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Manual weighing of heifers is time-consuming, labour-intensive, expensive, and can be

dangerous and risky for both humans and animals because it requires the animal to be

stationary. To overcome this problem, automated approaches have been developed using

computer vision techniques. In this research, the aim was to design a novel mass pre-

diction model using deep learning algorithms for youngstock on dairy farms. The Mask-

RCNN segmentation algorithm was used to segment the images of heifers and remove

the background. A convolutional neural networks (CNN) model was developed on the Keras

platform to predict the body mass of heifers. For the case study, a new dataset based on

images of 63 heifers was built. Animals were between the age of 0 and 365 days and lived

on the same farm in the Netherlands. The range of body mass of the heifers was between

37 kg and 370 kg. The side-view model had a coefficient of determination (R2) of 0.91 and a

Root Mean Squared Error (RMSE) of 27 kg, the top-view model had an R2 of 0.96 and an

RMSE of 20 kg. The experimental results demonstrated that our proposed mass prediction

model using the Mask-RCNN segmentation algorithm, together with a novel CNN-based

model, provided remarkable results, and that the top view was more suitable than the

side view for predicting the body mass of youngstock in dairy farms.

© 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

To calculate the body mass of animals, morphological traits

such as chest girth, withers height, and hip height can be

measured by farmers, or weighing using electronic scales can

be applied. The latter method is more accurate because it

determines the true mass by placing the animal on a scale but

the former that uses several relations between certain body

dimensions, such as waist girth and withers height can be

more convenient (Heinrichs & Losinger, 1998). However, this
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type of measurement is still time-consuming and labour-

intensive; thus automated approaches based on machine

learning and computer vision-based approaches have been

developed. Although these estimates are less precise

compared to the weighing using scales, they provide less

labour-intensive ways of estimating the body mass of the

animal. The body mass can also be estimated from 3D images

based on animal volume (Le Cozler et al., 2019).

The precision of weighing systems can vary with errors for

animals varying from 1 to 10 kg. Also, in ruminants, the body
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Nomenclature

Abbreviation Description

API Application programming interface

CNN Convolutional neural networks

DL Deep learning

FCN Fully connected network

fps Frames per second

GAN Generative adversarial networks

GBT Gradient boosting tree

KNN K-Nearest neighbour

LSTM Long-short term memory

MAPE Mean absolute percentage error

MLP Multi-Layer perceptron

MT Model tree

ReCNN Region-based CNN

RF Random forest

RMSE Root mean square error

ROI Region-of-interest

SMO Sequential minimal optimisation

SVR Support vector regression
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mass can vary considerably within the day. In dairy heifers, to

estimate real body mass, measurements are usually carried

out twice a day and the average value used. Body mass is

mainly used to determine feed allowance and used with

regards to expecting growth.

To make smart decisions, the estimation of animal body

mass is a very beneficial tool because the current mass of a

heifer can impact several management decisions. For

instance, the mass can be used to determine whether the

heifer is healthy or whether its heifer is within the expected

margins. This kind of mass prediction can be used to interpret

if the animal is on track with respect to its growth re-

quirements because the heifer should reach an optimal body

mass for starting lactation after 24 months.

Recently, deep learning, a sub-branch of machine learning,

has provided remarkable results in different complex tasks

such as face recognition and object detection; however, these

techniques are less widely used in precision agriculture and

they have not been investigated for mass estimation of

heifers. The objective of our study is to explore the potential of

deep learning approaches for estimating the body mass of

dairy heifers. Another important objective is to design the

system using low-cost devices (i.e., the cost of the device

should be less than 100 V) instead of expensive cameras, and

therefore, 2D images were used in this study. This cost crite-

rion was set during our initial discussions with the owner of

the dairy farm used in this research. Thus, our research was

“can we estimate the bodymass of heifers by 2D images using

deep learning algorithms?”

To the best of our knowledge, no study has applied the

Mask ReCNN algorithm together with a CNN-based model for

body mass prediction of heifers. Our study is therefore

different than the previous studies in the literature that used

other techniques (Alonso et al. (2013); Huma and Iqbal (2019);

Miller et al. (2019); Shahinfar et al. (2020); Huang et al. (2019)).
Also, this new dataset is larger than most of the datasets

applied in the literature.

