrelated information. PCA has been extensively applied to NIRS
data processing [10–12]. Local linear embedding (LLE) has been
used to project high-dimensional data into a low-dimensional
space and maintain the local linear relationship between data
points. Huang et al. used an LLE algorithm to extract hyperspectral
scattering features [13]. The isometric feature mapping (ISOMAP)
method is developed on the basis of the multidimensional scaling
(MDS) method, which requires all points in the space to participate
in the construction of neighbourhood [14]. Mishra et al. used ISO-
MAP to extract the spectral features of six different commercial tea
products [15]. These spectral feature extraction methods must be
optimised individually to achieve an effective feature extraction
scheme. Deep learning models based on convolutional neural net-
works (CNNs) can automatically extract complex and effective fea-
tures from simple features. Therefore, such models been used
extensively in the field of agriculture; for example, they have been
used in plant disease recognition [16], weed identification [17],
and crop pest classification [18]. In this study, a CNN was inte-
grated with an NIR method for extracting the features of tea. The
performance of this method was compared with that of PCA, LLE,
and ISOMAP methods.

NIRS can identify the content distribution of the main quality
components in tea, but cannot capture the appearance features
of tea. Image information provided by CVSs can accurately and
objectively reflect the appearance features of tea and plays a cru-
cial role in tea quality evaluation. Relevant studies have applied
several CVS techniques to evaluate the appearance of tea. For
example, Gill, Kumar, and Agarwal used texture features to distin-
guish four different types of black tea [19]. Zhu et al. used image
information as variables to evaluate the quality of tea [20]. In most
of the aforementioned studies, texture features have been
extracted after tea accumulation. Fineness and uniformity are cru-
cial factors for grading the appearance of Keemun black tea.
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Accordingly, the present study introduced some geometric features
to describe the shape characteristics of tea.

NIRS and CVS technology can obtain only the main component
and external appearance of a sample, respectively, which is a par-
tial and incomplete indication of tea quality. Therefore, to compre-
hensively evaluate tea quality, researchers have focused on multi-
technology integration to address the drawbacks of using a single
technology. Studies have executed data fusion by integrating data
from multiple sensors. Miao et al. developed a hybrid system that
could distinguish nine types of ginseng [21]. Kiani et al. developed
an integrated system based on CVS and an e-nose for determining
adulteration of saffron [22]. Accordingly, NIRS can be combined
with a CVS to develop a data fusion strategy for evaluating the
quality of black tea.

This study developed a nondestructive, objective, and precise
method for determining the quality of black tea. This method
involves the combination of a NIRS system and a CVS. We executed
the NIRS system by applying four spectral feature extraction meth-
ods: PCA, LLE, ISOMAP, and CNN. We then compared the results
obtained from each of the four spectral feature extraction methods
in order to determine the ideal method for extracting the spectral
features of black tea. We applied the CVS to extract the leaf shape
features of black tea samples of different quality grades and then
obtained shape histograms. Classification results obtained using
NIRS features only, CVS features only, and combined NIRS and
CVS features were compared. The technology roadmap is presented
in Fig. 1.
2. Materials and methods

2.1. Sample materials

The samples were purchased from Yuansheng Tea Co., Ltd. at
Qimen County of Anhui Province in December 2017, March 2018,
and September 2018, respectively. According to the appraisal of
the evaluation experts, the samples of Keemun black tea can be
divided into seven grades: super fine, special grade, first grade, sec-
ond grade, third grade, fourth grade, and fifth grade, with the
reduction of its quality. 560 tea samples were prepared (80 sam-
ples for each tea grade). All tea samples were sealed and stored
at 5 �C. After machine vision detection, each sample was trans-
ferred for near-infrared detection.
2.2. NIR spectral data acquisition

The NIR spectral data were recorded using a Bruker MPA Fourier
Transform near-infrared spectrometer (Bruker Optik GmbH, Ger-
many). Each spectrum is the average of 32 scans recorded between
800 and 2500 nm with a resolution of 2 cm�1. The data were mea-
sured by 3:86 cm�1 interval, which resulted in 2203 data points
(i.e. spectral variables) in each spectrum. The samples were ground
to a powder and smashed to allow them to pass through 80 mesh
filter screen (screen diameter less than 0.180 mm). For each sam-
ple, 3� 0:1 g of powders was compressed into a pie sample
(30 mm diameter, 5 mm thickness) at a pressure of 20 MPa. A gold
coated reference was used for backgroundmeasurements when we
start the spectrometer. The pie sample was paced on the PbS detec-
tor’s detection area of NIRS instrument with an integrating sphere.
In diffuse reflectance spectroscopy mode, the sample was mea-
sured thrice after 120� rotations. The mean spectra were calculated
by using the OPUS 6.5 software package (Bruker, Germany) for fur-
ther analysis.



