
Applied Soft Computing 109 (2021) 107491

D

w
a
s
v
t
r
t
i
r
f
o
l

t
f

j

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Multi-level transfer learning for improving the performance of deep
neural networks: Theory and practice from the tasks of facial emotion
recognition and named entity recognition
Jason C. Hung, Jia-Wei Chang ∗

epartment of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taiwan

a r t i c l e i n f o

Article history:
Received 12 December 2020
Received in revised form 17 April 2021
Accepted 5 May 2021
Available online 10 May 2021

Keywords:
Multilevel transfer learning
Computer vision
Natural language processing
Facial emotion recognition
Named entity recognition

a b s t r a c t

Transfer learning has become a promising field in machine learning owing to its wide application
prospects. Its effectiveness has spawned various methodologies and practices. Transfer learning refers
to improving the performance of target learners in the target domain by transferring the knowledge
contained in different yet related source domains. In other words, we can use data from additional
domains or tasks to train a model with superior generalization. Using transfer learning, the dependence
on considerable target-domain data can be reduced, thereby constructing target learners. Recently, the
fields of computer vision (CV) and natural language processing (NLP) have witnessed the emergence
of transfer learning, which has significantly improved the most advanced technology on a wide range
of CV and NLP tasks. A typical approach of applying transfer learning to deep neural networks is
to fine-tune a pretrained model of the source domain with data obtained from the target domain.
This paper proposes a novel framework, based on the fine-tuning approach, called multilevel transfer
learning (mLTL). Under this framework, we concluded the crucial findings and principles regarding the
training sequence of related domain datasets and demonstrated its effectiveness by performing facial
emotion and named entity recognition tasks. According to the experimental results, the deep neural
network models using mLTL outperformed the original models on the target tasks.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Pan et al. [1] proposed the concept of transfer learning, in
hich the existing domain knowledge is used to improve the
bility of the target domain to overcome problems related to the
carcity and overfitting of training data. In other words, the pre-
iously acquired knowledge is used to learn unknown knowledge
o avoid a huge investment in learning an unknown domain, thus
educing excessive resource wastage. A comparison diagram of
raditional machine learning versus transfer learning is presented
n Fig. 1. The diagram indicates that transfer learning considerably
educes the training time by transferring the parameter weights
rom a previously established model to an untrained model, and
nly requires retraining to fine-tune the parameter weights with
ittle data.

Transfer learning can be classified into the following two
echniques: feature-based transfer learning and fine-tuning. In
eature-based learning, a pretrained model, which refers to an
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initial model with random weights, is first trained by a rep-
resentative dataset of a particular field, and once the training
process is completed, the model structure and trained parameters
are stored. Therefore, feature-based transfer learning uses a pre-
trained model as a powerful encoder and provides a suitable base
for further training of similar tasks. In fine-tuning, the previously
saved models and parameters are trained to identify a target
dataset, and then the model parameters are updated to achieve
the training goal. If the target is identified without following
this process, the identification results will be poor, and various
training and testing processes will have to be performed, such as
adjusting the hyperparameters and fine-tuning the layers, before
an appropriate fine-tuning method can be identified.

Therefore, transfer learning has been extensively applied to
computer vision tasks. For example, Happy et al. [2] proposed the
use of a pretrained VGG-face model [3] for supervised learning
with label-smooth models. Four emotion datasets were trained
individually by using both labeled and unlabeled data to adjust
the model weights, to adjust the hyperparameters during the
training process, and finally to fine-tune the last convolution
layer and fully connected layer; thus, the model could learn
different changes in the expression strength. Ahmed et al. [4]
performed face recognition in an uncontrolled environment using
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Fig. 1. Comparison of traditional machine learning and transfer learning.
he VGG16 network architecture [5] and pretraining using the
mageNet dataset [6]. The training was performed using the CK+
ataset and the dataset they collected, namely the ITLab dataset.
uring the training, their proposed incremental active learning
ethod was used for model training and fine-tuning, and the
xperimental results indicated that both datasets performed well
nder different light sources, environments, and distances.
In addition, transfer learning is a common and useful tech-

ique in the field of natural language processing (NLP). The
elf-attention mechanism in the transformer allows the Bidi-
ectional Encoder Representations from Transformers (BERT) to
odel many downstream tasks, such as named entity recogni-

ion (NER), sequence or sentence pair classification, question-
nswering, and sentence tagging. In addition, ELMo is structured
o extract context-sensitive functionality from left-to-right and
ight-to-left and covers the following six baseline tasks: question-
nswering, textual entailment, semantic role labeling, coreference
esolution, named entity extraction, and sentiment analysis.