The contributions of this study are.

� A novel body mass prediction model for heifers using

deep learning algorithms

� A new body mass prediction dataset for heifers

� Better performance for building deep learning-based

body mass prediction models for heifers
2. Related work

Different techniques have been proposed and validated for

animal mass prediction based on 2D and 3D vision-based

techniques in the literature. While there exist some machine

learning-based studies, the number of deep learning-based

approaches in this domain is still quite limited (Dohmen

et al., 2021). In a recent systematic literature review (SLR)

study (Dohmen et al., 2021), 26 papers that applied computer

vision techniques for body mass estimation of livestock were

reviewed. Seven features, namely top view body area, withers

height, hip height, body length, hip-width, body volume, and

chest girth were widely used in these approaches.

In this section, some of the studies that have applied ma-

chine learning algorithms and deep learning algorithms are

presented.

Alonso et al. (2013) used the support vector regression

(SVR) algorithm for predicting the carcassmass of a beef breed

from the North of Spain (i.e., Asturiana de los Valles breed

cattle) and report that their model can predict carcass weights

150 days before the slaughter day. Huma and Iqbal (2019)

predicted the body mass of the Balochi sheep breed of

Pakistan using machine learning techniques, but they did not

use deep learning algorithms. Miller et al. (2019) used artificial

neural networks (ANN) algorithms to predict live mass and

carcass characteristics of beef cattle and showed that 3D im-

aging coupled with the ANN algorithm can predict the live

body mass and carcass characteristics of live animals.

Shahinfar et al. (2020) evaluatedmulti-layer perceptron (MLP),

model tree (MT), random forest (RF), and support vector ma-

chines (SVM) with sequential minimal optimisation (SMO) for

predicting the carcass traits of Korean Hanwoo beef cattle.

They showed that SVM with SMO provides relatively better

performance. However, their focus was not to calculate the

actual weight of the cattle.

There are several studies that applied machine learning

algorithms in predicting the body mass of different animals

such as sheep, chickens, rabbits (Ali et al., 2015; Mortensen

et al., 2016; Salawu et al., 2014; Szyndler-Nędza et al., 2016).

Huang et al. (2019) applied deep learning and transfer

learning approaches for body dimension measurements of

Qinchuan cattle; however, their focus was not to estimate the

live body weight of the cattle, and they did not use CNN al-

gorithms. They used Kd-network that is a deep learning ar-

chitecture designed for 3Dmodel recognition tasks. Shahinfar

et al. (2019) applied deep learning (DL), gradient boosting tree

(GBT), K-nearest neighbour (KNN), model tree (MT), and

random forest (RF) algorithms to predict sheep carcass traits
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from early-life records, but the aim was not to predict the live

body mass of sheep, and they did not give any additional in-

formation about their deep learning model. They showed that

the RF algorithm provides the best performance, among

others. Cang et al. (2019) propose a deep learning model based

on the Faster ReCNN algorithm for body mass estimation and

show that their approach can estimate masses accurately.

However, they did not focus on heifers and did not apply the

Mask ReCNN algorithm for object segmentation. Jensen et al.

(2018) applied CNN algorithms for estimation of live body

mass and reported an R2 of 0.95. They collected data only from

17 animals, which is one of the limitations of their study. They

did not focus on heifers and did not apply the state-of-the-art

Mask ReCNN segmentation algorithm. Qiao et al. (2019) pro-

posed a new instance segmentation approach based on the

Mask ReCNN algorithm for precise cattle instance segmen-

tation. They also did not focus on mass prediction, but their

approach can be used as part of the mass prediction model.
3. Methodology

3.1. Convolutional Neural Networks (CNN)

CNN were designed for object recognition tasks such as face

recognition. Krizhevsky et al. (2012) designed a CNN model

that provided state-of-the-art results on the image classifica-

tion task. The following benefits of CNN models exist

compared to a fully connected neural network model

(Brownlee, 2016, 2019):

� Fewer parameters had to be learned.

