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Measurement of surface roughness helps to assess the machined component’s functionality. In the past
three decades, several scientists have contributed to the computation of surface roughness. This research
article deals with two distinct methods for prediction of surface roughness employing the surface pro-
filometer and machine vision for AISI 1040 steel specimens prepared by varying cutting parameters of
end milling viz. feed rates, speed and cutting depth. Using a surface profilometer, the surface roughness
parameters are evaluated. At the other hand, the texture features were extracted using a Gray Level Co-
occurrence Matrix Algorithm (GLCM) and a computer vision system. Correlations are formed among char-
acteristics of machined surface and the texture feature such as contrast, entropy, energy, and homogene-
ity. The comparable findings revealed a maximum relative error of �8% using contrast and energy, � 11%
using entropy and �10% using homogeneity.
� 2021 Elsevier Ltd. All rights reserved.
Selection and peer-review under responsibility of the scientific committee of the International Confer-
ence on Materials, Processing & Characterization.
1. Introduction

Surface measurement is highly required in industries for techni-
cal advancement. Precise and quality surface in terms of accuracy
and quick measurement is highly demanding in heavy industries.
The surface texture of surface topography can be defined as the
nature of the surface by characteristics like surface roughness
and waviness. It is a very important factor to control friction.
Machined surface influences dimensional accuracy and mechanical
property, especially fatigue strength. Surface finish helps to deter-
mine fatigue life and corrosion life also [1–3].

Various studies, works and methods to quantify the roughness
of the machined surface have been proposed [4–9] Surface mea-
surement can be either contact-type measurement or non-
contact type measurement method [10–12]. Even with high preci-
sion, various researches on non-contact type evaluation of surface
roughness parameters using laser speckle, optical interference and
light dispersion is carried out using a machine vision system and
artificial intelligence due to the destructive nature of contact type
surface measurement process [13–17].

Huaian et al. [18] worked on a new method to study roughness
of a surface. This method uses no primary necessities to study uni-
form texture direction which extracts the current problems, like
limited measurement range, intricate calculations etc. Accuracy
of non-contact measurement is improved with this method. The
purpose of this research is to investigate the relationship among
roughness parameters and texture features of end-milled surfaces
using non-contact type technique since it has certain focal points
like high accuracy, high efficiency, immense flexibility, and non-
contact in nature, the ability to acquire a considerable amount of
data and excellent performance-price ratio compare to contact
type measurement.

It is targeted towards the surface feature extraction using GLCM
and correlating it to the parameter of surface roughness deter-
mined by a profilometer. Linear and non-linear regression models
have been developed to predict arithmetical mean deviation (Ra).
In the current research, the viability of detection models has been
discussed.
2. Materials and methods

2.1. Experimental method

Surface finish is usually determined by the arithmetical mean
deviation; Ra. Surface finish is a very important factor to determine
the quality of the machining process. It also helps to control fric-
tion and determine the quality of joining between two surfaces.

https://doi.org/10.1016/j.matpr.2020.10.709
mailto:dhirenpatel85@gmail.com
https://doi.org/10.1016/j.matpr.2020.10.709
http://www.sciencedirect.com/science/journal/22147853
http://www.elsevier.com/locate/matpr


Nomenclature

CCD charge-coupled device
GLCM gray level co-occurrence matrix
Ra arithmetic mean deviation of profile (mm)
VMC vertical milling centre
CON contrast

E energy
ENT entropy
H homogeneity

Table 1
Measuring conditions.

Type of Machining VMC
Type of Measurement Roughness
Calculation Standard ISO’97/JIS’01/DIN
Length of Evaluation 8.00 mm
Speed of Measurement 0.6 mm/s
Cut-off 0.8 mm
Type of Filter Gaussian
Range of Measurement 160 mm
Form Remove Straight
Unit mm/mm
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20 specimens of AISI 1040 steel was machined by the end milling
process. These specimens were prepared at different machining
parameters. Stylus instrument or surface profilometer consisting
stylus made up of diamond probe which measures the parameters
of the roughness of machined surfaces by moving it perpendicular
to the direction of the surface [19]. Because of its benefits and pro-
ducing a profile of an object in a well-defined path, it’s been the
most commonly used technique [20]. Roughness parameter of
twenty milled surfaces has been measured using surface pro-
filometer as shown in Fig. 1. Table 1 shows the conditions of the
measurement via surface profilometer.
2.2. Set-up of a machine vision system

The machine vision system has been used to capture machine
surface images. High speed, high spatial resolution, and ease of
operation make this method advantageous over conventional
methods of measuring surface roughness. Also, it is extremely use-
ful in the prediction of roughness in all modes viz. online, offline
and in-process [21]. The system consisted of a CCD camera to cap-
ture the machined surface images under the ordinary lighting con-
ditions as shown in Fig. 2. These images contain noises, uneven
illumination and geometric image distortion. As it is difficult to
eliminate these factors from a CCD camera, a specific algorithm
is used to eliminate them, especially noises. To achieve precise
and accurate information, it is important to eliminate these discon-
tinuities from images.
Fig. 1. Surface Profilometer
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The machine vision system is arranged such that it focuses on
machined surface and capture corresponding images. Matlab is
used to enhance images for further measurement using an image
processing tool.

