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Irrigation operations in agriculture are one of the largest water consumers in the world, and it has been increasing
due to rising population and consequent increased demand for food. The development of advanced irrigation
technologies based on modern techniques is of utmost necessity to ensure efficient use of water. Smart irrigation
based on computer vision could help in achieving optimum water-utilization in agriculture using a highly
available digital technology. This paper presents a non-contact vision system based on a standard video camera to
predict the irrigation requirements for loam soils using a feed-forward back propagation neural network. The
study relies on analyzing the differences in soil color captured by a video camera at different distances, times and
illumination levels obtained from loam soil over four weeks of data acquisition. The proposed system used this
color information as input to an artificial neural network (ANN) system to make a decision as to whether to
irrigate the soil or not. The proposed system was very accurate, achieving a mean square error (MSE) of 1.616 x
107° (training), 1.004 x 107 (testing) and 1.809 x 10> (validation). The proposed system is simple, robust and

affordable making it promising technology to support precision agriculture.

1. Introduction

Water scarcity is one of the most serious problems facing the agri-
cultural sector when trying to meet productivity and demand re-
quirements. According to the Food and Agriculture Organization (FAO),
the world contains about 1400 million km?® of water, but only 45000 km®
of this are fresh water resources [1]. The agricultural sector, particularly
irrigation, consumes about 70% of global freshwater [1, 2]. Globally,
current water resources will be barely sufficient for agricultural com-
munities by 2050 [1]. Cost-effective smart irrigation technologies can
help to extend that deadline. Therefore, there is a fundamental need to
use advanced irrigation technologies based on modern digital technology
for effective utilization of water resources.

Over the past decade, many techniques have been developed for
irrigation technologies in agriculture. Automated irrigation techniques
based on soil moisture sensors have a major role in applications for
advanced irrigation technologies and precision agriculture. Such tech-
niques [3, 4, 5, 6, 7] used soil moisture sensors buried in the soil and an
embedded controller module (commonly called a microcontroller) con-
nected to an irrigation timer. Although these techniques used
cost-effective components, their components had exposed electronics
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elements that needed to be waterproof and durable, and they were sus-
ceptible to salts in the substrate or soil [7]. In addition, they required
specialized hardware for wired and wireless connections to buried sen-
sors, which sometimes leads to disconnection issues, thus losing the
signal. To avoid using buried sensors in the soil, the automated irrigation
technologies based on computer vision systems, including the use of
thermal imaging cameras, unmanned aerial vehicles (UAVs) and digital
cameras offer advantages over previous contact-based techniques. Ther-
mal imaging cameras have been extensively used [8, 9, 10, 11, 12, 13] in
agriculture applications, some mounted on UAVs [14, 15, 16, 17]. How-
ever, thermal imaging cameras still have several limitations, including
high cost when high resolution images are required [18] as well as limi-
tations in some climatic conditions, such as solar radiation, fog and clouds
which need to be considered from region to region [19, 20].

UAV based remote sensing is an increasingly commonly used tech-
nologies in intelligent monitoring and accurate agriculture over larger
areas. Despite a large number of successful studies [21, 22, 23, 24, 25]
that used UAVs in agricultural applications, challenges still exist related
to the drone itself. For example, according to a study by Huang et al. [24],
the UAVs available for agricultural applications are limited by limited
payload, weight capability and suffer from short endurance. Endurance is
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a challenge for UAVs in agriculture with short flight times of about 20
min before battery recharging or replacement is required [26]. In addi-
tion, UAVs may be exposed to risk of collision and crashing due to ob-
stacles, weather conditions such as heavy rain or high wind [26, 27] and
equipment failure. Instead, digital cameras in a stationary installation for
agricultural applications [28, 29, 30, 31] may advance over the previous
techniques in terms of the cost, availability, climatic conditions if they
are combined with deep learning and machine learning technologies.
Each technique mentioned above, however, has its pros and cons and
may perform well in some challenges while being inferior in others.
Using computer vision technologies in agricultural automation has been
discussed in detail in [32]. Therefore, it is a good time to propose a new
vision system to manage the utilization of water under a range of con-
ditions, especially for regions where water scarcity is a problem.