� They are invariant to distortion and object position in

the image.

� They learn features automatically.

CNN is a neural networkmodel specifically proposed for 2D

image data but can be applied on 1D and 3D data as well. The

innovation of CNN models is that they can learn multiple

features in parallel. There are typically three types of layers in

CNN models, which are listed as follows (Brownlee, 2016,

2019):

� Convolutional layers: These layers consist of filters and

feature maps. Filters are considered as the neurons of

this layer, and filters create an output value depending

on the weighted inputs. A feature map is considered as

the output of one layer, which is applied to the previous

layer. Eachmovement of the filter is an activation of the

neuron, and this type of output is stored in the feature

map.

� Pooling layers: These layers are used to down-sample the

feature map of previous layers and generalise feature

representations. These kinds of layers help to reduce

the overfitting by applying simple techniques such as

taking the average of the input value. Pooling layers

mostly follow one or more convolution layers to

consolidate the previously learned features.

� Fully-connected layers: These layers are the layers used in

typical feedforward neural networks. They are used at
the end of a CNN model for making predictions. Whilst

the convolution layer addresses feature extraction and

the pooling layer consolidates these features, the fully-

connected layer is responsible for making predictions.

The AlexNet model that was developed based on the CNN

algorithm won the ImageNet challenge in 2012, and this

model, which consists of 8 layers, rose the interest in CNN

algorithms (Ballester & Araujo, 2016). Later, more complex

models such as ResNet that includes 152 layers were devel-

oped (Wu et al., 2019). Recently different open-source soft-

ware platforms and libraries were developed, such as Keras,

TensorFlow, PyTorch, Caffe, Theano, MXNET, CNTK, and

DeepLearning4J (Nguyen et al., 2019). Keras and TensorFlow

are the most used software libraries in different application

domains. Keras is a high-level neural network application

programming interface (API) that supports several deep

learning engines such as TensorFlow and Theano (Gulli& Pal,

2017). In this research, we developed our CNN models using

the Keras platform because it is easy to build models, user

friendly, has different production deployment options, sup-

ports multiple GPUs, and is integrated with the TensorFlow

deep learning engine. Different model configurations were

implemented and investigated to reach optimal configura-

tion settings.

Apart from the CNN-based algorithms, there are other

kinds of deep learning algorithms applied in different appli-

cation domains. Recurrent neural networks (i.e., long-short

term memory (LSTM)), generative adversarial networks

(GAN), autoencoders, deep belief networks, and restricted

Boltzmann machines are some of the well-known other deep

learning algorithms. However, CNN is the most used one

amongst these algorithms.

3.2. Region-based CNN models

In the book of Brownlee (2019) concerning deep learning for

computer vision, the author explained how deep learning al-

gorithms could be used for several challenging computer

vision tasks. According to Brownlee (2019), object detection is

a challenging task that aims to identify the presence, location,

and type of objects in an image. This complex problem in-

cludes several subproblems, namely object recognition, object

localisation, and object classification. Object recognition ad-

dresses where the objects are, object localisation finds their

extent, and object classification specifies what they are. There

is an extension of object detection, which is called object

segmentation. In object segmentation, pixels that belong to

each detected object are marked. This problem is different

from using bounding boxes during object localisation.

Compared to object detection, object segmentation is

considered to be a more difficult problem.

For the object detection problem, deep learning ap-

proaches have recently achieved remarkable results. The

region-based convolutional neural network (ReCNN) is a

family of CNN-based algorithms designed for object detection.

