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Deoxynivalenol (DON) contamination of wheat grains is a serious problem in China, and it

is necessary to remove contaminated wheat before it enters the consumer market. In this

study, visible-near infrared (Vis-NIR) spectroscopy and computer vision techniques were

combined to simulate online discrimination between normal and DON-contaminated

wheat grains. Naturally growing wheat samples were collected from several of the main

wheat-producing areas in China, the reference DON contents were measured by using

liquid chromatography serial triple quadrupole mass spectrometer (LC-MS), and then

wheat samples were divided into two categories according to the national standard of

1 mg kg�1. The characteristic spectral variables, colour and texture features were extracted

and integrated for chemometric analysis. Principal component analysis based on fusion

features indicated better clustering than with just spectral features. Subsequently, linear

discriminant analysis modelling based on spectra and texture features achieved the best

discrimination with an accuracy of 95.06% and 91.36% for calibration and validation sets

respectively, which was 5% higher than with just spectral features, and the false positive

rates (FPR) were the lowest: 3.41% and 10.42% for calibration and validation sets respec-

tively. The internal scanning results of whole wheat flour indicated that the higher the

content of DON, the looser the binding of starch granules, which could cause the textural

change of wheat grains. The research showed that Vis-NIR spectroscopy combined with

computer vision has the potential to be used in the non-destructive and online detection of

DON-contaminated wheat grains; further study on the interference from complex envi-

ronments is still need for actual online detection.
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Nomenclature

ASM Angular second moment

CARS Competitive adaptive reweighted sampling

CCD Charge coupled device

CCR Correct classification rate (%)

CON Contrast

COR Correlation

DON Deoxynivalenol

ELISA Enzyme-linked immunosorbent assay

ENT Entropy

FPR False positive rate (%)

FNR False negative rate (%)

GC Gas chromatography

HPLC High performance liquid chromatography

KS Kennard-Stone

LC-MS Liquid chromatography serial triple quadrupole

mass spectrometer

LDA Linear discriminant analysis

PC Principal component

PLS-DA Partial least squares discrimination analysis

PLSR Partial least squares regression

RGB Red, green, blue

SD Standard deviations

SNV Standard normal variate transformation

SVM Support vector machine

SPA Successive projection algorithm

TLC Thin-layer chromatography

Vis-NIR Visible-near infrared
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1. Introduction

Wheat grains are rich in starch, protein, lipids, minerals and

other nutrients, and can be used in the development of highly

nutritious and functional food. However, they have no shell

protection, thin cortex, soft structure, a lot of hydrophilic

substances and strong moisture absorption capacity.

Compared with maize and rice, wheat is more prone to

breeding pests and mould. Fusarium head blight is a world-

wide wheat disease, which brings a great loss to wheat pro-

duction worldwide every year (Bai& Shaner, 2004). In addition

to causing yield loss, mycotoxins such as deoxynivalenol

(DON) can be produced in the process of F. graminearum

infection, and this can seriously affect the quality and com-

modity value of wheat, and poison people and animals

(Walter et al., 2010). Therefore, it is necessary to be able to

estimate the DON levels in wheat grains before they enter the

food chain.

At present, there are several commonly used methods for

identifying DON contents, including thin-layer chromatog-

raphy (TLC, Rocha et al., 2017), high performance liquid

chromatography (HPLC, Moazami & Jinap, 2009), enzyme-

linked immunosorbent assay (ELISA, Li et al., 2012), Gas

chromatography (GC, Cunha & Fernandes, 2012). All of these

methods require trained operators and the use of unfriendly

chemicals, are destructive in nature, take a long time for the

examination of a single sample, and have high cost, which

limits their feasibility for real time measurements. Therefore,
an effective, rapid and non-destructive method is needed for

wheat safety control.