3. Result and discussion

In this section, results measured from surface profilometer and
machine vision system will be compared.

3.1. Feature extraction

As shown in Table 2, four features were extracted from the sur-
face image. These features are being used to correlate with the
arithmetical mean deviation (Ra). Grey level intensity variations
– HANDYSURF 35-A/B.



Fig. 2. Setup of a machine vision system.
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Fig. 3. Correlation trend between Contrast (F1) and measured arithmetical mean
deviation Ra (mm).
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Fig. 4. Correlation trend between Energy (F2) and measured arithmetical mean
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between pixels of surfaces are known as the contrast feature (F1).
It is also sometimes termed as Inertia [22]. Difference between two
neighbour pixel effects weight factor and consequently the con-
trast. Increase indifference also increases the contrast feature
[23]. Uniformity of any image is measure by energy feature (F2).
The measure of the extent of pixel pair repetition is defined as
energy [24]. Disorder in an image is measured by entropy feature
(F3). Uniformity in the image causes high entropy. In general
words, entropy is inversely proportional to the energy. It also
shows the amount of information needed for image compression.
Loss of the information in a transmitted signal is measured by
entropy [25].

Measurement of similarity in an image is given by homogeneity
feature (F4). It is also termed as Inverse difference moment. The
concentration of image elements at diagonal of the image is deter-
mined by homogeneity [24]. It is inversely proportional to the con-
trast feature and increases with increasing similar neighbour pixels
[22].
Table 2
Image texture features of milled components.

Specimen No. Contrast (F1) Energy (F2

1 6.3276 0.0213
2 6.9264 0.0216
3 7.0514 0.0222
4 7.1210 0.0224
5 7.4950 0.0236
6 8.3075 0.0271
7 8.3145 0.0274
8 8.3216 0.0278
9 8.4103 0.0281
10 8.5323 0.0288
11 8.9909 0.0290
12 9.1552 0.0304
13 9.2369 0.0304
14 9.5615 0.0323
15 9.5897 0.0323
16 9.7500 0.0333
17 10.4153 0.0335
18 10.8780 0.0349
19 11.4808 0.0351
20 11.6280 0.0360
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3.2. Correlation

In this work, the correlation between these features and arith-
metical mean deviation (Ra) has been plotted over a graph to
determine the linear regression equation as shown in Figs. 3–6.

Regression equation can be used to determine the relationship
between two or more variables [26]. The same method is used here
to determine the relationship between the measured and predicted
) Entropy (F3) Homogeneity (F4)

3.9628 0.2766
3.9608 0.2928
3.9325 0.2965
3.9090 0.2969
3.8648 0.3050
3.8285 0.3070
3.7976 0.3110
3.7954 0.3121
3.7841 0.3140
3.7414 0.3169
3.7377 0.3202
3.7368 0.3284
3.6931 0.3302
3.6838 0.3320
3.6746 0.3400
3.6293 0.3458
3.6274 0.3466
3.6144 0.3587
3.4573 0.3670
3.3584 0.3773

deviation Ra (mm).
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Fig. 5. Correlation trend between Entropy (F3) and measured arithmetical mean
deviation Ra (mm).
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value of surface features Contrast (F1), Energy (F2), Entropy (F3)
and Homogeneity (F4). Results obtained from a machine vision
system have a strong relationship with the average surface rough-
ness value measured with a surface profilometer. Justification of
the regression equation can be obtained from the coefficient of
Table 3
Analysis of the relative error between actual and predicted roughness value.