Fig. 1. Technology roadmap of evaluation of black tea quality.
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2.3. Computer vision system set-up and image acquisition

The structure of the image acquisition system included an
industrial camera, backlight, roller sieve, linear motion module,
and carrier platform. First, the tea sample is loaded onto the roller
sieve. Then, the linear motion module is activated, moving the car-
rier platform, while leaves fall through the sieve. In this manner,
most of the leaves were evenly distributed on the platform in an
unobstructed manner; the few leaves that overlapped with each
other were separated manually. After this process, the industrial
camera captures sample images. The camera used is MER500-
14GM/C-P (Daheng image Co., Ltd., China), with a resolution of
2592 � 1944 and pixel size of 2.2 � 2.2 (lm � lm). There were
also 80 pictures for each grade.
2.4. Data processing method and classification

2.4.1. NIR spectral and feature extraction
The pre-processing of raw spectral data is an essential step.

Effective pre-processing can eliminate light scatter effects to a
large extent [23]. In this study, the raw spectral data of the black
tea samples were pre-processed using standard normal variate
(SNV) transformation.

After pre-processing, further feature extraction and dimension-
ality reduction were performed. The spectral feature extraction
and subsequent processing are shown in Fig. 2. A convolutional neu-
ral network (CNN) automatically learns the characteristic informa-
tion at various scales through the convolution and pooling layer
[24]. A typical CNN is composed of an input layer, convolution layer,
pooling layer, and full connection layer. First, the input layer con-
nects the input signal. Then, through the convolution operation of
the local receptive field in the convolution layer, local features are
extracted. The pooling layer is used to extract feature signals and
reduce the dimensions. The full connection layer connects all previ-
ous layer featuremaps [25]. The CNN extracts the spectral signals by
eliminating redundant information, thus revealingunderlying infor-
3

mation in the spectral signals. Currently, there is no clear standard
for the structure and parameters of a CNN model. After repeated
experiments, we established an executable network to verify the
feasibility of spectral feature extraction method based on CNN.

This network consisted of three convolution-pooling layers, a
full connection layer, and an output layer for classification. The rec-
tified linear unit (ReLU) was selected as the activation function
[26]. Max-pooling was employed for this network. The first convo-
lution layer, the second convolution layer, and the third convolu-
tion layer have kernels of sizes 204 � 1, 21 � 1, and 6 � 1,
respectively. The number of convolutional kernels sequentially
was 4, 8, and 16. The stride of the local receptive field in each con-
volution layer was 1. A wide convolutional kernel in the first con-
volutional layer can capture detailed spectral information. Then, a
small convolutional kernel can capture more complex and more
abstract information. The strides of the three max-pooling layers
sequentially were set to 10, 6, and 5. Each node of the full connec-
tion layer was connected to the feature information in the upper
layer. To avoid over-fitting and improve the generalization ability
of the network, we added a dropout operation between the third
pooling layer and the full connection layer. The probability of neu-
ron dropout was 0.5 [27]. Finally, the softmax classifier or artificial
neural network with back-propagation (BP-ANN) classifier was
employed for classification. The detailed parameters of the CNN
are listed in Table 1.

Other feature extraction methods, such as PCA, LLE, and ISO-
MAP, are widely used for dimension reduction. The basic idea of
LLE is to approximate each data point by a linear combination of
its neighbours and to find a low dimensional configuration of data
points [28]. The number K of the nearest neighbours in LLE was
specified to 12 in this study. ISOMAP approximates a neighbour-
hood graph by identifying K nearest neighbours for every data
point [28]. The number K of its nearest neighbours was also spec-
ified to 12. ISOMAP and LLE methods were implemented in Matlab
(R2018a, Mathworks, USA) using the Toolbox for Dimensionality

Reduction (https://lvdmaaten.github.io/drtoolbox/).

https://lvdmaaten.github.io/drtoolbox/


Fig. 2. Flow chart of spectral feature extraction and subsequent processing.

Table 1
Structural parameters of the designed convolutional neural network.