Hung et al. [7] proposed the Dense_FaceLiveNet model, which
s based on a conventional convolutional neural network (CNN)
rchitecture, to offer a solution for learning emotion recogni-
ion, which improved the precision and accuracy of the Face-
iveNet network in basic emotion recognition. In this model,
ransfer learning was applied at two levels. At the first level,
ransfer learning aimed to learn the relatively simple data of
he Japanese Female Facial Expression database and Karolinska
irected Emotional Faces database to model the FER2013 basic
motion dataset. At the second level, transfer learning aimed to
ransfer the FER2013 basic emotion recognition model to the
earning emotion recognition model. The results indicated that
he learning emotions model driven by Dense_FaceLiveNet can
ccurately retain the key action units essential for learning emo-
ions. This demonstrates the effectiveness of deep neural network
odels using two-level transfer learning in the recognition of

earned emotions.
According to Hung [7], increased levels of transfer learning

re a promising skill for achieving excellent performance for
ore downstream tasks in the fields of computer vision (CV) and
LP with limited data. Therefore, this paper proposes a frame-
ork based on a fine-tuning approach called multilevel transfer

earning (mLTL). The study objectives were as follows: (1) to
evelop a data analysis method for the datasets with the same
ask; (2) to discover the principles of using transfer learning with
ultiple levels; and (3) to validate the effectiveness of the mLTL

ramework in facial emotion recognition (FER) and NER tasks.
2

2. Related work

According to Pan et al. [1], transfer learning algorithms can be
grouped into the following four categories based on the represen-
tation of knowledge to be transferred (i.e., ‘‘what to transfer’’).

2.1. Instance-based transfer learning

As presented in Fig. 2, instance-based transfer learning refers
to identifying data in the source domain that are similar to
those in the target domain and adjusting their weights, ensuring
the new data match the target domain data. Through training
learning, a model applicable to the target domain is obtained.
Although this method is simple and easy to implement, the
choice of weights and the measurement of similarity depend on
experience, and the data distributions of the source and target
domains often differ.

Tan et al. [8] proposed a transitive transfer learning framework
to transfer knowledge from the source domain to an indirectly
related target domain by using some intermediate domains. The
first step was to identify a suitable domain to connect the given
source and target domains. The second step involved an effec-
tive knowledge transfer between both domains. The experimen-
tal results indicated that the framework yields state-of-the-art
classification accuracy on several classification datasets.

2.2. Feature-representation transfer learning

When the source and target domains contain some common
crossover features, these features can be transformed to the same
space through feature transformation; thus, the source and target
domain data in this space exhibit the same data distribution and
then perform traditional machine learning. Although this method
works well in most scenarios, it is difficult to address and prone
to overfitting. This concept is presented in Fig. 3.

While instance-based transfer learning only searches the ac-
tual data to obtain data similar to those in the target domain
and then learns directly, feature-based transfer learning requires
feature transformation to transform the source and target domain
data into the same feature space. Long et al. [9] proposed a
novel deep adaptation network architecture, which sets the fully
connected layers of a deep network to an adaptive layer and
focuses on the multiple kernel variant of maximummean discrep-
ancies. The experimental results indicated that deep learning-
based methods are much more effective than traditional shallow
transferring methods.
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Fig. 2. Concept diagram of instance-based transfer learning.
Fig. 3. Concept diagram of feature-representation transfer learning.
2.3. Parameter transfer learning

As indicated in Fig. 4, in parameter transfer learning, the target
and source domains share the same model parameters or follow
the same prior distribution. In other words, the model previously
trained in the source domain with considerable data is applied to
the target domain for prediction. Although it is relatively straight-
forward to exploit the similarities that exist between models, the
model parameters do not easily converge.

Ge et al. [10] proposed a new framework of online multi-
ple source transfer learning (MSTL). An offline MSTL method
combines the knowledge obtained from the source and target
domains using convex optimization. By contrast, an online MSTL
method is developed based on the optimization framework, and
performs better than the offline method. The results of the exper-
iments conducted on the datasets of CAD Prediction, Email Spam
Filtering and Intrusion Detection indicated that online MSTL is a
fast and scalable algorithm.

2.4. Relational-knowledge transfer learning

Assuming that the data of the source and target domains
exhibit the same logical network relations, these domains share
some similar relations. The logical network relations learned in
the source domain can be applied to the target domain to perform
the transformation. A typical method of relational-knowledge
transfer learning is the mapping method, such as the transfor-
mation from a biological virus propagation pattern to a computer
virus propagation pattern and that from the teacher–student rela-
tion to the supervisor–subordinate relation. The concept diagram
3

Table 1
The four methods of transfer learning.
Method Inductive transfer

learning
Transudative
transfer learning

Unsupervised
transfer learning

Instance-based ✓ ✓

Feature-
representation

✓ ✓ ✓

Parameter ✓

Relational-
knowledge

✓

of this type of transfer learning is presented in Fig. 5. Mihalkova
et al. [11] presented the SR2LR algorithm, which is designed for
situations in which the target-domain data can only be provided
as a single-entity-centered example. This algorithm evaluates
the possible source-to-target predicate correspondences based on
short-range clauses so that the knowledge captured in long-range
clauses can also be transferred.

In the first three types of transfer learning, the data are re-
quired to be independent of the distribution assumptions. More-
over, all four types of transfer learning require the selected source
domain to be related to the target domain. Table 1. summarizes
the four methods.