Spectroscopic and imaging-based sensing techniques are

increasingly being studied as potential alternatives to chem-

ical approaches, for their advantages of little or no sample pre-

treatment, high accuracy, fast and non-invasive detection

with robust and cost-efficient sensor technology available

nowadays (He et al., 2018). Among them, visible and near

infrared (Vis-NIR) spectroscopy and computer vision tech-

niques have great potential in the online detection of food-

stuffs and have been widely used in practice (Qu et al., 2015).

Because metabolic activity of toxigenic fungus in samples can

result in considerable change in the chemical parameters and

physical characteristics, so these two techniques could be

promising tools for non-destructive detection of contami-

nated foodstuffs (Wu et al., 2018). In recent years, many

scholars have applied NIR spectroscopy to the rapid analysis

of mycotoxin contamination in grains (Hossain & Goto, 2014).

De Girolamo et al. (2019) analysed the ochratoxin A contami-

nated wheat grains using Fourier transform NIR and Fourier

transform mid-infrared spectroscopy. The threshold of

ochratoxin A was set to 2 mg kg�1, and the results showed that

both discrimination accuracies are higher than 94%. Shen

et al. (2018) applied NIR and electronic nose techniques to

the detection of Aspergillus spp. contamination levels in pea-

nuts (acceptable: colony counts log CFU/g < 2.7, mouldy: log

CFU/g � 2.7), and the linear discriminant analysis (LDA) re-

sults showed correct classification rates of 92.11% and 86.84%

respectively. Dvo�aek et al. (2012) quantitatively predicted the

DON contents of wheat grains by using NIR spectroscopy, and

a correlation coefficient of 0.88 was obtained by partial least

squares regression (PLSR). As for computer vision, Bayraktar

et al. (2006) demonstrated an application of computer vision

and pattern-recognition techniques to classify scatter pat-

terns formed by Listeria colonies. Wang et al. (2014) developed

a selective growth medium and a more rapid detection

method based on computer vision for selective isolation and

identification of Staphylococcus aureus in foods. Both studies

suggested the feasibility of image-based bio-detection sys-

tems. There have been a number of reports of the detection of

mildewed nuts based on colour (Chen et al., 2011; Kumar et al.,

2010) and texture (Chen et al., 2007) information. However,

there have been few reports that applied computer vision to

the detection ofmycotoxins in grains. In general, most studies

have been conducted under laboratory conditions and have

focused on static detection, so feasibility studies of online

detection of DON contents in wheat grains are urgently

needed.

In this study, naturally-grown wheat grain samples

(normal and diseased) have been collected from several of the

main-producing areas in China and were assessed with no

inoculation and with simulated storage. The Vis-NIR and

computer vision techniques were combined to realise online

discrimination of normal and DON contaminated wheat

grains, and the specific components of this study were: (1) to

build a dynamic detection system for simulating online

detection to obtain the spectral and image information; (2) to

collect and extract the optimal spectral and image features of

wheat grain samples; (3) to integrate spectral and image fea-

tures for discrimination of different DON levels in wheat
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�1

b i o s y s t em s e n g i n e e r i n g 2 0 1 ( 2 0 2 1 ) 1e1 0 3
grains; (4) to compare the results of different feature in-

tegrations and analyse the effects.

Time (min) Flow rate (mL min ) A (%) B (%)

0 0.4 90 10

0.2 0.4 90 10

3.0 0.4 40 60

3.5 0.4 10 90

4.5 0.4 10 90

4.6 0.4 90 10

6.0 0.4 90 10
2. Materials and methods

2.1. Sample preparation and DON content measurement

The wheat grain samples used in this study were provided by

Shandong CDC, Jiangsu Provincial Food and Strategic Reserves

Administration. A total of 243 samples were tested in this

study, coming from 6 main producing areas in China in 2018

and 2019, with different varieties. Each sample was collected

from different fields, and the total size for each sample was

about 5 kg. Considering DON level varies from one kernel to

another, the wheat kernels in each sample were mixed

adequately. Table 1 shows the specific information for all

samples. They were all refrigerated at �4 �C before analysis.