Contrast (F1) Energy (F2)

Measured
Ra (mm)

Predicted
Ra (mm)

Absolute
Error

Relative
Error

Predicted
Ra (mm)

Absolute
Error

Relat
Error

0.390 0.375 0.015 4% 0.390 0.000 0%
0.400 0.425 �0.025 �6% 0.398 0.002 1%
0.430 0.435 �0.005 �1% 0.413 0.017 4%
0.450 0.441 0.009 2% 0.419 0.031 7%
0.470 0.472 �0.002 0% 0.451 0.019 4%
0.500 0.539 �0.039 �8% 0.541 �0.041 �8%
0.517 0.540 �0.023 �4% 0.549 �0.032 �6%
0.534 0.540 �0.006 �1% 0.558 �0.024 �5%
0.565 0.548 0.017 3% 0.566 �0.001 0%
0.587 0.558 0.029 5% 0.584 0.003 0%
0.610 0.596 0.014 2% 0.590 0.020 3%
0.627 0.610 0.017 3% 0.626 0.001 0%
0.648 0.616 0.032 5% 0.626 0.022 3%
0.666 0.643 0.023 3% 0.675 �0.009 �1%
0.684 0.646 0.038 6% 0.676 0.008 1%
0.689 0.659 0.030 4% 0.701 �0.012 �2%
0.699 0.714 �0.015 �2% 0.706 �0.007 �1%
0.700 0.752 �0.052 �7% 0.743 �0.043 �6%
0.760 0.802 �0.042 �6% 0.749 0.011 1%
0.800 0.815 �0.015 �2% 0.772 0.028 4%
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determination R2. The high value of R2 (near to 1) showed the out-
standing relationship between the arithmetical mean deviation
and extracted texture features.

The equation obtained for the Ra-Contrast relationship (CON) is,

CON ¼ 12:063Raþ 1:8024 ð1Þ
Putting the value of Contrast feature obtained from the image

processing method in Eq. (1), gives the predicted value of Ra for
the surface of a different specimen. The maximum relative error
of �8% and minimum relative error of 0% justify the reliability of
this method and work.

Correlation between Ra and energy (E) is expressed as following
Eq. (2),

E ¼ 0:0385Raþ 0:0063 ð2Þ
The maximum relative error for the measured and predicted

value of E is �8% while the minimum relative error is 0%.
The relationship between entropy (ENT) and Surface roughness

is shown in Eq. (3),

ENT ¼ �1:257Raþ 4:4765 ð3Þ
After determining the predicted value of surface roughness

using this Eq. (3) for entropy, the maximum relative error is
�11% and the minimum relative error is 0%.

Plot between homogeneity and surface roughness determines
the following relationship between both, refer Eq. (4),

H ¼ 0:2105Raþ 0:2003 ð4Þ
The maximum relative error between surface profilometer mea-

sured and machine vision system measured homogeneity is �10%
and the minimum relative error is 0%.

The low relative error observed by the test, as shown in Table 3,
confirms the good capability of the system developed to measure
the surface roughness of the milled components. Better detection
capability for linear detection model is found from the test results
using texture features Contrast and Energy for the roughness of the
milled workpiece surface.

4. Conclusion

Image processing techniques have been used in this work to
extract surface features from end milling machined specimen
Entropy (F3) Homogeneity (F4)

ive Predicted
Ra (mm)

Absolute
Error

Relative
Error

Predicted
Ra (mm)

Absolute
Error

Relative
Error

0.409 �0.019 �5% 0.363 0.027 7%
0.410 �0.010 �3% 0.440 �0.040 �10%
0.433 �0.003 �1% 0.457 �0.027 �6%
0.451 �0.001 0% 0.459 �0.009 �2%
0.487 �0.017 �4% 0.497 �0.027 �6%
0.515 �0.015 �3% 0.507 �0.007 �1%
0.540 �0.023 �4% 0.526 �0.009 �2%
0.542 �0.008 �1% 0.531 0.003 1%
0.551 0.014 3% 0.540 0.025 4%
0.585 0.002 0% 0.554 0.033 6%
0.588 0.022 4% 0.570 0.040 7%
0.588 0.039 6% 0.609 0.018 3%
0.623 0.025 4% 0.617 0.031 5%
0.631 0.035 5% 0.626 0.040 6%
0.638 0.046 7% 0.663 0.021 3%
0.674 0.015 2% 0.691 �0.002 0%
0.675 0.024 3% 0.695 0.004 1%
0.686 0.014 2% 0.752 �0.052 �7%
0.811 �0.051 �7% 0.792 �0.032 �4%
0.889 �0.089 �11% 0.841 �0.041 �5%
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and Artificial Intelligent technique for classification of image tex-
ture. Linear regression modeling used to develop the mathematical
relation between extracted image features; contrast (CON), energy
(E), entropy (ENT) and homogeneity (H); and arithmetical mean
deviation (Ra) measured by a profilometer. This linear regression
equation from the plot between Ra and image features has been
used to predict the value of Ra by putting the value of image fea-
tures. Statistical analysis shows that the maximum relative error
of �8% using contrast and energy, �11% using entropy and �10%
using homogeneity between contact type and proposed non-
contact type assessment technique. Low values of relative error
conclude to the point of effective roughness prediction of milled
surfaces by non-contact approach.
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