In the literature [1,12], several categorization criteria have
been proposed for transfer learning. Transfer learning problems
can be classified into the following three categories: transudative,
inductive, and unsupervised. Zhuang et al. [12] approached the
topic from data and model perspectives and illustrated more
than 40 representative approaches to transfer learning. This sur-
vey interprets transfer learning approaches from the data and
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Fig. 4. Concept diagram of parameter transfer learning.
Fig. 5. Concept diagram of relational-knowledge transfer learning.
odel perspectives [12], which refer to data- and model-based
nterpretation, respectively. Data-based interpretation focuses on
ransferring the knowledge through the adjustment and trans-
ormation of data, including instance- and feature-based transfer
earning. By contrast, model-based interpretation aims to obtain
ccurate prediction results on the target domain. In addition,
ransfer learning approaches were introduced not only to fo-
us on general text- and image-related applications but also to
e applied to specific areas, such as medicine, bioinformatics,
ransportation, and recommender systems. To present the per-
ormance of different migration learning models, they conducted
xperiments using 20 representative migration learning models,
hich were executed on three datasets. The experimental results

ndicated the importance of selecting the right migration learning
odel for practical applications.
In this era of large pretrained models, fine-tuning can be con-

idered a normal operation. Fine-tuning is a very costly operation,
lthough it generally produces accurate results. As mentioned
bove, two main techniques exist for performing transfer learning
n NLP, namely feature-based and fine-tuning. Houlsby et al. [13]
roposed an alternative approach called an adapter module. Both
4

feature-based and fine-tuning approaches require a new set of
weights to be trained for each task, whereas the adapter approach
can use parameters more efficiently by simply training the pa-
rameters within the module. The adapter tuning approach for NLP
exhibits three main features. It achieves suitable performance,
there is no requirement for handling different datasets simulta-
neously, and only a few additional parameters are required for
each new task. When using deep learning models, fine-tuning
is the most commonly applied transfer learning method. How-
ever, there are two major drawbacks to the commonly used
fine-tuning approach: (1) overfitting may occur when the target
dataset is small and the parameters of the pretrained network
are excessive; and (2) the initial number of frozen layers must be
manually selected, and thus, the optimization efficiency cannot
be improved.

3. Methodology

The mLTL framework is illustrated in Fig. 6. Transfer learning
is used to resolve the problem of insufficient training data. In

the figure, N is the total number of datasets with the same
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task and is also defined as the total number of corresponding
transfer learning levels, because each dataset is learned at the
corresponding transfer learning level. When transferring a trained
neural network model to the Nth dataset, its output layer must be
replaced by the output labels corresponding to the Nth dataset.

After achieving the optimal performance in each dataset
(i.e., transfer learning level), the trained model parameter weights
are saved for transfer learning of the next dataset. Because this
model does not use the fully connected layer as its last layer,
features learned from the previous dataset can be relocated to the
next dataset and the number of nodes in the final output layer
is replaced with the number of datasets that contain features,
allowing more features to be collected.

Definition 1. In formula (1), T n
m is a certain combination of

ransfer learning, n is the number of datasets used for feature
transferring, and m is the level of transfer learning:

T n
m =

⎧⎪⎨⎪⎩
m! ×

(
n
m

)
, if n > m > 0

(m − 1)! ×
(

n
m − 1

)
, if n = m

(1)

Example 1. T 3
1 indicates that THREE datasets are trained for

feature transfer and performing one-level feature transfer. T 3
1 =

1! ×
(3
1

)
= 3 means that we can perform THREE combinations for

this transfer learning.

Example 2. T 3
2 indicates that THREE datasets are trained for

feature transfer and performing two-level feature transfer. T 3
2 =

!×
(3
2

)
= 6 means that we can perform SIX combinations for this

ransfer learning.

xample 3. T 2
2 indicates that TWO of datasets are trained for fea-

ure transfer and performing two-level feature transfer. T 2
= (2−
2

5

)! ×
( 2
2−1

)
= 2 means that we can perform TWO combinations

or this transfer learning.

To validate the proposed mLTL framework, we applied it
o address the CV and NLP tasks. For the CV task, we used
ense_FaceLiveNet for FER, and for the NLP task, we used DistiB-
RT for NER. In the following subsections, we present
ense_FaceLiveNet and DistiBERT in detail.

.1. Using Dense_FaceLiveNet model for FER

Fig. 7 illustrates Dense_FaceLiveNet, which is a convolutional
eural network structure of the gaming FER model introduced
y Hung et al. [7]. Its architecture combines the architecture of
enseNet proposed by Huang et al. [14] and that of FaceLiveNet
roposed by Ming et al. [15]. The design concept of DenseNet con-
ects each inception layer. Based on FaceLiveNet, the following
hree improvements were made in Dense_FaceLiveNet.

.1.1. Replacing fully connected layers with global average pooling
Fully connected layers aim to use the results of the convolu-

ional and pooling layers to classify the image into a label. The
ain problem with fully connected layers is the excessive num-
er of parameters, which can not only easily lead to overfitting
ut also prevent the generalization ability of the overall neu-
al network. Dense_FaceLiveNet refers to the concept proposed
n [16], according to which, instead of adopting fully connected
ayers for classification, the average of each feature map is taken
nd the resulting vector is fed into the softmax layer. One advan-
age of global average pooling over the fully connected layers is
hat there are no optimized parameters in global average pooling,
hich prevents overfitting in this layer.
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.1.2. Replacing residual blocks with dense blocks
Dense_FaceLiveNet uses two layers of dense blocks, where the

nterconnected structure is called dense inception blocks. Finally,
translate layer is added to reduce the number of feature dimen-
ions. Dense blocks are used instead of residual blocks because
enseNet exhibits greater recognition accuracy than ResNet on
mageNet [14]. All layers are connected; thus, each layer ob-
ains additional inputs from all previous layers and passes on its
eature maps to all subsequent layers.