DON contents of wheat grains were measured by liquid

chromatography serial triple quadrupole mass spectrometer

(LC-MS/MS, Waters-UPLC Xevo TQ, Waters, USA). Following

methods in the published literature (Pasquali et al., 2019),

about 400 g wheat grain were firstly ground by milling ma-

chine (Tube Mill 100 control, IKA, Germany) to obtain wheat

flour. A sample of 2.5 g of wheat flour was weighed and placed

in a 50 mL centrifuge tube, then 10 mL of 1% acetic acid-water

solution was added to the tube, vortexed and placed in a

refrigerator at 4 �C for 10 min. Then 10 mL of acetonitrile was

added and vortexed for 2 min, then a salt packet (4 g of mag-

nesium sulfate and 1 g of sodiumacetate) was added, vortexed

again for 2 min, and centrifuged at 6000 r min�1 for 5 min at

4 �C. A sample of 1 mL of the supernatant, after passing

through a 0.22 mm organic filter, was taken to test.

Chromatographic conditions: Liquid phase system:Waters

ACQUITY UPLC H-class; column: ACQUITY UPLC BEHC18

(1.7 mm, 2.1 mm � 100 mm); column temperature: 40 �C;
detection period: 6min; injection volume: 10 mL; mobile phase:

A (0.1% formic acid-water), B (acetonitrile). The gradient

elution conditions are given in Table 2.

Mass spectrometry conditions: Mass spectrometry system:

Xevo TQ MS; ionisation mode: ESIþ; capillary voltage: 3 KV;

desolvation temperature: 500 �C; desolvation flow rate:
Table 1 e Summary table of wheat sample information at
different sampling locations.

Sampling
location

Number Range of
DON

(mg kg�1)

Mean of
DON

(mg kg�1)

Standard
deviation
of DON

(mg kg�1)

Jinan city 111 0e3.070 0.395 0.490

Shijiazhuang

city

10 0.627e0.949 0.767 0.105

Zhengzhou

city

29 0.443e4.211 1.454 0.977

Huai’an city 68 0.010e7.200 2.389 1.149

Yancheng

city

19 1.230e5.591 2.986 1.205

Yangzhou

city

6 1.131e3.206 1.915 0.743

Sum 243 0e7.200 1.335 1.288
1000 L h�1; set retention time 1.36 s, monitoring ion pair

297.1 > 231.1 (quantitative ion pair, cone hole voltage 25 V,

collision energy 13 V, dwell time 0.052 s) and 297.1 > 249.1

(cone hole voltage 25 V, collision energy 10 V, dwell time

0.052 s).

The linear range of detection of DON for LC-MS/MS is

0.040e8.00 mg kg�1, and the detection limit is 4.664 mg kg�1.

Fortified recovery rates were also calculated and they all

ranged from 70.40% to 81.10%. Samples were determined with

triplicate measurements and relative standard deviation (%

RSD) was between 2.53% and 8.09%.

After the LC-MS measurement, all wheat samples were

divided into two categories (normal: � 1 mg kg�1, DON

contaminated: > 1 mg kg�1) according to a threshold of

1 mg kg�1, which is China-regulated limit in foods and feeds

(GB2761-2017).

2.2. Instrumentation and data acquisition

As shown in Fig. 1, the dynamic detection systemdeveloped in

this study mainly consists of four parts: Vis-NIR spectroscopy

section, computer vision section, conveyor belt section and

computer. In Vis-NIR spectroscopy section, a Zeiss MCS 600

spectrometer series (Carl Zeiss, Oberkochen, Germany) was

used to collect the spectra of samples, which included two

fibre spectrometers (MCS 611 VI: 380e1050 nm; MCS 611 NIR

1.7: 950e1690 nm). The two spectrometers were connected

with a diffuse reflection probe by a Y-type optical fibre, and

the probe internally equipped with a 5 V, 10 W halogen lamp.