This paper aims to provide a new non-contact vision system based on
an RGB camera to predict the irrigation requirements of loam soil based
on deep learning using a feed-forward back propagation neural network.
Most digital cameras capture images in the red (R), green (G) and blue
(B) color space in JPEG or TIFF file formats. The R, G and B colours of
pixels can be highly informative after spatial processing and when
combined in spectral indices to be correlated with the soil surface pa-
rameters of interest. Therefore, this study relies on analyzing the differ-
ences in the soil color captured by an RGB camera at different distances,
times and illumination levels.

The paper is divided into six sections as follows: Section 2 details the
methods and procedures, including data acquisition, experimental setup,
system framework and data analysis of the proposed vision system;
Section 3 reports the experimental results obtained in different scenarios
followed by section 4 to discuss the experimental limitations and di-
rections of future work. Section 5 compares the current work relative to
previous state-of-the-art. Finally, section 6 contains the conclusion.

2. Methods & procedures
2.1. Data acquisition and experimental setup

In this study, the data were collected during four weeks in an agri-
cultural nursery located in Baghdad, Iraq. A single digital camera (Model
Nikon D5300) was mounted on a tripod at a height of 1.5 m to acquire
images of the loam soils at different distances (1-5 m from the tested
soil), different times (2 h after sunrise and again for 2 h before sunset)
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and different illumination levels resulting from sunny or cloudy weather
to obtain sufficient images for experimental purposes. The resolution of
the acquired images was 6000 x 4000 pixels and saved in JPEG format
on the laptop. Fifty image samples of the loam soil were collected under
four scenarios (total samples were 200 images). The first scenario (S1)
was 50 images when the soil was dry under full sunlight (without clouds).
The second scenario (S2) was 50 images when the soil was wet under full
sunlight. The third scenario (S3) was 50 images when the soil was dry
under shade (no direct sunlight exists to simulate cloudy weather). The
last scenario (S4) was 50 images when the soil was wet under full shade.
The data collection situation for the four scenarios is shown in Figure 1.

The brightness values of the red, green and blue data collection in the
four scenarios are shown in Figure 2. The whole of the 200 x 3 samples
(obtained from red, green and blue channels) were used subsequently for
training, testing, and validation of the neural network to determine the
soil type.

It is clear from the data in Figure 2 that the brightness values of S1 fell
within a range of 200-220, 185-205 and 150-200 for the R, G and B
components, respectively. The brightness values S2 fell within a range of
170-190, 140-165 and 130-155 for the R, G and B channels, respectively.
The brightness values of S3 were 95-120, 90-120 and 92-118 for the R, G
and B channels, respectively. The brightness values for the R, G and B
channels of S4 were 40-85, 38-80 and 36-80, respectively. Thus the pixels
of the images were within their linear range, not saturated or very dark.

2.2. System framework and data analysis

The block diagram of the proposed vision system based on an RGB
camera is illustrated in Figure 3. It has three main components, RGB color
space, the region of interest (ROI) selection, and a neural network sys-
tem. The adopted artificial neural network (ANN) consists of an input
layer, an output layer, and two hidden layers with 10 neurons for each.
Besides, each neuron has 10 weight values (w). Weights determine how
much the input will influence the output. This value is algorithmically
adjusted during training time. In the proposed ANN, 10 weight values
were configured for each neuron. Moreover, each neuron had one bias
(b). Bias is an additional parameter in the ANN that is used to modify the
output alongside the weighted sum of inputs to the neuron. This allows
the neurons to have a more flexible activation function with respect to
inputs, rather than just starting at 0.

(c)

(d)

Figure 1. Data collection of the loam soil under four scenarios (a) S1: sunny-dry, (b) S2: sunny-wet, (c) S3: shadow-dry, and (d) S4: shadow-wet.
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Figure 2. Data collection of soil surface colors (a) red, (b) green, and (c) blue.