No. layer Layer type Kernel size (Stride) Kernel number Output size

1 Convolution 204 � 1(1) 4 2000 � 1
2 Max Pooling 10 � 1(10) 4 200 � 1
3 Convolution 21 � 1(1) 8 180 � 1
4 Max Pooling 6 � 1(6) 8 30 � 1
5 Convolution 6 � 1(1) 16 25 � 1
6 Max Pooling 5 � 1(5) 16 5 � 1
7 Dropout 0.5 / 80 � 1
8 Fully connected 80 / 80 � 1
9 Classifier 7 / 7 � 1
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2.4.2. CV image acquisition device and feature extraction
The leaf shape feature was extracted from the image. The flow

chart of the algorithm for leaf feature extraction is shown in
Fig. 3. First, an RGB image was converted to a grey image. Second,
a threshold value was chosen using Otsu’s method [29], after
which the grey image was converted into a binary image. Third,
the noise was reduced using a median filter [30]. Using the
above-mentioned processing procedure, we separated the leaves
from the background in the image. The shape feature of the leaves
could be extracted [31].
4

Six leaf shape features (leaf length, leaf width, leaf area, leaf
perimeter, aspect ratio, and rectangularity) are introduced; these
features are defined as follows:

(i) Leaf width: the average width of the leaves, denoted by W .
(ii) Leaf length: the skeleton line length in the leaf image,

denoted by L.
(iii) Leaf area: the number of pixels on the binary image of the

leaf, denoted by A. Every leaf has area characteristics, which
occupy the pixel space.



Fig. 3. Flow chart of the image processing algorithm.
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(iv) Leaf perimeter: calculated by counting the number of pixels
that lie on the boundary of the binary image of the leaf.

(v) Aspect ratio: the ratio of leaf length to leaf width AR ¼ L
W.

Aspect ratio is denoted by AR and is an important
characteristic.

(vi) Rectangularity: measure of the degree of similarity between
a rectangle and the leaf shape or simply the match level
between leaf shape and a rectangle. It is calculated using A

L�W.

The appearance features of Keemun black tea are determined
according to the distribution trend of all leaf shape features. There-
fore, we scaled each geometric feature into several ranges and
counted the shape distribution frequency of leaves that fall into
each range. The number of bin ranges of the leaf width, leaf length,
leaf area, leaf perimeter, aspect ratio, and rectangularity was 12,
16, 16, 18, 18, and 12, respectively. Then, the histograms of the
shape features were obtained [32,33]. According to the order of leaf
width, leaf length, leaf area, leaf perimeter, aspect ratio, and rect-
angularity, these six leaf shape features were successively con-
nected into a histogram of 92 variables. These histograms were
then used to describe the appearance features of the sample.
2.4.3. Data fusion strategy
Here, we describe the data fusion stage. Data fusion can be

divided into three different levels: data-level, feature-level, and
decision-level [34]. In data-level fusion, directly combining a CVS
and NIRS is difficult because they are two different sensors with
heterogeneous data. Thus, they are unsuitable for data-level fusion.
In decision-level fusion, multi-step data learning should be per-
5

formed from raw data to the last decision. Furthermore, this proce-
dure may lead to a significant loss of information. In this study, we
adopted feature-level fusion for the spectral features and shape
features to classify the tea grade. In feature-level fusion, NIRS fea-
ture was extracted from NIRS data with the methods in Sec-
tion 2.4.1, which was a one-dimensional NIRS feature vector. The
histograms of leaf shape features mentioned in Section 2.4.2 were
used as the appearance feature, which was a one-dimension vec-
tor. These two feature vectors were merged into a single vector
for further analysis.

2.4.4. Classification models
Two classification models were chosen to distinguish between

the different grades of the tea sample. The first of these models
was BP-ANN. This model is widely used for modelling, classifica-
tion, and optimization via input, hidden, and output layers to imi-
tate the functions of the human brain [35]. In this study, the
number of neurons in the input layer was equal to the length of
the input feature vector. The number of neurons in the hidden lay-
ers was set to ten after fine-tuning. The output layer had seven
neurons, which is equal to the number of tea grades. The tangent
sigmoid function was chosen as the activation function. The initial
weight values that connected these layers were generated ran-
domly and updated after every training epoch according to the gra-
dient descent function. The mean squared error (MSE) function
was chosen as the cost function.