The following four variations of this ReCNN algorithm have

been developed: ReCNN (Girshick et al., 2014), Fast ReCNN

(Girshick, (2015)), Faster ReCNN (Ren et al., 2016), and Mask

ReCNN (He et al., 2017).

https://doi.org/10.1016/j.biosystemseng.2021.02.001
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In the ReCNN algorithm, the selective search algorithm is

applied to suggest bounding boxes, features are discovered

with the CNN, and object classifications are performed with

the linear support vector machines algorithm. In the Fast

ReCNN algorithm, a region-of-interest (RoI) pooling layer is

applied after the CNN algorithm, and both class labels and RoI

are predicted. In Faster ReCNN, a region proposal network

evaluates features discovered from the CNN and learns to

suggest RoI. Mask ReCNN, which is an extension of Faster

ReCNN, uses an additional output model for predicting the

mask per object. The Mask ReCNN is the most recent of these

algorithms and supports both object detection and object

segmentation. Whilst ReCNN models are more accurate

compared to other models, they can be slow for real-time

prediction. For instance, the YOLO (Redmon et al., 2016) al-

gorithm is faster, but less accurate compared to ReCNN

models. Depending on the problem, the object detection al-

gorithm must be selected.

Mask ReCNN algorithm consists out of two parts: Faster

ReCNN for object detection and classification and a fully

connected network (FCN) for semantic segmentation. Faster

ReCNN is a bounding box object detection approach that

creates regions-of-interest (RoI) using a region proposal

network and applies pooling to each RoI in an image to

determine the class of the object within that RoI. After the

pooling, the RoI with the object label is presented. Mask

ReCNN, however, does not use the pooling approach because

it can cause alignment problems for the image segmentation.

As such, mask ReCNN uses an align layer for feature extrac-

tion instead of a pooling layer. Parallel to object detection and

classification, an FCN is used to determine which pixels

belong to the object within the RoI. This FCN creates a binary

mask that aligns with the RoI.

There can be three use cases of the Mask ReCNN applica-

tion (Brownlee, J. (2019)):

1. The use of a pre-trained model: In this approach, a pre-

trained model that was trained on a large set of im-

ages is used for a new image dataset.

2. The generation of a newmodel via transfer learning:Again, a

pre-trainedmodel is used, but it is customised for a new

dataset using transfer learning approaches.

3. The development of a new model from scratch: A newmodel

is developed from scratch for a new dataset.

In this research, the first use case was followed and a pre-

trained model that was trained on the Common Objects in

Context (COCO) datasetwas used. The dataset can be accessed

from the following link: https://cocodataset.org.

A pre-trained model has model weights that are loaded

before making predictions.

3.3. Our approach

The methodology of our research is presented in Fig. 1. Since

there is no public dataset available that consists of heifer

images with their corresponding weights, a new dataset had

to build as part of our study. Our case study was performed on

a conventional dairy farm in the south of the Netherlands that

had 150 mature dairy cows and 63 heifers between the age of
0 and 365 days. The images of animals were taken from two

angles, one is from the top view, and the other one is from the

side view of the heifer. The inputs for our prediction models

were 2D binary images with a resolution of 640 � 480 pixels.

Twenty-four different models were trained and optimised

for each view. These models were then validated by using a

separate validation set, and R2, mean absolute percentage

error (MAPE), and root mean square error (RMSE) values were

calculated for each model. The best model for each angle was

used, and the performance of a top-view based model and a

side-view based model were compared.

The Mask-RCNN algorithm, which is used for object

detection (He et al., 2017), was utilised. With the help of the

Mask-RCNN algorithm, the images of heifers were segmented

and removed from the background. Later, a CNN body mass

prediction model was used to estimate the mass of heifers.

Different kinds of layers, such as the convolution layer,

pooling layer, and fully connected layer, were investigated

whilst building the CNN-based model. The best performing

model was selected for final implementation.

Data were collected on a farm in the south of the

Netherlands. This farm was preferred for the experiments

because the first author had contacts on this farm, accessi-

bility to the farm was relatively easy, and there was also a

wide variation in the body mass of animals aging from 1

month to 1 year of age. For this study, 63 heifers of the cross

bread of Holstein Friesian, Montb�eliarde, and Swedish red

between the age of 0e365 days were selected. As such, heifers

were a three-way rotational cross bred and partly Holstein,

Montb�eliarde, and Swedish red. The range of body masses of

the heifers was between 37 kg and 370 kg. The histogram of

the body masses with a bin size of 10 kg is presented in

Appendix B. Identification numbers and heritage information

cannot be provided in detail because the animals had to be

anonymised due to the privacy policy of the company. All the

actions performed with the animals followed the standard

calm handling methods used to handle the cattle on the farm

and, as such, did not result in any stress for the animals.