.1.3. Replacing ReLU with Swish as model activation functions
Swish, proposed by Google Brain [17], is an activation function

imilar to the rectified linear unit (ReLU), as both are smooth
nd nonmonotonic functions. On ImageNet, by simply replacing
eLUs with Swish units, the accuracy is improved by 0.9% and
.6% for Mobile NASNet-A [18] and Inception-ResNet-v2 [19],
espectively.

.2. Using DistilBERT for NER

Transfer learning is becoming increasingly common with
arge-scale pretrained models. BERT, a language model proposed
y Google AI Language [20], is the most advanced model de-
eloped in NLP to date. However, under constrained computa-
ional training or inference budgets, operating these large models
emains challenging. For this reason, much research has been
onducted on how to compress these large-scale pretrained mod-
ls. Using DistilBERT [21], Sanh et al. indicated that a much
maller language model pretrained with knowledge distillation
an achieve similar performance on numerous downstream tasks.
s DistilBERT reduces the BERT model by 40%, retains 97% of the
anguage understanding capabilities, and is 60% faster than BERT,
t is considered an ideal alternative for edge applications.

Knowledge distillation [22] is a compression technique that
an be understood as a student–teacher relation, where the pur-
ose is to allow the student to achieve the same abilities as
hose of the teacher to the maximum possible extent. The teacher
nd student refer to BERT and DistilBERT, respectively, whose
tructures are presented in Fig. 8. According to the figure, the two
tructures appear to be similar, with the only difference lying in
he number of layers and the hidden size.

. Experiments

.1. FER and its experimental datasets

In 1995, Picard introduced the concept of affective comput-
ng [23], which uses computer technology to recognize human
motions and explore the implicit emotion recognition tech-
iques and applications. This method analyzes the information
btained from sensors, such as skin temperature [24], electroen-
ephalogram data [25], and facial expressions, and understands
he corresponding emotions through machine learning. According
o the rule of Mehrabian [26], visual communication forms the
ost crucial part of emotional communication. This is why facial
xpressions are considered the main approach to understanding
motions. Previous studies [27,28] have divided facial expressions
nto two groups, namely basic and complex emotions. Basic emo-
ions include sadness, anger, fear, disgust, joy, and surprise, which
re associated with commonly recognizable facial expressions.
y contrast, complex emotions are socialized emotions learned
hrough acquired learning; for example, different people may
eact differently in the same situation, such as grief, regret, flow,
nd jealousy.
The traditional face recognition classification algorithms for

achine learning include support vector machine (SVM) [29],
6

Table 2
Emotional labels and quantity of each label of the four FER datasets.

CK+ FER2013 LE GFE2019

Angry (An) 135 4953 42
Disgust(Di) 177 547
Fear(Fe) 75 5121
Delightful (De) 207 8989 36 363
Sad (Sa) 84 6077 19
Surprised (Su) 249 4002 8 46
Neutral or Flow(Fl) 6198 1570 563
Frustration (Fr) 7 89
Confused (Co) 82 58
Boredom (Bo) 1477
Excitation (Ex) 95
Total 927 35,887 3180 1275

rule-based methods [30], principal component analysis [31], and
template matching methods [32]. Features are represented as
action units by the facial action coding system (FACS) [33]. How-
ever, it is difficult to mark facial features because high image
quality is required; thus, FER faces a bottleneck. A characteristic
of the deep learning approach is that it does not require feature
engineering and can learn the features on its own from the
available data. CNNs, such as DenseNet [14] and FaceLiveNet [15],
exhibit suitable recognition accuracy in the image processing of
basic emotions.

In the mLTL experiment, the following four FER datasets were
used: CK+ [34], FER2013 [35], learning emotion (LE) [7], and
Gaming Facial Emotion 2019 (GFE2019). Table 2 presents the
emotional labels and quantity of each label for the four FER
datasets.

1. CK+ is a basic emotion dataset and an extension of the
Cohn–Kanade (CK) dataset. Compared with CK, CK+ ex-
hibits increases of 22% and 27% in the numbers of se-
quences and subjects, respectively. The target expressions
for each sequence are encoded with FACS and the emotion
labels are revised and validated.

2. FER2013 is a basic emotion dataset, which comprises
grayscale images of faces with different angles, lighting,
genders, and ethnicities. These images conform to real-life
situations—where the faces have more subtle expressions,
some of which are difficult to distinguish with the human
eyes.

3. LE is a dataset of original video data collected by four
students from the Department of Information Management
at National Chung Hsing University, Taiwan. These stu-
dents captured the images by watching free videos from
YouTube, VoiceTube, and other famous online video plat-
forms and recorded the original video in 3 s intervals.
The categories of the collected data included frustration,
confused, boredom, delightful, surprised, and neutral/flow.

4. GFE2019 The data collected for this experiment contain
1275 images of consulting professional e-sports coaches
and gamers before defining the game emotions. The dataset
contains eight main game facial expressions, with four
positive and four negative emotions. The positive emotions
include delightful, excitation, surprised, and neutral/flow,
whereas negative emotions include angry, confused, sad,
and frustration.