The softmax model, which is a generalization of the logistic
model of multi-classification problems [36], was chosen as the
comparative classification model in this study. Given a training
dataset of k classes, where the input features are
xi 2 1;2;3; � � � � � � ; kf g, the hypothesis is

y ¼

p yðiÞ ¼ 1jxðiÞ; h� �
p yðiÞ ¼ 2jxðiÞ; h� �

� � �
p yðiÞ ¼ kjxðiÞ; h� �

2
66664

3
77775 ¼ 1Pk

j¼1expðhTj x ið ÞÞ

expðhT1x ið ÞÞ
expðhT2x ið ÞÞ

� � �
expðhTkx ið ÞÞ

2
66664

3
77775

where h denotes the weight matrix of all model parameters, and y
is the result of the classification. The cross-entropy cost function of
calculating h is

J hð Þ ¼ � 1
m

Xm
i¼1

Xk

j¼1

y ið Þ ¼ j
� �

log
expðhTj x ið ÞÞPk
j¼1expðhTj x ið ÞÞ

" #

The parameter vector h is adjusted by the gradient descent
method, so that the cross-entropy cost function Jð h Þ reaches the
minimum value quickly to improve the classification accuracy [37].

560 samples (80 samples each grade) were applied in this
study, both in NIR spectral and CV images. The samples were
divided into training set and testing set randomly. 420 samples
(60 samples each grade) were used for training set, and 140 sam-
ples (20 samples each grade) were used for testing set. The original
training set was split into internal calibration and validation sets
randomly. The 5-fold cross-validation is applied to the training sets
to calibrate model and optimize parameters. The accuracy of the
classification model was computed using the following expression

accuracy% ¼ number of correctly classified samples
total number of samples

� �
� 100
3. Results and discussion

3.1. Spectral data feature description

The original spectra obtained from the tea samples are dis-
played in Fig. 4(a). Original spectral could be easily affected by
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noise signals, such as high-frequency noise, baseline drift, and light
scattering. To reduce the influence of noise signals, original spec-
tral curves should be processed using the SNVmethod. The average
spectra derived for tea sample for each grade after pretreatment
was shown in Fig. 4(b). As illustrated in Fig. 4(b), the spectrograms
of the tea samples of different grades were similar. The NIR spec-
tral of tea samples mainly represent functional groups related to
carbohydrates, polyphenols, caffeine, amino acids, and proteins
present in the samples. These features commonly appear in the
NIR spectra of tea acquired using diffuse reflectance techniques
and have been reported in the spectra of oolong, black, and green
tea samples [38–40]. In this study, the average spectra derived
for tea sample for each grade after pretreatment (Fig. 4(b))
revealed that the stretching and bending vibrations of various
functional groups (e.g. CAH, OAH, and CAO) related to the content
of endoplasmic components considerably affected the NIR spectral
trend [41]. The study revealed absorption bands at 1350–1375 nm,
which could be attributed to the first-order frequency doubling of
the CAH group [42]. In addition, absorption bands were observed
Fig. 4. NIR spectral curves, (a) original NIR spectral curves, (b) average spectral
curves of each grade sample after SNV preprocessed.
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at 1800–1900 nm and were attributed to the CAO group [42].
Finally, absorption bands were observed at 1380–1420 and
1900–2000 nm and were ascribed to the OAH group [43].

3.2. Classification results with different feature extraction methods

In this study, four feature extraction methods were compared to
establish reliable discrimination model of Keemun black tea. To
reduce redundancy, the NIRS feature data set was processed using
these methods. The features dimensionality (FD) also had a great
influence to the classification result. For a given set of feature
dimensionality (FDs = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), the
FDs that gave the maximummean accuracy rate of 5-fold cross val-
idation sets were selected as the optimal dimensionality. In all
spectral feature extraction methods, the spectral feature with the
highest extraction accuracy was extracted for further analysis.

The 5-fold cross validation accuracy of two classification mod-
els according to the number of features dimensionality were
shown in Fig. 5. Classification accuracy of four spectral feature
extraction methods with the optimal FDs was shown in Table 2.
As seen in Fig. 5, irrespective of the classifier used, or how the fea-
ture dimension changed, the classification accuracy for the calibra-
tion set was higher than that for the 5-fold cross validation when
using ISOMAP for feature extraction. This is an over fitting phe-
nomenon. ISOMAP utilises the geodesic distance accounting for
the non-linearity in the high dimensional data manifold. The rea-
son for the poor performance of ISOMAP is that as the emergence
of new data from the validation set, the optimal geodesic distance
could not be found for the validation set with the parameters
derived from the calibration set. While the accuracy for the testing
set was also reduced. Some other weakness of ISOMAP was also
discussed in relate study [15,44,45].