The animals were weighed using a scale; afterwards, they

were recorded from two viewpoints using a webcam. The

experimental setup is shown in Fig. 2. In the picture, the

heights of both cameras are indicated, and the distance of the

side-view camera to the centre of the walking path of the

animal is shown. The distance of the top view camera from

the ground was 3100 mm. The distance of the side view

camera to the ground was 910 mm, and the distance to the

middle of the walking alley is 2300 mm.

The first step was to weigh the animals with a scale using

an accuracy of 1 kg. It was calibrated using several metal

blocks that had a combined known weight of 50 kg. The ani-

mals were immobilised in a box with closed sidewalls and

semi-transparent gates. After the weighing, the gate at the

front was opened, and animals were guided past two Micro-

soft HD-3000 LifeCam webcams. These cameras were placed

in such away that they took a video from the side and top. The

video resulting from this process had a resolution of 96 dpi, a

dimension of 640 � 480, and a recording speed of 30 fps

(frames per second).

To build the deep learning-based body mass prediction

model, images had to be extracted from the corresponding

https://cocodataset.org
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Fig. 1 e Overview of the processes of the case study.
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video. A Python script, which imports the video files and ex-

tracts the individual frames from the video, was imple-

mented, and later, images were saved. From these images, the

images where the animal was completely in the frame were

selected and used to create the dataset. This resulted in two

datasets, one with the side view images and onewith top view

images. Experimental measurements (images and body mass

recording) were performed once per animal and all the data

were recorded on the same day because similar conditions for

all the animals and pictures should have been satisfied.

As shown in Fig. 3, the extracted images were processed

using the Mask-RCNN algorithm, which segments the images

to extract a mask that contains a form of the animal and

creates a binary image from that mask. The mask-RCNN

model was first trained using the COCO dataset to develop a

model that can segment animals in images. Since some seg-

mentation results from the mask-RCNN model had quality

problems, and did not segment the animal accurately, a
manual selection procedure was also performed to select the

best images for each animal. For every animal, five images

were segmented, from these images, one image was selected

where the legs and the head of the animal were adequately

visible. Images of two animals were removed from the dataset

due to the fact that the images were poor-quality and did not

represent the animal silhouette clearly, for example, no legs or

head visible. Because the data collection and data processing

stages were performed at different times, animals that were

shown in poor-quality images were dismissed. It would

require extra time and effort if wewished to include these two

heifers at a later stage as well, however, our assumption was

that the remaining set would be still sufficient to represent the

heifers on the farm.

The binary images and their body masses were linked

based on the experiment number of each animal. The final

dataset that consists of binary images and corresponding

masses was then split into the following sets: 60% for the

https://doi.org/10.1016/j.biosystemseng.2021.02.001
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Fig. 2 e Multi-viewpoint sketch of the data collection setup.

Fig. 3 e The image preparation process used to create the binary images.
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training set, 20% for the testing set, and 20% for the validation

set (Alay & Al-Baity, 2020).

Python 3.6 and Keras deep learning library version 2.3.1 on

top of TensorFlow 2.0 were used for the implementation of the

models. 48 individual models were designed (i.e., 24 for the

side-view mass prediction and 24 for the top-view weight

prediction). The basic design of the CNN used is presented in
Fig. 4. The mass prediction models were built using several

combinations of convolution layers combined with max-

pooling layers. These combinations were then followed by a

flattening layer that converted the data from the last convo-

lution operation in a one-dimensional array to use in the

dense layer that performs the regression for calculating the

body mass of the heifer in the image.

https://doi.org/10.1016/j.biosystemseng.2021.02.001
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Fig. 4 e Design of the convolutional neural networks.
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The models were trained by using the training set to find

the model parameters. For optimising the performance, the

ADAM optimiser (Kingma & Lei Ba, 2015) was used, and the

MSE was selected as the loss function. The MSE was then

calculated by comparing the prediction value and the real

body mass of the heifer. The models were trained and tested

for 30 iterations, which was determined after plotting the loss

function against the number of iterations. It showed that the

loss function converged after 20 epochs. In addition, to make

sure that the optimal model is reached, the number of itera-

tionswas increased by 50%. During the training of eachmodel,

the best model configuration was saved for the validation of

models and to find out which models provided the best per-

formance for the mass prediction of heifers.