4.2. NER and its experimental datasets

NER aims to identify specific types of object names from un-
structured text (e.g., persons, locations, organizations, times, and
dates). It forms the basis for NLP tasks, such as knowledge graphs,
machine translation, and question-answering systems. Recent
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Fig. 7. Architecture of Dense_FaceLiveNet.
Fig. 8. Architectures of BERT and DistilBERT.
tudies have used machine learning methods, such as conditional
andom fields [36], maximum entropy [37], SVM [38], and recur-
ent neural network (RNN) [39] language models for NER tasks.
n 2018, the Google AI Language Lab proposed BERT [20], which
an handle multiple NLP tasks simultaneously. Instead of RNNs,
ERT uses an approach that is entirely based on the attention
echanism [40] and addresses the fundamental constraint of
equential computation.
In the mLTL experiment, the following four Chinese NER

atasets were used: MSRA [41], WeiboNER [42], OntoNotes4.0
43], and Resume [44]. Table 3 presents the statistics of the
ntity labels and informative tokens of these datasets, and Table 4
ntroduces examples and further information of each of their
ntity labels.

1. Weibo NER: 1890 texts were selected from Weibo from
November 2013 to December 2014 and tagged with four
terms: person, location, organization, and geopolitical.
7

2. OntoNotes 4.0 is a large language corpus dataset, which
supports the named entity dataset in Chinese, English, and
Arabic from a wide range of sources, including news, radio
conversations, phone conversations, and weblogs.

3. MSRA is a Chinese named entity corpus dataset provided
by Microsoft Research Asia in 2006, which includes named
entity tags such as personal name, country and region, and
organization and has been extensively cited and extended.

4. Resume is a dataset of 1,027 resume summaries of senior
executives from Sina Finance provided by Zhang et al. [44]
in the ACL 2018 conference presentation. This dataset con-
tains eight types of named entities: country, location, per-
sonal name, organization, major, educational institutions,
ethnicity, and job title.
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Table 3
Statistics of entity labels and informative tokens of the four datasets.

Labels Number of tokens Number of none
labels

Number of defined
labels

Ratio of none
labels (%)

Ratio of defined
labels (%)

OntoNote 4.0 4 491,903 450,700 41,203 91.62 8.38
MSRA 3 1,955,827 1,727,930 227,897 88.35 11.65
Resume 8 124,099 45,085 79,014 36.33 63.67
Weibo NER 8 73,728 68,777 4951 93.28 6.72
Table 4
Examples and information of entity labels for the four NER datasets.
Name Label abbreviation Label name Examples

MSRA
NR Personal Name (Liang Shiqiu)
NS Country and Region (Europe and America)
NT Organization (Peking University)

OntoNote 4

GPE Country (Philippines)
LOC Location (Middle East)
ORG Organization (Council)
PER Personal Name (Liang Shiqiu)

Weibo NER

GPE.NAM Country (Specific) (USA)
GPE.NOM Country (Substitute) (Country)
LOC.NAM Location (Specific) (offices)
LOC.NOM Location (Substitute) (Street)
ORG.NAM Organization (Specific) (Qualcomm)
ORG.NOM Organization (Substitute) (School)
PER.NAM Personal Name (Specific) (President Song)
PER.NOM Personal Name (Substitute) (Fans)

Resume

CONT Country (USA)
EDU Educational Institutions (University Degree)
LOC Location (Guangdong Province)
NAME Personal Name (Liang Shiqiu)
ORG Organization (Company)
PRO Major (Economics and Management)
RACE Ethnicity (Han ethnicity)
TITLE Job Title (Senior Engineer)
c
s
T

5. Results

In the experimental results, the performance measures are
efined as follows:

recision = TP/(TP + FP) (2)

ecall = TP/(TP + FN) (3)

ccuracy = (TP + TN)/(TP + FP + TN + FN) (4)

F1-Score = 2 × (Precision × Recall)/(Precision + Recall) (5)

TP, TN, FP, and FN stand for True Positive (the number of
pairs correctly labeled as paraphrases), True Negative (the num-
ber of pairs correctly labeled as non-paraphrases), False Posi-
tive (the number of pairs incorrectly labeled as paraphrases),
and False Negative (the number of pairs incorrectly labeled as
non-paraphrases), respectively.

5.1. Experimental results of FER

To address the problem of training data scarcity, the experi-
ment conducted in this study used data augmentation to rotate
an image randomly by -5◦ to 5◦, flip it horizontally, and zoom
randomly into it by 1–1.5 times, which considerably increases
the amount of training data in the original dataset. K-Folds cross-
validation was used as a training model to avoid overfitting of
the training model, and the result was obtained by averaging the
results of each training session. As the base model of transfer
8

learning, we set a learning rate of 0.01, a batch of 64, an epoch
of 50 times, and a patience value of 10 for early stopping skill to
Dense_FaceLiveNet. As GFE2019 has the largest number of cate-
gories and a high application value, it is used as the target dataset
for mLTL, and CK+, FER2013, and LE are arranged in different
combinations. Each dataset is abbreviated to an uppercase letter
as follows:

‘‘C’’ for the CK+ dataset,
‘‘F’’ for the FER2013 dataset,
‘‘L’’ for the LE dataset, and
‘‘G’’ for the GFE2019 dataset.
As presented in Table 5, the accuracy of the GFE2019 emo-

tion recognition model without transfer learning was 71.53% and
training was performed using mLTL to further improve the accu-
racy. In addition, Tables 6–8 present one-, two-, and three-level
transfer learning training combinations and the experimental
results, respectively.