When using the LLE method, we can also find, no matter what
classifier was used, the classification accuracy for the calibration
set was higher than that for 5-fold cross validation. The LLE
method reconstructed information through the neighbouring
points. Many studies have shown that the organic compounds in
tea samples have unique spectral fingerprints in the NIR spectrum
[40]. These spectral fingerprints generally comprise several spec-
tral absorption bands of hydrogen-containing functional groups.
Tea quality is not determined by neighbouring points but by sev-
eral absorption bands, which may be the main reason why the
results of LLE classification are no high.

As a linear feature extraction method, PCA uses global spectral
information; it is widely used by researchers [3,4,46]. BP-ANN
model obtained the best performance when FDs = 90, the accuracy
of 5-fold cross validation and testing sets is 92.62% and 95.00%,
respectively. With the softmax model, no matter how the FDs
changes, the accuracy of 5-fold cross validation set was no less
than 90.00%. The first ten principal components accounted for
98.95% of total variance. Moreover, the total variance reached
99.80%, when the first 90 PCs were used.

It is easier to achieve good performance with the CNN method.
For example, the accuracy of 5-fold cross validation when the CNN
method was used with the softmax classifier was higher than that
of the validation set when other feature extraction methods were
used for most feature dimensionality (except FDs = 10 and 40).
In particular, when FD = 80, the accuracy of 5-fold cross validation
was 96.67%, which was the highest accuracy achievable among all
feature extraction methods. The accuracy of testing set even reach
98.57% with this parameter. The same phenomenon was observed
with the BP-ANN classifier. When FDs = 10, 20, 30, 40, 80, the CNN
method obtain a better accuracy of the 5-fold cross validation than
other method. Even with other FDs, the accuracy of 5-fold cross
validation was the second higher among all feature extraction
methods.



Fig. 5. Overall accuracy rates based on different feature extraction methods on feature dimensionality. (a) Calibration set with BP-ANNmodel, (b) 5-fold cross validation with
BP-ANN model, (c) calibration set with softmax model, (d) 5-fold cross validation with softmax model.

Table 2
Classification accuracy of four spectral feature extraction methods under different classification models (%).

Models Feature extraction methods FD Calibration set Validation set Testing set

BP-ANN PCA 90 99.35 92.62 95.00
LLE 20 99.58 79.52 80.71
Isomap 10 95.65 74.76 75.00
CNN 80 96.31 94.76 92.86

softmax PCA 30 95.71 93.57 95.00
LLE 90 99.94 90.24 87.14
Isomap 90 99.23 84.76 82.86
CNN 80 99.29 96.67 98.57
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These results indicated that the convolution-pooling structure
in the CNN could extract the internal features from the spectral
data effectively, which resulted in the CNN exhibiting better per-
formance than traditional feature extraction methods. Moreover,
a CNN network structure with a unique local receptive field and
weight sharing can reduce the number of parameters and increase
robustness. In summary, we showed that the prediction perfor-
mance when using a CNN for feature extraction was superior to
that when using traditional methods such as the PCA, ISOMAP,
and LLE for feature extraction. Some studies have also used spectral
technology to evaluate tea quality. The CNN-softmax method pro-
posed in this study has better accuracy than the variable iterative
space shrinkage approach-artificial bee colony-support vector
machine (VISSA-ABC-SVM) method with the accuracy of 97.44%,
but the material has only three grades [47]. Ren et al. compared
four different cognitive methods which are used to select charac-
teristic wavelength variables [39]. Most of the method in this study
obtained lower accuracy than CNN-softmax method. The highest
accuracy of 99.01% was obtained with the method competitive
adaptive reweighted sampling-least squares support vector
machine (CARS-LSSVM), only slightly more than 98.57% obtained
in this study. This is mainly since the CNN model can reduce irrel-
evant data and provide the classification model with more useful
information. The classification model based on CNN was the most
stable and had the highest classification accuracy of these four
7

methods. By obtaining the spectral features of the network, the
CNNmodel can reduce irrelevant data, and improve the generaliza-
tion ability.

3.3. Appearance feature data description

A sample of Keemun black tea is depicted in Fig. 6. Directly dis-
tinguishing between tea samples of different grades is typically dif-
ficult because all samples are wiry. We analysed the geometric
(shape) distribution of the samples of different grades and Fig. 7
illustrates box plots of the geometric features of the tea samples.
We noted an overlap in the distribution ranges of the geometric
features of the samples of various grades, particularly those of
samples of adjacent grades. These results are consistent with those
obtained for the appearance of the samples.