To find out which model configurations worked best, two

parameters were changed in the training process. The first

parameter is the number of convolution and max-pooling

layers. The second parameter is the number of filters used

per convolution layer.

There were four main model designs; the first model star-

ted with one convolution layer and onemax pooling layer. For

every following model, there was one feature learning part

consisting of one convolution layer and onemax pooling layer

added. The second parameter was based on 2n, where n was

the filter number. Six filter counts were applied during this

research, which means that the first model had six filters for

the convolution layer that were calculated by filling the

number of the filters in for n in 2n, which resulted in six

models with one convolution layer. The number of filters used

in each layer is shown in Table 1.

The next step was to evaluate the performance of the indi-

vidual models. This was performed by using a separate vali-

dation set. The model configurations that were created during

the training process were loaded and used to predict the body
Table 1 e Calculated number of filters displayed for every
filter number.

Filter number Layer 1 Layer 2 Layer 3 Layer 4

1 2 4 8 16

2 4 8 16 32

3 8 16 32 64

4 16 32 64 128

5 32 64 128 256

6 64 128 256 512
mass of the heifers in the dataset. The real mass and the pre-

dictedweightwere then exported to an excel file, and the R2 (Eq.

(1)), RMSE (Eq. (2)), and MAPE (Eq. (3)) values were calculated.

These values were assessed, and based on the RMSE andMAPE,

the best model for the weight prediction was selected.

R2 ¼ 1�
X�

Wpredicted
i �Wreal

i

�2

X�
Wreal

i

�2 (1)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�
Wpredicted

i �Wreal
i

�2

N

vuut (2)

MAPE ¼
X�����

Wpredicted
i �Wreal

i

Wreal
i

������
100
N

(3)

4. Experimental results

4.1. Model configurations for top-view images

Table 2 shows the performance of the different model config-

urations based on the four evaluation parameters, namely R2,

MAE, MAPE, and RMSE. It is shown that based on the R2 model,

1.3.5 has the worst fit for the validation dataset, and this model

does not fitwell with the validation data. The bestmodel in this

table is model 1.4.3 based on R2, MAPE, and RMSE.

4.2. Model configurations for side-view images

Table 3 presents the performance of the different model

configurations based on the four evaluation parameters,

namely R2, MAPE, and RMSE. It was shown that model 2.4.1

has the worst performance, and the best one is model 2.3.5.

Furthermore, it is clear that the performance of weight pre-

diction using the CNN algorithm is high based on the overall

high R2 and low error rates.

4.3. Accuracy of prediction models

When Tables 2 and 3 were compared, it can be seen that the

R2 value was better for model 1 than in model 2. This

happened because of the large errors in the side-view pic-

tures of animals. In Fig. 5, the measured/predicted masses of

https://doi.org/10.1016/j.biosystemseng.2021.02.001
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Table 2 e Performance of the top-view model
configurations. The colour coding goes from
green (best value) to red (worst value).

Table 3 e Performance of the side-view model
configurations.
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the animals are presented. Each value belongs to a single

animal. When assessing the performance of the models, it is

observed that the top-view model performs better with

respect to the R2 parameter, with a value of 0.96 compared to

model 2.3.5 with a value of 0.91. With respect to the RMSE

parameter, model 2.3.5 performs worse thanmodel 1.4.3 (i.e.,

26.68 kg vs. 19.57 kg). As such, model 1.4.3 is a better model

for predicting the body mass of heifers until the age of 365

days.
5. Discussion

The results show that the top view was better for predicting

the body mass of the animal when using a CNN-based mass

prediction model. This difference might be related to the

variation in segmentation quality of the side view images. In

previous studies, a good prediction result was also achieved

from the top-view (Kashiha et al., 2014). In some of the side
view images, it was observed that the legs and head were not

segmented accurately. In the top view images, this is not a

problem since the legs of the animals were not in the picture;

as such, they did not need to be segmented. This sensitivity

due to the bad segmentation error might be solved by elim-

inating the legs in the images and only taking into account

the trunk of the animal (Nishide et al., 2018) (Kashiha et al.,

2014). Because legs were not present, an estimation of body

mass with or without legs should be performed in the future

and the correlation between the results obtained from the

two approaches should be calculated.