Compared with the model without transfer learning, that with
transfer learning exhibited improved accuracy, as indicated in
Table 3, with the largest improvement of 10.09% observed for
F→G. As presented in Table 4, the combination exhibiting the
largest improvement in accuracy (13.96%) after two-level trans-
fer learning was F→L→G. The worst result was obtained for
the F→C→G combination; however, the accuracy was improved
ompared with that achieved without transfer learning. The re-
ults obtained after the third transfer learning are presented in
able 5, and the best model was built in the migration order of
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able 5
ense_FaceLiveNet [7] without transfer learning (GFE2019 only).

Average accuracy (%) Convergence epochs Average training time (s)

G 71.53 30 105

Table 6
Combinations for one-level transfer learning in FER.

Average accuracy (%) Convergence
epochs

Average training
time (s)

C→G 77.57 23 100
F→G 82.43 21 86
L→G 76.39 17 94

Table 7
Combinations for two-level transfer learning in FER.

Average accuracy (%) Convergence
epochs

Average training
time (s)

C→F→G 82.98 17 86
C→L→G 76.61 19 95
F→C→G 74.90 4 62
F→L→G 85.49 24 105
L→C→G 77.65 11 79
L→F→G 83.14 16 90

Table 8
Combinations for three-level transfer learning in FER.

Average accuracy (%) Convergence
epochs

Average training
time (s)

C→F→L→G 87.84 19 97
C→L→F→G 86.67 22 102
F→C→L→G 83.92 15 112
F→L→C→G 83.53 9 74
L→C→F→G 87.45 22 103
L→F→C→G 85.88 15 87

C→F→L→G. Compared with the best models in Tables 5–8, the
overall accuracy improved by 16.31% (G, 71.53% to C→F→L→G,
7.84%), 5.41% (F→G, 82.43% to C→F→L→G, 87.84%), and 2.35%
C→F→G, 85.49% to C→F→L→G, 87.84%), respectively. In Ta-
le 8, the accuracy of all six combinations was above 80% by
hree-level transfer learning.

.2. Experimental results of NER

In this study, we trained NER on the MSRA, Weibo NER,
ntoNotes4.0, and Resume datasets and learned their implicit
nowledge using the mLTL approach. Because the Resume dataset
as more entity tags from a broad perspective and is more useful
or applications, and therefore, it was used as the target dataset
or transfer learning. In addition, different combinations of MSRA,
eibo NER, and OntoNotes 4.0 were arranged for training, where

ach dataset was abbreviated to an uppercase letter as follows:
‘‘M’’ for the MSRA dataset,
‘‘W’’ for the Weibo NER dataset,
‘‘O’’ for the OntoNotes 4.0 dataset, and
‘‘R’’ for the Resume dataset.
In the experiments, we adopt DistilBERT model as the base

f transfer learning. Because DistilBERT model is similar to BERT
odel, we used a learning rate of 3e-5, a batch of 10, and an
poch of 10 times, as suggested in the original BERT [20,21].
n addition, we adopted the early stopping skill, whose value
f patience is 3. Table 9 indicates that all combinations of the
hree-level transfer learning exhibited accuracy superior to the
riginal DistilBERT without transfer learning. In particular, Dis-
ilBERT (O→M→W→R) achieved the best performance with an
1-Score of 93.49%.
9

able 9
esults of DistilBERT [21] with/without mLTL for NER.

Precision (%) Recall (%) F1-Score (%)

R 66.38 64.49 65.42
M→W→O→R 92.29 93.88 93.07
M→O→W→R 92.66 94.24 93.44
W→M→O→R 71.11 67.89 69.46
W→O→M→R 92.10 92.30 92.19
O→M→W→R 92.28 94.75 93.49
O→W→M→R 76.53 69.64 72.92

Table 10
Comparisons of NER models on resume dataset.
Model Precision (%) Recall (%) F1-Score (%)

Lattice LSTM [44] (R) 94.81 94.11 94.46
Glyce+BERT [45] (R) 96.62 96.48 96.54
DistilBERT [21] (R) 66.38 64.49 65.42
DistilBERT by
mLTL framework
(O→M→W→R)

92.28 94.75 93.49

Table 11
Comparison of prediction speeds of NER models.

Glyce+BERT Lattice LSTM DistilBERT

Seconds per token 0.001788 0.010463 0.000598
Total seconds 27 158 9

As indicated in Table 10, the metrics for the Resume dataset
were low before performing mLTL, and those for DistilBERT
(O→M→W→R) were close to the performance of the lattice
LSTM model. The results of the Glyce+BERT method proposed
by Meng et al. [45] indicated that the F1-Score of the Resume
dataset was 96.54%, which is a state-of-the-art approach. How-
ever, Glyce+BERT was a model trained with several parameters,
and it thus had a slower execution. In addition, the DistilBERT
model outperformed the BERT model in terms of the number of
training parameters, and thus, it had the disadvantage of slower
execution. Furthermore, the DistilBERT model outperformed the
BERT model in terms of speed. As indicated in Table 11, the
DistilBERT model’s prediction time of 9 s was superior to the
Glyce+BERT model’s prediction time of 27 s and significantly
superior to the lattice LSTM model’s prediction time of 158 s.
In addition, the DistilBERT model predicted a token 0.000596 s
faster than the Glyce+BERT model, and the lattice LSTM model
exhibited the worst prediction performance. Therefore, DistilBERT
outperformed Glyce+BERT in the real-world application field.