The distance between the upper surface of wheat grains and

the probe was 2.0 cm. In the computer vision section, a charge

coupled device (CCD) camera (Microvision, Shanxi, China) was
Fig. 1 e Schematic diagram of dynamic detection system.
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placed at the top of dark box for image capture, and a LED ring

light source (18 W, Microvision, Shanxi, China) was fixed

under the camera. The distance between the camera and LED

was 15 cm, which should ensure that the light irradiates the

sample evenly without causing any ghost interference.

In spectral and imaging analysis, about 400 g subsample

was randomly taken from the total sample size. During each

acquisition, about 20 g wheat kernels were taken and placed

on the conveyor belt in a non-reflective and shallow tray

(diameter ¼ 9 cm, height ¼ 1.5 cm), and the speed of the belt

was adjusted to a maximum of 0.15 m s�1. Diffuse reflectance

spectra of wheat grains were collected using Aspect Plus 1.76

software (Carl Zeiss, Oberkochen, Germany), with a wave-

length range of 560e1690 nm and interval of 3 nm. The inte-

gration time was set to 20 ms. RGB (red, green, blue) images

were captured with an exposure time of 2.60 ms and were

saved in JPEG format with a resolution of 1280 � 960 pixels.

Each sample was scanned three times by reloading the other

20 g kernels two times, and the average spectra and images

were used.

2.3. Feature extraction and fusion

2.3.1. Spectral features
The original spectra were collected from the middle area of

tiled sample in circular shallow tray. Then standard normal

variate transformation (SNV) was applied to remove the

multiplicative interferences of scatter, particle size, and the

change of light distance and reduce environmental effects

caused by differences in kernel surface roughness and shape

(Wang et al., 2015). Finally, in order to eliminate irrelevant

spectral information related to noise and background, two

algorithms (competitive adaptive reweighted sampling, CARS,

and successive projection algorithm, SPA) were used to

extract the characteristic spectral features or bands from the

full spectra. In the calculation of CARS, wavelengths with

larger absolute regression coefficients of PLSR model are

considered as good candidates and selected based on the

principle of ‘survival of the fittest’ from Darwin’s Evolution

Theory (Li et al., 2009). SPA selects variables with minimal

redundancy to solve collinearity problems (Araújo et al., 2001).

2.3.2. Colour features
As for image information, in order to separate wheat grains

from background and shallow tray, image threshold seg-

mentation was carried out. Figure 2 shows the RGB (red,
Fig. 2 e RGB images of wheat grains sample (a) before and (b) a
green, blue) images of wheat grain samples before and after

image segmentation respectively, and the corresponding

gray image. Among them, the RGB image of region of interest

(ROI) was used to extract six colour features (R, G, B, dR, dG, dB)

which represent their mean and variance in RGBmode. Then

the RGB tricolour was transformed into HSI (hue, saturation,

intensity) mode and additional six feature variables (H, S, I,dH,

dS, dI) were extracted from HSI images (Ma et al., 2014). The

gray image was used to extract texture features by using

gray-level co-occurrence matrix (GLCM) method (Fan et al.,

2016; Kekre et al., 2010).

2.3.3. Texture features
GLCM is the statistical method of examining textures that

considers the spatial relationship of the pixels, and charac-

terises the texture of an image by calculating how often pairs

of pixels with specific values and in a specified spatial rela-

tionship occur in an image. A GLCMmatrix is a squarematrix

of size N � N (N is the number of grey levels) with elements

corresponding to the relative frequency (G(i,j)) of occurrence

of pairs of grey level of pixels separated by a certain distance

in a given direction. Based on the GLCM, four statistical pa-

rameters could be extracted by the following equations: the

energy (angular second moment, ASM) measures textural

uniformity (i.e. pixel pair repetitions):

ASM¼
Xk

i¼1

Xk

j¼1

ðGði; jÞÞ2 (1)