In this study, the mask ReCNN algorithm was used for

image segmentation. However, for image segmentation, the

histogram of oriented gradients (HOG) method could be used

as features and support vector machines (SVM) used as the

classifier. The main advantage of the mask ReCNN algorithm

is that it can perform detection, classification, and image

segmentation (Xu et al., 2020), and therefore, different appli-

cations such as welfare monitoring can be implemented

easily. The Mask ReCNN image segmentation approach can

https://doi.org/10.1016/j.biosystemseng.2021.02.001
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Fig. 5 e Two plots of the values for best fitting models built based on the side-view and top-view. The x-axis displays the

index of the animal and the y-axis the measured/predicted mass of the animal.
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also be applied for different applications such as lameness

detection. Since our envisioned scenario was to develop on-

farm welfare monitoring systems, the mask ReCNN algo-

rithm was used for image segmentation and the CNN algo-

rithm for mass prediction.

The data for this research was collected on a single farm,

and therefore different datasets may be needed for different

cow breeds. Additional datasets must be built based on mul-

tiple dairy farms. Since there is a high variation in housing

systems and farming procedures (van der Peet et al., 2018), one

farm cannot be a representative for variations that occur be-

tween the herds of different farms and this could be a limi-

tation. The second limitation is that the model was designed

based on the animals from a few specific crossbreeds of dairy

cows. This means that the model may not perform as ex-

pected when applied to the other breeds. The interest in

crossbreds is also to introduce large variations, that could be

of interest when considering applying the approach to other

breeds. In these animals, a small error percentage causes too

many variations in mass (e.g., from 50 to 400 kg, a 5% error

means variations in kg of 2.5e20 kg). Different cow breeds can

differ significantly in their body composition, and the features

discovered here might not be relevant for different breeds. To

improve the variation captured in the prediction model, it

would be beneficial to gather data from different dairy farms

in the Netherlands.

A third limitation is that the dataset does not have an equal

distribution of bodymasses (i.e., 37 kge370 kg). As shown in 0,

between 110 and 170 kg, there are significantly fewer data

points. This can cause poor mass estimations for this range. It

might be beneficial to gather data on animals that are in the

mass range of 110 kg and 170 kg. The fourth limitation is the

fact that the model is trained on a dataset that consists of

images that are acquired froma fixed distance to the animal. A

processing step needs to be added to scale the pictures.
The system must also be tested on older heifers (i.e., after

insemination) and also dairy cows, since body mass could be

of interest to better manage dairy herds.
6. Conclusions and future work

Our experimental results on the validation set achieved an

R2 value of 0.96 and an RMSE of 20 kg. Compared to the

previous studies reported in the literature (O Ozkaya &

Bozkurt, 2009), our model is therefore promising. It can

be concluded that the combination of the mask ReCNN

algorithm with CNN-based prediction algorithms is an

effective approach for predicting the body mass of heifers.

Also, it was demonstrated that the top view images pro-

vides better performance compared to the side view im-

ages, and high-performance prediction models can be built

with 2D images.

For future work, our prediction model can be analysed on

different datasets in different farms to create a prediction

model that is more generic for the variation of heifers. The

selection of these farms should be performed carefully to

cover all the farming systems. The variation between breeds

and within breeds needs to be accounted for, combined

with the main diet that the animals get on the different

farms. To increase the performance of models, more image

processing techniques can be investigated to improve

performance.
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Appendix A. Mass distribution of the dataset
Appendix B. Histogram of the mass with a bin
size of 10 kg
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