6. Discussion

6.1. Similarity of labels between datasets in FER and NER tasks

In this study, the number of datasets used for both NER and
FER tasks in mLTL was four. The FER datasets were CK+, FER2013,
LE, and GFE2019, as indicated in Table 2, and the NER datasets
were MSRA, OntoNote 4, Weibo NER, and Resume, as indicated
in Table 4.

Of the four FER datasets, CK+ and FER2013 are similar and
LE and GFE2019 are similar. The CK+ and FER2013 datasets are
basic emotion datasets, with the only difference being that CK+
has six categories and FER2013 has seven categories. Meanwhile,
both the LE and GFE2019 datasets belong to more complex mood
categories and have more overlapping categories; however, the
GEF2019 dataset contains more categories. Therefore, this study
used the GFE2019 dataset as the target dataset in mLTL.

Of the four NER datasets, the labels in Weibo NER, MSRA, and
OntoNote 4.0 are highly similar in concept but the granularity of
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able 12
urther analysis of O→M→W→R and M→O→W→R in terms of two-level
ransfer learning.

Precision (%) Recall (%) F1-Score (%)

O→M→W 49.35% 51.25% 50.28%
M→O→W 45.25% 45.98% 45.61%

the labels is quite different. There are additional location labels
on OntoNote 4 and Weibo NER. Both Weibo NER and Resume are
datasets with numerous labels and high granularity. Compared
with other datasets, Resume has up to eight tag types – CONT,
EDU, LOC, NAME, ORG, PRO, RACE, and TITLE – which are much
broader in terms of categories and more meaningful for practical
applications. Therefore, this study used the Resume dataset as the
target dataset in mLTL.

6.2. Similar findings and usage principles from NER and FER tasks

Transfer learning has been proven effective in improving the
earning performance of target learners in the target domain. This
aper presents the mLTL framework, which is based on fine-
uning. Based on this framework, individual experiments were
onducted for the FER and NER tasks. In the two experiments,
e obtained two findings and derived the following common
rinciples of mLTL.

1. Results obtained using mLTL were superior to those ob-
tained without transfer learning:
According to the results obtained for both FER and NER
experiments, the accuracy obtained with mLTL was superior
to that obtained without transfer learning. As indicated in
Table 5, the average accuracy of GFE2019 without mLTL
was 71.53% for the FER task. Compared with the results
of mLTL experiment (Table 8), the worst combination was
F→L→C→G, which had an average accuracy of 83.53%,
which was 12% higher than that of the GFE2019 dataset
without transfer learning. For the NER task, as indicated in
Table 9, the F1-Score of the Resume dataset without mLTL
was 65.42%, and the worst combination, W→M→O→R, had
a higher F1-Score of 69.46% than that of the Resume dataset
without transfer learning.

2. In mLTL transition, the different sequential combinations
of datasets might affect the final result of the target
dataset:

• On the NER task, as indicated in Table 9, the combinations
that performed well were O→M→W→R and M→O→W
→R. Although their F1-Scores were similar, O→M→W→R
obtained slightly better results than M→O→W→R. As in-
dicated in Table 12, comparing the results of O→M→W
and M→O→W, the F1-Score of O→M→W was 50.28%,
which is better than the 45.61% of M→O→W. We spec-
ulate that O→M→W→R outperformed M→O→W→R in
the subsequent transfer to the Resume dataset because of
the superior performance of O→M→W. On the FER task,
as indicated in Table 8, the combinations that performed
well were C→F→L→G and L→C→F→G with accuracies
of 87.84% and 87.45%, respectively. Although the two accu-
racies were similar, C→F→L→G performed slightly better
than L→C→F→G. Comparing the results of F→L→G and
C→F→G experiments, as indicated in Table 7, F→L→G’s
accuracy was 85.49%, which is higher than C→F→G’s ac-
curacy of 82.98%. We speculate that the superior perfor-
mance of F→L→G enabled C→F→L→G to outperform
L→C→F→G.
10
• For the NER task, as indicated in Table 9, the two poor com-
binations were W→M→O→R and O→W→M→R, with F1-
Scores of 69.46% and 72.92%, respectively. Their common
ground is the inclusion of W→M, presumably because the
poor learning in W→M affected the final results. For the
FER task, as indicated in Table 8, the two poor combina-
tions were F→C→L→G and F→L→C→G. The accuracies
of L→C→G and C→L→G were 77.65% and 79.61%, respec-
tively. Presumably, the poor performance of L→C→G made
the F→L→C→G results even worse than the F→C→L→G
results.

Based on the aforementioned two findings, we deduced the
following principles of use for improving the results of mLTL.

1. A dataset with considerable data can help learn better
features in mLTL:

• For the FER task, the results of one-level transfer learning
(listed in Table 6) indicate that the average accuracy of the
FER2013 transfer to GFE2019 was 82.43%, which was the
best among the three migration combinations. Table 2 indi-
cates that the FER2013 dataset is the largest of all datasets.
We speculate that a large dataset helps to learn a wider
variety of features in transfer learning training. By contrast,
C→G and L→G had lower accuracies of 77.57% and 76.39%,
respectively. We speculated that, for both combinations,
the scarcity of data results in insufficient features being
learned during migration to the GFE2019 dataset. For the
NER task, similar findings are presented in Table 12. First,
the OntoNotes 4.0 dataset is smaller than the MSRA dataset
(Table 3). For the Weibo NER dataset, MSRA contributed
more than OntoNotes 4.0 from the O→M→W sequence
than from the M→O→W sequence.