The entropy (ENT) reflects the disorder of the image. For

texturally uniform image, entropy is small:

ENT¼ �
Xk

i¼1

Xk

j¼1

Gði; jÞlogGði; jÞ (2)

The contrast (CON) indicates the variance of the gray level:

CON¼
Xk

i¼1

Xk

j¼1
ði� jÞ2Gði; jÞ (3)

and correlation (COR) measures the similarity of GLCM ele-

ments in row or column direction, which reflects the corre-

lation in the local gray image:

COR¼
Xk

i¼1

Xk

j¼1

ðijÞGði; jÞ � uiuj

sisj
(4)

where:
fter image segmentation, (c) the corresponding gray image.
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ui ¼
Xk

i¼1

Xk

j¼1

i,Gði; jÞ (5)

uj ¼
Xk

i¼1

Xk

j¼1

j,Gði; jÞ (6)

s2i ¼
Xk

i¼1

Xk

j¼1

Gði; jÞði� uiÞ2 (7)

s2j ¼
Xk

i¼1

Xk

j¼1

Gði; jÞ�j� uj

�2
(8)

Finally, a feature vector is computed using the means and

variances of all the four parameters.

2.3.4. Feature fusion
The extracted spectra and 6 colour and 8 texture featureswere

integrated into a data matrix for further analysis to avoid

potential information loss and improve reliability. A normal-

isation procedure was applied to rescale the differences in

spectral and colour features before analysis. Then multivari-

able data analysis was performed to compare the prediction

effect of different feature fusion modes. The automatic image

segmentation and the feature extraction were conducted in

Matlab software (The Mathworks, Natick, USA).
2.4. Multivariable data analysis method

2.4.1. PCA
PCA, as an exploratory unsupervised learning method, is

widely used to analyse the data trend and visualise the data

distribution. Besides, principal component (PC) spectral

analysis is also implemented for selection of keywavelengths.

The wavelengths that presented high absolute value of coef-

ficient in the corresponding PC spectra play an important role

in modelling analysis (Chu et al., 2017). In this study, PCA was

used to analyse the clustering trend of normal

(DON < 1 mg kg�1) and contaminated (DON � 1 mg kg�1)

samples, and the first 10 PCs were used to establish linear

discriminant analysis (LDA) models.

2.4.2. Discriminant analysis
Before modelling, the data were divided into a calibration set

(2/3 of the total 243 samples) and a prediction set (1/3 of the

total 243 samples) by using the Kennard-Stone (KS) method

(Said & Mouazen, 2018). Then the LDA, partial least squares

discrimination analysis (PLS-DA) and support vector machine

(SVM)were used to discriminatewheat grains into normal and

DON contaminated categories.

LDA is mainly applied for classification or dimensionality

reduction of data, which is useful where the within-class

frequencies are inconsistent and random validation data are

applied (Ye et al., 2004). As a multivariate statistical method,

PLS-DA can integrate the information of independent vari-

ables, eliminate the overlapping parts of information, and

make the analysis more accurate and reliable (Tang et al.,

2014). SVM, as a supervised learning method, can perform
the largest discriminant interval between two classes of

samples by creating a hyperplane (Teye et al., 2013). All

models were evaluated by the correct classification rate (CCR),

false positive rate (FPR) and false negative rate (FNR) for cali-

bration and validation sets. CCR indicates the percentage of

the total number of samples that are correctly predicted. False

negative means the DON contaminated samples was mis-

judged as normal, which is more harmful and should be

avoided. So goodmodel should have lower FPR, FNR, especially

FNR, and higher accuracy.