Color is a visual sensation produced by light; thus, the human eye can
perceive any incident spectrum as a combination of red, green and blue,
which are called the three “primary colors RGB”. Loam soil changes color
during irrigation and its color also varies due to light illumination levels
resulting from sunny or cloudy weather. These variations in the soil
surface color such as sunny-dry, sunny-wet, shadow-dry and shadow-wet
directly cause changes of reflected brightness values in digital color im-
ages. To detect these color variations, RGB color space is used to provide
an informative color representation of the obtained soil images. Ac-
cording to Refs [33, 34], the R, G, and B components can be represented
by the brightness of the color images based on the following equations:

R= / E,S,d2A, €Y
G= / E;S,dA, ®))
B= /E&deﬂ, (3)

where E, is the light spectrum, S,,S,,S; are the sensitivity functions for
the R, G and B components, respectively, and 4 is the wavelength of the
incident spectrum. The next processing step is to manually localize the
soil region of interest (ROI) that is intended be irrigated using MATLAB's
built-in instruction ‘ginput’ for all components. The ROIs are outlined by
yellow squares as shown in Figure 2. The next processing step is to
average the brightness pixel values of the R, G, and B components of the
selected ROI, as follows:

_ Zx.yeROlB(xv y)

ix(1) = |ROI| )
. B )

o = Desaatle) ®

ip(t) = Zx.yeROlB(x7 y) 6)

[ROI|

WhereB(x, y) is the brightness pixel value at image location (x,y) from R,
G and B components, and |ROI| is the pixel area of the selected ROIL The
averaged values for each component have a range from 0 to 255. These

Captured soil image

Averaged signal | Averaged signal Averaged signal
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Figure 3. The block diagram illustrating the process of capturing soil images at different scenarios using a digital camera and a neural network system.
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Egs. (4), (5), and (6) appear as Eq. (1) in Refs [35, 36]. The ig(t), ig(t) and
ig(t)are considered to be three input variables for the feed-forward back
propagation neural network.

2.3. ANN structure

The feed-forward back propagation neural network is a popular ANN
model that is used for many engineering applications [37, 38, 39]. The
feed-forward back propagation network contains three types of layers;
the color information from three components was received on the neu-
rons represented by circles which are called the input layer and an output
layer having a single neuron and giving the interior calculation outcome.
Between the input and the output layers are an arbitrary number of
hidden layers. Hidden layers are credited with intermediate processing
and sometimes form recognisable detectors for parts of the classification
problem. In this paper, two hidden layers were selected to achieve an
acceptable minimum mean squared error (MSE). In this application,
using one hidden layer gave high errors relative to two hidden layers
configurations. The number of hidden layers, hidden neurons, and the
activation function type plays a significant role in the performance of
feed-forward back propagation network. The relationship complexity
between the input and the target parameters limits the optimal number of
hidden layers. The choice of the optimum number of hidden layer neu-
rons is a crucial design decision. If an inadequate number of neurons are
used, the network will be incapable of modelling complicated informa-
tion and the resulting classification performance will be poor. Excess
neurons consume additional computational power to no benefit, and take
longer to train, and can lead to solutions that effectively replay the
training data set if the data set is too small. In the current study, we used
the ANN configuration of 3:10:10:1 that is, an input layer of three neu-
rons, first hidden layer of 10 neurons, second hidden layer of 10 neurons,
and an output layer of one neuron, as shown in the adopted ANN
structure in Figure 4. To reduce the errors of our proposed method, the
structure of the ANN was selected by trial and error. Consequently, the
ANN was trained until the testing error was beyond the specified goal.
Therefore, the best structure was found with two hidden layers and 10
neurons in each hidden layer as shown in Table 1.

3. Experimental results

The experimental results were implemented in the MATLAB envi-
ronment— R2019b (MathWorks, NSW, Australia) with the Microsoft
Windows 10 operating system. Soil color classification based on the feed-
forward back propagation neural network can develop a sophisticated
mathematical relationship between the RGB colors (input) and soil case
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v
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(output) variables. ANN can be employed to automatically generate
nonlinear estimation algorithms. Therefore, the ANN is appropriate for
our application where the soil colors are nonlinear data. In ANN training,
validation, and testing, 200 color samples of RGB data were employed as
follows: 140 samples (70%) out of 200 samples for training, 30 samples
(15%) out of 200 samples for validation and 30 samples (15%) out of 200
samples for testing as suggested in previous works in references [40, 41,
42]. Several neurons and hidden layers were implemented to permit the
ANN to give MSE against the objective function and less convergence
time. Consequently, convergence time and objective function could be
compromised to find the optimal number of neurons and hidden layers in
ANN. From this process, two hidden layers and 10 neurons in each hid-
den layer were selected. The experimental results of the soil case analysis
can be presented in terms of the performance of ANN and error evalua-
tion shown in the following subsections.