2. Placing a large dataset in the later order can yield supe-
rior results:

• For the NER task, as indicated in Table 9, O→M→W→R
and M→O→W→R performed better, and they share the
inclusion of the WR order in common. Table 3 indicates the
transfer from the smallest of the four datasets, Weibo NER,
to a larger one, the Resume dataset, where Weibo NER has
only 73,728 tokens and 4,951 non-O tags, whereas the Re-
sume dataset has 124,099 tokens and 79,014 non-O tags. For
the FER task, F→C→L→G and F→L→C→G combinations
with a large dataset trained first were less effective than the
other combinations, as indicated in Table 8. The common
ground here was that FER2013, which has considerable data,
was placed first for training (Table 2). Therefore, in mLTL,
larger datasets are not suitable for training at the forefront.

3. Placing similar datasets closer can improve the training
results:

• For the FER task, as indicated in Table 8, the combinations
C→F→L→G and L→C→F→G obtained superior accuracies
of 87.84% and 87.45%, respectively. Based on Table 2, we
assumed the reason to be that both CK+ and FER2013 are
basic mood datasets and have the closest number of cate-
gories. For the NER task, as indicated in Table 9, superior re-
sults were achieved by O→M→W→R and M→O→W→R,
with F1-Scores of 93.49% and 93.44%, respectively. Accord-
ing to Table 3, a possible reason was that the Weibo NER
and Resume datasets have the same numbers of categories
and labels. Therefore, we inferred that a similar number of
categories can improve the results.

• For the FER task, as indicated in Table 7, the C→L→G and
L→C→G results were worse than those for other combi-
nations. According to Table 2, CK+ and LE were the basic
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and complex emotion datasets, respectively. In both cases,
the category similarity between the two datasets was low
and the amount of data was small; in the LE dataset in
particular, the problem of category imbalance was evident.
For the NER task, as indicated in Table 9, the F1-Scores of
W→M→O→R and O→W→M→R were worse than those
of the other combinations. According to Table 3, both com-
binations contain the order of W→M, and the Weibo NER
dataset contains eight labels, whereas the MSRA dataset
only has three labels. Therefore, we conjectured that when
the Weibo NER dataset is transferred to the MSRA dataset,
it has too many labels for MSRA to learn effectively.

n the previous sections, we discussed the size of the datasets and
he similarity of the labels. For example, as indicated in Table 8,
→F→L→G and L→C→F→G obtained better results than the
ther combinations. This is consistent with Principles 2 and 3.
owever, if the conflict between the two principles is ambiguous,
uch as satisfying Principle 2 but not fitting a category similar to
he requirement to put it together (Principle 3), we performed
urther analysis and obtained Principle 4.

4. Placing the larger dataset in the front order if the two
datasets are not similar:

• For the FER task, a conflict existed between Principles 2 and
3. As indicated in Table 8, when FER2013 was transferred
to CK+ within the sequence of F→C→L→G, the results
were unsatisfactory. This sequence conformed to Principle
3 and placed similar categories together, but did not con-
form to Principle 2. For the NER task as well, a conflict
existed between Principles 2 and 3, as indicated in Table 9,
where W→M→O→R and O→W→M→R yielded poor re-
sults even though the order of W→M satisfied Principle 2.
According to Table 3, the Weibo NER dataset contains eight
labels, whereas the MSRA dataset has only three labels;
moreover, even the label of the Weibo NER dataset has a
higher granularity, and therefore, it does not meet Principle
3.

• For the NER task, according to Table 9, M→W→O→R and
O→M→W→R performed better than the other combina-
tions, which neither satisfied Principle 2 nor Principle 3. For
the FER task, according to Table 7, the best combination was
F→L→G, which did not satisfy Principles 2 and 3, and even
FER2013 is a basic emotion dataset and LE is a complex
emotion dataset. From the aforementioned conflict, we in-
stead determined that if the two datasets are not similar, the
larger dataset should be placed in front for transfer learning.

ased on the aforementioned observations, for dataset sorting
ombinations, one should first put together those with high cat-
gory similarity and then adjust them according to the dataset
ize, placing those with large datasets behind. However, if the
wo datasets are not similar, placing the larger dataset in front
ill help the later dataset to learn more features in the transfer

earning process.

. Conclusion

This paper proposed the mLTL framework based on the fine-
uning method, this framework can be used when several pre-
rained models or datasets related to the target task are earned.
o validate the effectiveness of mLTL framework, we conducted
eparate experiments for FER and NER tasks and obtained the
ollowing results.

• For the FER task, the original accuracy of Dense_FaceLiveNet
on GFE2019 was 71.53%, and the model with three-level
transfer learning achieved the optimal accuracy of 87.84%.
11
• For the NER task, the original F1-Score of DistilBERT on
Resume was 65.42% only, and the model with three-level
transfer learning achieved the optimal F1-Score of 93.49%.

he results of the two experiments indicated that
ense_FaceLiveNet and DistilBERT with mLTL performed better
han the original databases without mLTL, proving that mLTL is
ighly beneficial for deep neural network models. In addition,
e discussed the results of the mLTL framework for the FER and
ER tasks and further concluded two important findings and four
rinciples for mLTL usage. Based on the findings of this study, we
elieve that mLTL can benefit more practical applications in the
uture.
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