2.5. Microstructural analysis

The microstructural changes of acceptable and infected

samples with three different DON levels (0.059, 1.148 and

6.233 mg kg-1) were observed using a scanning electron mi-

croscope (SEM, Quanta-200, Netherlands). The magnification

was set as 2000, and the samples were prepared in flour.
3. Results and discussion

3.1. Spectra and image analysis

The original and SNV pre-treated spectra of all samples (Fig. 3

(a) and (b)) show that the profile of spectral curve of 243 wheat

samples is almost the same in the wavelength range of

560e1690 nm. Main absorption peaks were found located at

980 nm, 1225 nm and 1480 nm. The absorption peak at 980 nm

mainly related to third overtone of OeH functional group in

water and starch, and the absorption peak at around 1225 nm

was due to the third overtone of CeH in protein and starch,

and the perceptible peak at 1480 nm appeared because of the

second overtone of OeH functional group in glucose. To get a

good review of the variation trend of the Vis-NIR spectra of

wheat grains with different DON levels, the mean spectra of

normal and DON contaminated samples are plotted in Fig. 3

(c). The results show the overlapped spectral curve in the

range of 922e1690 nm, and it was noticed that the higher the

DON content, the greater the reflectance value in the range of

560e922 nm. The possible reason was that the increase in

DON contents might disrupt the cell walls of wheat and

amylose, giving the seed coat a pore-like structure and form-

ing a cavity in the aleurone layer, which could lead to an in-

crease in reflectance value (Jin et al., 2014). However, the

difference is not obvious, which indicates that is not enough

to distinguish the DON contaminated samples from normal

ones by spectral information alone.

Figure 4 showed the raw images and corresponding RGB

histograms of three different DON contaminated wheat

samples (0.234, 2.242 and 4.218 mg kg�1). There was only a

subtle difference in RGB images and histograms of three

samples, especially for 0.234 mg kg�1 and 4.218 mg kg�1

samples, which indicates that it is also inadequate to distin-

guish two categories of samples by only colour features.

The range of mean values and standard deviations (SD) for

four texture parameters (ASM, ENT, CON, COR) are summar-

ised in Table 3. A large overlap of each range existed for the

two categories of samples, and there was no significant dif-

ference (p > 0.05). It can be concluded that effective

https://doi.org/10.1016/j.biosystemseng.2020.11.001
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Fig. 3 e Spectral curves of wheat samples with different DON contamination: (a) original spectra (b) SNV pre-treated spectra

and (c) average spectra of normal and DON contaminated samples.

Fig. 4 e Raw images and corresponding RGB histograms of three different DON contaminated (0.234, 2.242 and

4.218 mg kg¡1) wheat samples.
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classification can hardly be realised by just spectral or image

information: feature fusion and further chemometrics anal-

ysis was needed to improve the discriminant performance.

3.2. PCA results

All SNV and CARS pre-treated spectra of 243 wheat samples

were used for PCA to reveal any possible groupings of the

samples according to DON infection level. Figure 5 showed the

PC score plot of PC1 and PC2 based on the different combi-

nations of spectral features selected by CARS and colour,

texture features. From (a), it can be observed the clustering

trend between normal and DON contaminated wheats based

on spectral features was not obvious, with many overlapped

samples. However, from (b), (c) and (d), the PCs score plot

based on image and spectral fusion features obtained a better

discrimination than pure spectra, although some samples still

overlapped. The overlapping may be due to the DON content

in these samples approaching the 1 mg kg�1 threshold. The

other reason might be related to the fact that only some key

information about the basic variable structure concerning a

potential possibility of separation of control and contami-

nated samples was presented by PCA (Kimuli et al., 2018).

What is more, these PCs altogether accounted for only less

than 70.0% (Fig. 5 (d)) of selected variations, and thus less in-

formation of variable structure was reflected in the two

dimensional score plots. As DON infection might cause

changes in colour and texture of samples, the combination of

spectral and image information could reflect more informa-

tion about different DON concentrations. Overall, PCA was

able to roughly distinguish DON contaminated wheat from

normal ones, and therefore the supervised discriminant

analysis approach was applied further to pursue an improved

separation effect.