3.1. Performance of ANN

The performance of ANN was presented in Figures 5 and 6, for the
objective function and regression line, respectively. Figure 5 shows that
the two hidden layers and 10 neurons achieved an MSE of 1.616 x 10~°
(training (blue line)), 1.004 x 107° (testing (red line)), and 1.809 x 107°
(validation (black line)) at 100 epochs. The figure illustrates the training
and testing error was less than the goal set (i.e., 1.809 x 10’5), ventured
beyond 63 and 74 epochs, respectively. However, the validation error
perfectly matches the goal set at 100 epochs. Figure 5 shows that the MSE
of the training and testing performance surpassed the validation perfor-
mance. The result presented in Figure 5 supported our choice of two
hidden layers and 10 neurons by obtaining lower MSE and implying an
effective end of the proposed ANN training.

Figure 6 evaluates the performance of ANN using the regression line
(correlation) between target and output. Figure 6 demonstrates the cor-
relation between the definite soil type (which indicate to the pre-defined
soil type (target)) plotted on the x-axis and estimated soil type (output
gained from ANN) recorded on the y-axis for all data (Figure 6a), training
data (Figure 6b), testing data (Figure 6¢), and validation data (Figure 6d).
The coefficient of determination (Rz) in Figure 6 is a useful indicator for
exploring the forecast performance of the suggested ANN. Therefore, it
was considered in assessing the soil detection accuracy of the estimated
soil types. The figure shows that the coefficient of determination between
the estimated and definite soil was approximately identical with each
other for all cases (all, training, testing, and validation data). In Figure 6,
the points 1, 2, 3, and 4 represent sunny-dry (S1), sunny-wet (S2),
shadow-dry (S3), and shadow-wet (S4), respectively. Figure 6 includes
200 samples for all four points (50 samples for each point). The 50

Output layer

Soil cases

(Sunny dry or Sunny
wet or shadow dry or
shadow wet)

Figure 4. The adopted ANN structure of the feed-forward back propagation neural network.
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Table 1. Adopted ANN with related parameters.

Parameters Value Note

Input layer 3 Red, Green, Blue

Hidden layer 2 Tan sigmoid function

Neurons in a hidden layer 10 Tan sigmoid function

Number of output 1 Linear function, Soil type
Learning rate 0.7 Chosen based on trial and error
Epochs 100 —

Target (goal) 1.809 x 10°° —

Collected data form each image
All collected data

50 samples —_—

200 samples e

_ T T T T T T T T T .
a 10° Validation
Testing

2
-
B
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o
o
5
% 10
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Epochs

Figure 5. MSE of training, validation, and testing for the adopted ANN.

samples for each point are significantly or completely identical between
estimated and target soil type so that it looks like one point. The R? il-
lustrates a linear fit for all, training, and testing data, and its value is 1,
while its value was 0.999 for validation data. As a result, the coefficient
of determination suggested a fit agreement between the actual and
estimated soil type.

Figure 7 presents the ANN histogram errors of training (magenta bar),
validation (green bar), and testing (blue bar). In our proposed method, an
amount of gathered data (i.e., 200 color values) are considered for ANN
training, validation, and testing to extract ANN performance and to
determine the type of soil. In Figure 7, the outlier values can be checked
for the 20 bins of histogram error to determine the quality of the selected
data. Here, few outlier values are apparent in the histogram plot. Most of
the errors are distributed in the range —0.002 to 0.00227. However, the
minimum error was 1.411 x 10~* for training, validation, and testing at
60, 70, and 74 counts, respectively, relative to the other dataset errors.
Therefore, a histogram plot provides evidence that the resultant error is
improved based on the proposed ANN structure.