As indicated in the box plots, the median leaf width and length
increased gradually as the tea grade decreased, and the distribu-
tion range of the upper and lower limits of the data tended to
increase. According to sensory evaluation standards, high-grade
black tea has slender leaves and more uniform texture than does
low-grade tea. Accordingly, the observed distribution of the men-
tioned features is consistent with such sensory evaluation
standards.

Fig. 7(c) and (d) display box plots of leaf area and perimeter,
respectively. As the tea sample grade decreased, the median leaf



Fig. 6. Seven grades of tea images. (a) Super fine, (b) special grade, (c) first grade, (d) second grade, (e) third grade, (f) fourth grade, and (g) fifth grade.
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area and perimeter of all samples, except for the fifth-grade sam-
ple, decreased first and then increased; the first-grade tea sample
had the lowest median leaf area and perimeter. The reason for this
phenomenon is that high-grade samples typically have more slen-
der leaves than do low-grade samples. Compared with the high-
grade samples (super fine and special grade), the first-grade tea
samples used in this study contained a certain amount of crushed
tea; this thus explains the decrease in the median leaf area and
perimeter. However, as the grade decreased further, the leaves
were noted to become wider, resulting in a gradual increase in
the median leaf area and perimeter.

We determined that the four features of the fifth-grade sample
did not conform to the general distribution observed in this study.
The main reason could be that fifth-grade tea has the lowest qual-
ity requirement. To avoid wasting raw materials, manufacturers
often combine the remaining raw materials of other grades to
obtain fifth-grade tea, thus resulting in fifth-grade tea having more
outlier points.

3.4. Discriminant result based on appearance feature

In order to obtain the discriminant results with different classi-
fiers, the BP-ANN and softmax classifiers were used as the classifi-
cation models. As shown in Table 3, when the BP-ANN was used as
the classification model, the 5-fold cross validation accuracy and
the testing accuracy were 67.38% and 70.71%, respectively. This is
not an acceptable result. The possible reason for this is that the
multilayer perceptron neural network applied a complex nonlinear
function to fit the shape features. However, the shape feature his-
tograms of each tea grade were similar, especially those of tea sam-
ples of adjacent grades. Therefore, it was difficult to fit the shape
features accurately, which may be the reason for the low accuracy
in grading.

When softmax was used as the classification model, the results
significantly improved. The 5-fold cross validation accuracy for the
validation set was 80.95%. The accuracy for the testing set was
85.71%. It was a moderate improvement over the accuracy
achieved when the BP-ANN was used. The softmax classifier based
on probability estimation used the minimised cross-entropy cost
function to avoid the risk of falling into a local minimum in the gra-
dient descent [48]. The results showed that the softmax classifier
can obtain better classification results.
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3.5. Discriminant result of data fusion

Among the spectral features obtained with each spectral feature
extraction method, the spectral feature with the highest 5-fold
cross validation accuracy was selected as the optimal feature. This
spectral feature was fused with the shape feature into a new signal
through a data vector. Then, the BP-ANN or softmax was applied to
the fusion data sets to build the classification models. The classifi-
cation results after feature fusion are summarised in Table 4. When
BP-ANN classifier was used, the 5-fold cross validation accuracy of
fusion feature was higher than that of a single sensor no matter
what feature extraction method was used. When the fused feature
contained a CNN processed NIRS feature, it can always obtain the
best performance under different classifiers. The 5-fold cross vali-
dation and testing set accuracy based on the BP-ANN classifier
were 97.86% and 96.43%, respectively. The accuracy of the 5-fold
cross validation and testing set based on the softmax classifier
was even reached to 99.29% and 100.00%, respectively.

Table 5 lists the 5-fold cross validation accuracy for each tea
grade when using the softmax classifier. Only for shape feature
classification, the mean accuracy of 5-fold cross validation was
80.95%; the accuracy for each grade was 81.67%, 76.67%, 71.67%,
91.67%, 83.33%, 76.67%, and 85.00%. The mean accuracy of 5-fold
cross validation of NIRS features processed by the ISOMAP method
was 84.76%; the accuracy for each grade was 93.33%, 83.33%,
76.67%, 91.67%, 85.00%, 76.67%, and 86.67%. The mean accuracy
of 5-fold cross validation when data were fused increased to
91.67%; this was obtained by fusing NIRS features and shape fea-
tures processed with ISOMAP. The classification accuracy obtained
with the fused features was 95.00%, 90.00%, 85.00%, 96.67%,
96.67%, 88.33%, and 90.00%. We observed that the classification
accuracy of all grade was improved after data fusion based on
ISOMAP-processed NIRS and shape features. We also observed that
the classification accuracy obtained with the fusion of NIRS fea-
tures processed with the CNN was higher than that when using a
single sensor feature. The classification accuracy of four grades
was even reached 100%. The results showed that the accuracy of
detailed classification was greatly improved. Similarly, the classifi-
cation accuracy obtained with the fusion of PCA- or LLE-processed
NIRS and shape features were also improved for the majority
grade. Independent testing set classification accuracy for each tea
grade also illustrated this phenomenon, as shown in Table 6.