3.3. Discriminant results

Three classification methods (LDA, PLS-DA and SVM) were

applied to sharpen the separation and classify samples into

two groups based on spectral and fusion features. The spectral

features were optimally selected by using CARS and SPA al-

gorithms respectively, and the number of selected wave-

lengths, CCR for calibration and validation sets for different

modelling methods and based on different features are sum-

marised in Table 4. Similar CCRwere obtained by LDA and PLS-

DA methods, and the performance of SVM was the worst.

Comparing CCR based on two spectra optimisation algo-

rithms, it can be seen that CARS performed better than SPA,
Table 3 e Texture feature statistics.

Texture parameters Category of samples

ASM Normal

DON contaminated

ENT Normal

DON contaminated

CON Normal

DON contaminated

COR Normal

DON contaminated
perhaps because SPA extracted fewer characteristic wave-

lengths, resulting in the loss of relevant useful information. By

comparing all modelling results, it can be concluded that the

LDA model based on spectra (optimised by CARS) and inte-

grated with texture features could realise the best discrimi-

nation, with the CCR of 95.06% and 91.36% for calibration and

validation sets respectively, and the FNR of 3.41% and 10.42%,

for calibration and validation sets respectively, was the

lowest. However, the combination of spectral and colour

features could not improve the modelling results. The wheat

sample used in DON measurement was not the same as the

sample used in image and spectra data acquisition, which

may led to misclassification, because the DON distribution is

uneven throughout the sample. In future studies, using the

same sample for image and spectra acquisition and chemical

analysis should be considered.

3.4. Microstructural changes

Microstructural differences between acceptable and infected

samples for three different DON levels (0.059, 1.148 and

6.233mg kg�1) were observed (Fig. 6) using a scanning electron

microscope. It could be seen that there were many large and

small starch granules inside the normal sample, and the

alignment was very close. However, at higher DON content,

the binding of starch granules was looser. DON caused by

Fusarium could enter into starch and protein, resulting in

loosening of the bond between starch and protein, which in

turn could lead to a decrease in the content of crude starch

and crude protein (Wegulo, 2012). These differences suggest

that the DON contamination could cause microstructural

changes in wheat grains, which would relate to the texture

features.

3.5. Discussion

In theory, the detection limit for both Vis-NIR and computer

vision techniques cannot reach ppm level because the spec-

tral probe is not sensitive enough (Barbedo et al., 2018).

However, as early as 1999, the use of NIR spectroscopy to

detect the degree of DON infection in wheat has been reported

(Dowell et al., 1999). NIR spectroscopy is an indirect but

effective method based on the fact that accumulation of DON

results in corresponding changes in NIResensitive materials,

such as moisture, protein, or more likely colourants. In addi-

tion, Fusarium infection could not only produce DON, but also

change the appearance of wheat kernels (Ruan et al., 2002).

Although there have been several studies for detection of
Range of mean values Range of SD

0.403e0.412 0.086e0.131

0.405e0.416 0.091e0.127

0.00139e0.00191 0.0201e0.0320

0.00140e0.00185 0.0217e0.0323

1.587e1.838 0.083e0.216

1.627e1.799 0.093e0.199

0.037025e0.044332 0.000135e0.000635

0.037979e0.045323 0.000159e0.000530
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Fig. 5 e Principal component score plots of wheat grains infected with DON: (a) CARS-spectrum, (b) CARS-spectral þ colour,

(c) CARS-spectral þ texture and (d) CARS-spectral þ texture þ colour. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)

Table 4 e Discriminant results of DON contamination in wheat grains with different integrations of spectra and image
features and with different modelling methods.