3.2. Error evaluation

The error between actual and estimated soil types can be examined in
this research work. Figure 8 illustrates the error of classification of esti-
mated soil type with respect to the number of samples. The errors and
mean absolute error (MAE) were plotted for training, testing, and vali-
dation as shown in Figures 8a, 8b, and 8c, respectively. The figure dis-
closed that the error (blue line) varies 0-0.014 (training), 0-0.008
(testing), and 0-0.013 (validation). However, the MAE (red line) of
0.0012, 0.00135 and 0.00155 were performed for training, testing, and
validating, respectively. Validation is a crucial part of any modeling
method. In ANN, validation commonly comprises evaluation of the per-
formance of the prediction model on independent validation data. The
overall goal of validation is to guarantee that the trained ANN does not
have known defects or errors so that it can be reliably employed for the
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proposed purpose. To this end, the current work focus on the error for
validation data. Therefore, the validation process was applied to neural
network estimation. Figure 8c shows the error of classifying the type of
soil in the validation sample set. The figure demonstrates that the error is
plotted regarding 30 samples. The minimal error between the estimated
and actual soil type was noted. The MAE was approximately 0.00155
from the validation process. These results indicate that the technique is
accurate in classifying soil type.

Figure 9 illustrates the ANN histogram errors from validation testing.
In the validation process, 30 out of 200 data samples were considered for
evaluating the error of ANN for the classification of soil type. In Figure 9,
the outlier values can be examined for the 7 bins of histogram error to
determine the quality of the selected data. In the validation case, three
outlier values are evident in the histogram plot. The rest of the errors are
disseminated in the range of —0.005 to 0.005. However, the minimum
error was —0.003 at 15 counts relative to the other dataset errors.

The errors between the estimated and actual loam soil under four
scenarios were presented in Figure 10. The figure demonstrates that the
error of the four scenarios was plotted regarding fifty samples for each
scenario. The error was increased a little bit by increasing the number of
samples. The error was less than 0.0145 and 0.013 for sunny-dry and
shadow-wet, respectively. However, the error for sunny-wet and shadow-
dry was noted to be better than the error of sunny-dry and shadow-wet.
Where the error was less than 0.004 and 0.002 for sunny-wet and
shadow-dry. Therefore, the ANN can achieve more reliable classification
of soil type when the soil was sunny-wet and shadow-dry.

3.3. CDF evaluation

These results presented in Section 3.1 and 3.2 have provided some
insight but further analysis of performance is required. Using the cu-
mulative distribution function (CDF), we can obtain a holistic measure of
the performance of the ANN validation process and for evaluating the
error of the four scenarios. Therefore, the CDF of the validation process
and four scenarios produced from the ANN is shown in Figures 11 and 12,
respectively. To investigate the overall cumulative error of classification
of soil type produced by ANN, the CDF was investigated in Figure 11,
where the figure clarifies cumulative errors for the validation process. In
Figure 11, the CDF plot reveals that 50% of the error of determination of
soil type was less than 8.829 x 10~* and 96% of error was less than 3.885
x 1073, The error of determination of soil type increases as the CDF
percentage increase. However, the error was 0.0129 when the CDF
reached 100%.

Figure 12 shows the CDF for four scenarios of the loam soil at fifty
image samples. It is apparent that the error of sunny-dry (6.454 x 10™%)
and (7.278 x 10~%) was better than the error of sunny-wet (1.141 x
1073) and (1.015 x 10~3) when the CDF tends to be less than or equal to
50%. On the contrary, there is no substantial difference between errors
for four scenarios when the percentage of CDF is less than or equal to
90%. 90% of error values were less than 1.808 x 1073, 2.774 x 10’3,
1.428 x 1073, and 2.78 x 10~2 for sunny-dry, sunny-wet, shadow-dry,
and shadow-wet, respectively.

Figure 12 shows that the sunny-wet and shadow-dry rapidly
increased to 100% of CDF which means they create less error while
sunny-dry and shadow-wet are gradually increased to the same per-
centage, which indicates high error than the former two scenarios. The
validation process and evaluation of four scenarios errors produced from
ANN showed that using ANN is feasible to classify the soil type at a
specified dependability level (for instance 90% and 50%). Thus, the
overall performance of the proposed method had improved.

4. Discussion
This study shows reliable classification on our test dataset. The ROI

was small and somewhat variable ruling out any simple pattern matching
local minima solution that might have been found by the neural network
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Figure 6. The coefficient of determination (R?) of the ANN for (a) all data, (b) training data, (c) testing data, and (d) validation data.
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Figure 7. ANN Histogram errors of training, validation, and testing.

and providing confidence that generalization was achieved for that sce-
nario. An industrial application might have to consider a wider range of
lighting conditions, however, the viability of the approach to this difficult
problem has been demonstrated.