Fig. 7. Box plots of shape features. (a) leaf width, (b) leaf length, (c) leaf area, (d) leaf perimeter, (e) aspect ratio, and (f) rectangularity.

Table 3
The classification results of shape feature of Keemun black tea (%).

Models Calibration set Validation set Testing set

BP-ANN 87.32 67.38 70.71
softmax 97.50 80.95 85.71
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The results show that through the feature-level fusion strategy,
the information from NIRS and CVS has a synergistic effect; the
fusion results integrated the appearance information and endoge-
nous characteristics of tea [34,48]. Therefore, it was clear that
information features from a single sensor cannot distinguish
between different tea grades effectively and accurately. Appear-
ance, taste, aroma, and other factors should be considered for eval-
uating black tea quality.

The fusion of data obtained from various sensors can help eval-
uate multiple quality factors together; this would not be possible
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with data obtained from a single sensor. Feature-level data fusion
(i.e. data obtained from multiple sources and fused) can help
obtain a significantly higher accuracy than data obtained from a
single sensor; feature-level data fusion can help achieve a classifi-
cation accuracy up to 99.29%, and it has practical applications.

Some studies have also reported better performance of data
fusion strategy. Li et al. evaluated green tea quality combing hyper-
spectral imaging and olfactory system. With the SVM classification
model, the accuracy of the method reached 92.00% [49]. In compar-
ison, this study obtained even higher classification accuracy. Xu,
Wang, and Gu compared the performance of feature-level and
decision-level fusion strategy [34]. The decision-level fusion, com-
bining the SVM results of both E-nose and computer vision system,
was the most effective strategy with the classification accuracy
rates of 100.00%. The results of the current study show that the
fusion data obtained better performance than the use of signal sen-
sor alone.



Table 4
The total classification results of BP-ANN and softmax models based on feature-level fusion (%).

Models Data source Feature dimensionality Calibration set Validation set Testing set

BP-ANN CVS 92 87.32 67.38 70.71
NIRS(1) 90 99.35 92.62 95.00
NIRS(1)_CVS 182(90 + 92) 100.00 95.48 96.43
NIRS(2) 20 99.58 79.52 80.71
NIRS(2)_CVS 112(20 + 92) 95.12 84.52 86.43
NIRS(3) 10 91.90 74.76 75.00
NIRS(3)_CVS 102(10 + 92) 93.57 79.52 89.29
NIRS(4) 80 96.31 94.76 92.86
NIRS(4)_CVS 172(80 + 92) 99.95 97.86 96.43

softmax CVS 92 97.50 80.95 85.71
NIRS(5) 30 95.71 93.57 95.00
NIRS(5)_CVS 122(30 + 92) 100.00 95.71 97.14
NIRS(6) 90 99.94 90.24 87.14
NIRS(6)_CVS 182(90 + 92) 100.00 92.62 97.86
NIRS(7) 90 99.23 84.76 82.86
NIRS(7)_CVS 182(90 + 92) 100.00 91.67 94.29
NIRS(8) 80 99.29 96.67 98.57
NIRS(8)_CVS 172(80 + 92) 100.00 99.29 100.00

CVS is the shape histograms feature. NIRS(i) is the NIRS feature with different feature extraction methods. NIRS(i)_CVS is the fusion feature of shape feature and NIRS feature
which extract by different methods.
i = 1, 5 are the NIRS features with the highest classification accuracy after the PCA process, which with BP-ANN and softmax classifier respectively.
i = 2, 6 are the NIRS features with the highest classification accuracy after the LLE process, which with BP-ANN and softmax classifier respectively.
i = 3, 7 are the NIRS features with the highest classification accuracy after ISOMAP process, which with BP-ANN and softmax classifier respectively.
i = 4, 8 are the NIRS features with the highest classification accuracy after CNN process, which with BP-ANN and softmax classifier respectively.

Table 5
The 5-fold cross validation set detail classification results of softmax model based on single sensor feature and feature-level fusion (%).