Modelling
method

Features used in modelling Number of
selected

wavelengths

Calibration set Validation set

CARS/SPA CCR (%) FNR (%) FPR (%) CCR (%) FNR (%) FPR (%)

CARS/SPA CARS/SPA

LDA spectra 36/15 88.89/89.51 15.38/11/39 7.14/9.64 86.42/85.19 18.18/16.28 8.11/13.16

spectra þ colour 48/27 95.06/91.36 7.79/14/29 2.25/3.53 85.19/88.89 24.44/17.78 2.78/2.78

spectra þ texture 44/16 95.06/93.21 6.76/11.84 3.41/2.33 91.36/86.42 10.42/21.74 6.06/2.86

spectra þ colour þ texture 56/23 91.98/95.06 10.53/10.39 5.81/0 81.48/86.42 25.53/24.44 8.33/0

PLS-DA Spectra 36/15 88.89/87.04 14.10/13/92 8.33/12.05 88.89/85.19 13.64/18.60 8.11/10.53

spectra þ colour 48/27 95.06/92.59 9.09/14.29 1.18/1.18 85.19/87.65 24.44/17.78 2.78/5.56

spectra þ texture 44/16 93.83/92.59 10.81/11.84 2.27/3.49 87.65/86.42 18.75/21.74 3.03/2.86

spectra þ colour þ texture 56/23 92.59/94.44 10.39/10.39 4.71/1.18 82.72/85.19 17.78/24.44 16.67/2.78

SVM Spectra 36/15 85.19/91.36 16.67/12.66 13.10/4.82 86.42/85.19 18.18/16.28 8.11/13.16

spectra þ colour 48/27 93.21/90.74 11.69/14.29 2.35/4.71 82.72/88.89 28.89/17.78 2.78/2.78

spectra þ texture 44/16 90.12/87.65 14.86/22.37 5.68/3.49 82.72/83.95 27.08/28.26 3.03/0

spectra þ colour þ texture 56/23 91.36/91.36 16.88/16.88 1.18/1.18 81.48/80.25 28.89/33.33 5.56/2.78
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Fusarium andmycotoxin contamination in wheat grains using

NIR and computer vision techniques, few have investigated

detection in normally grown and harvested wheat from the

field.

The discriminant results indicated that the LDA model

based on spectra (optimised by CARS) integrated with texture
features could realise the best discrimination, and the inte-

gration of colour features did not improve the modelling re-

sults. The observation of microstructural differences between

levels of DON contamination could be related to the texture

features. However, there was no obvious regularity in colour

between the normal and DON contaminated samples, so the

https://doi.org/10.1016/j.biosystemseng.2020.11.001
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Fig. 6 e Internal scanning results of wheat samples with three different DON levels under 2000-fold magnification electron

microscope: (a) 0.059 mg kg¡1, (b) 1.148 mg kg¡1 and (c) 6.233 mg kg¡1.
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combination of spectral and colour features could not improve

the modelling results. For naturally growing wheat with no

inoculation and simulated storage, there may be no DON

generated when wheat grains were infected by Fusarium, but

they also appeared mildewed, which may lead to misclassifi-

cation by using colour features.
4. Conclusions

In this study, Vis-NIR spectroscopy and computer vision

techniques were combined to distinguish DON contami-

nated wheat grains from normal ones. Naturally growing

wheat grains collected from various producing areas in

China were analysed. In order to verify the advantage of

feature fusion, the characteristic spectral variables, colour

and texture features were extracted and integrated for

chemometric analysis. PCA based on fusion features indi-

cated better clustering tendency than just spectral features.

LDA results showed that spectra combined with texture

features could achieve the best discrimination with an ac-

curacy of 95.06% and 91.36% for calibration and validation

sets respectively, which was 5% higher than just spectral

features, and the lowest FPR: 3.41% and 10.42% for calibra-

tion and validation sets respectively. The internal effects

were revealed by SEM pictures. Overall, this research
showed that Vis-NIR spectroscopy combined with computer

vision has the potential to be used in the non-destructive

and online detection of DON contaminated wheat grains.

However, the online detection system was laboratory-based

with no interference of dust and vibration, so further

research will need to be focused on the study of influence of

environmental and other factors on the sorting results for

actual on-line detection.
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