Data source Super fine Special grade First grade Second grade Third grade Fourth grade Fifth grade Mean accuracy

CVS 81.67 76.67 71.67 91.67 83.33 76.67 85.00 80.95
NIRS(5) 96.67 93.33 95.00 100.00 88.33 85.00 96.67 93.57
NIRS(5)_CVS 98.33 90.00 93.33 98.33 100.00 93.33 96.67 95.71
NIRS(6) 86.67 91.67 88.33 95. 00 88.33 86.67 95.00 90.24
NIRS(6)_CVS 90.00 83.33 88.33 98.33 98.33 93.33 96.67 92.62
NIRS(7) 93.33 83.33 76.67 91.67 85.00 76.67 86.67 84.76
NIRS(7)_CVS 95.00 90.00 85.00 96.67 96.67 88.33 90.00 91.67
NIRS(8) 98.33 100.00 98.33 98.33 95.00 88.33 98.33 96.67
NIRS(8)_CVS 98.33 100.00 98.33 100.00 100.00 98.33 100.00 99.29

CVS is the shape histograms feature. NIRS(i) is the NIRS feature with different feature extraction methods.
NIRS(i)_CVS is the fusion feature of shape histograms feature and NIRS feature which extract by different methods.
i = 5 is the NIRS features with the highest classification accuracy after the PCA process, which with softmax classifier.
i = 6 is the NIRS features with the highest classification accuracy after the LLE process, which with softmax classifier.
i = 7 is the NIRS features with the highest classification accuracy after ISOMAP process, which with softmax classifier.
i = 8 is the NIRS features with the highest classification accuracy after CNN process, which with softmax classifier.

Table 6
The testing set detail classification results of softmax model based on single sensor feature and feature-level fusion (%).

Data source Super fine Special grade First grade Second grade Third grade Fourth grade Fifth grade Mean accuracy

CVS 80.00 75.00 100.00 90.00 95.00 80.00 80.00 85.71
NIRS(5) 100.00 85.00 100.00 100.00 85.00 95.00 100.00 95.00
NIRS(5)_CVS 95.00 95.00 95.00 100.00 95.00 100.00 100.00 97.14
NIRS(6) 75.00 90.00 70. 00 100. 00 90. 00 85. 00 100. 00 87.14
NIRS(6)_CVS 100.00 100.00 95.00 100.00 100.00 95.00 95.00 97.86
NIRS(7) 75.00 65.00 80.00 95.00 95.00 75.00 95.00 82.86
NIRS(7)_CVS 85.00 85.00 90.00 100.00 100.00 100.00 100.00 94.29
NIRS(8) 100.00 95.00 100.00 100.00 100.00 100.00 95.00 98.57
NIRS(8)_CVS 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

CVS is the shape histograms feature. NIRS(i) is the NIRS feature with different feature extraction methods.
NIRS(i)_CVS is the fusion feature of shape histograms feature and NIRS feature which extract by different methods.
i = 5 is the NIRS feature with the highest classification accuracy after the PCA process, which with softmax classifier.
i = 6 is the NIRS feature with the highest classification accuracy after the LLE process, which with softmax classifier.
i = 7 is the NIRS feature with the highest classification accuracy after ISOMAP process, which with softmax classifier.
i = 8 is the NIRS feature with the highest classification accuracy after CNN process, which with softmax classifier.
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4. Conclusion

This study verified the feasibility of using NIRS and CVS technol-
ogy in combination with machine learning technology to assess the
quality of Keemun black tea. Four feature extraction methods were
compared in this study. The results showed that the CNN method
has a higher prediction performance than the other methods. The
most accurate results were obtained when CNN-processed NIRS
features were classified using the softmax model. An extraction
shape features scheme was proposed. We obtained histograms of
the shape features to distinguish between the grades of tea sam-
ples. The softmax classifier based on the cross-entropy cost func-
tion yielded better classification results than the BP-ANN
classifier. The developed feature-level fusion strategy synergisti-
cally integrates the advantages of NIRS and CVS information fea-
tures. Fusion feature has a higher effect than a single sensor
information feature in evaluating the quality of Keemun black
tea. The classification of fusion features based on CNN-processed
NIRS yielded the best result with softmax classification. In general,
the method proposed in this study (i.e. the method of fusing NIRS
and CVS information features) is suitable for assessing Keemun
black tea quality. In order to apply this study to practice, more
samples from different manufacturers and longer time span will
be collected. With these additional data, the classification model,
especially the deep learning model, will be further optimized.
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