The error rate between the actual and estimated soil type was visible
when the ANN performance was analysed. Based on the ANN technique,
the soil type can be accurately determined, thus the soil irrigation process
can be improved leading to water savings. Therefore, the proposed

system-based ANN can produce an accurate soil irrigation system which
poses a challenge in previous studies. Our choice of two hidden layers
and ten neurons by seeking lower MSE and enforcing an effective end of
the proposed ANN training was noticeable. The number of hidden layers
and neurons could be increased to enhance the performance of the ANN
and reduce estimated error. However, increasing these parameters leads
to more computational time with more system complexity and possibly
the need for a larger training dataset. In ANN, validation commonly
comprises evaluation of the performance of the prediction model on in-
dependent validation data. The purpose of validation is to verify that the
proposed system does not have defects. To this end, the current work
focuses on the errors against validation data. Therefore, the validation
process was applied to neural network estimation. As a result, the pro-
posed ANN technique achieved an accurate classification of soil type. It
was found that the results that the classification errors for both the sunny-
wet and shadow-dry scenarios were lower than the errors of the sunny-
dry and shadow-wet scenarios. Therefore, the ANN achieved better
performance for the determination of soil type when the soil was sunny-
wet and shadow-dry.

The proposed vision system is accurate and achieved low MAE from
the acquired data and presents a promising tool for improved irrigation
technologies in agriculture in terms of cost, availability and accuracy
under changing climatic conditions. However, we have trained the
network only for loam soils, so the system can indicate the state of hy-
dration of a particular soil type and would probably need to be retrained
for other soils. The ROI was also manually selected, which is a limitation
for likely practical applications, where the ROI should probably be
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automatic, and probably should focus on areas of bare ground (a classi-
fication problem in its own right).

Seasonal variations in the direction of the sun might become an issue
in a larger and longer term installation and there might need to be means
of emulating this, perhaps rotating the samples to change the geometry.
Although this experimental process was not warranted for this study,
issues such as this might lead to a more complex neural network in a
fielded system.

Figure 11. CDF for validation errors produced from ANN.

An intriguing possibility might be to have the system commence
operation with a low cost, possibly wireless, hygrometer. The system
could then automatically learn about the appearance of the soil once
installed using the hygrometer as training feedback. This might allow the
system to adapt to any type of soil over time, prior to the hygrometer

expiring due to environmental conditions or battery life.
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Figure 12. CDF vs. error produced from the ANN for four scenarios.
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Table 2. Comparison of the current study with state-of-the-art.

Reference No. of inputs to ANN ANN structure MSE/RMSE (Training) MSE/RMSE (Testing) R?
[431/2018 (ANN) 3 (R, G, B) 3:1:60 1x107* 1x 1074 0.99
[44]/2017 (ANN) 8 (R, G, B, NIR, FC, NDVI, EVI, VHI) 8:14:10 0.05 — 0.94
[45]1/2019 (ANN) 3 (R, G, B) 3:1:60 6.55 x 10~* 5.25 x 10~** 0.99
[46]1/2019 (CNN) 3 (R, G, B) Several layers — 3.27* 0.96
[471/2020 (CNN) 6 (soil property) Several layers — 4.8* 0.86
[48]1/2019 (CNN) Soil spectral data Several layers _ 7.55% 0.7
[49]/2017 (ANN) 4 4:8:6:14 0.181* 0.163* 0.93
[501/2020 (ANN) 5 (Color, Gravel, Sand, Silt Clay) 5:1:10 0.041% 0.045% 0.99
ANFIS (gebellmf) 3 (R, G, B) No. of mfs (3 3 3) 3.388 x 1072 3.378 x 1072 0.94
ANFIS (gebellmf) 3 (R, G, B) No. of mfs (5 5 5) 1.831 x 1073 1.825 x 1072 0.95
ANFIS (gebellmf) 3 (R, G, B) No. of mfs (7 7 7) 1.07 x 107* 1.06 x 10* 0.98
RF 3 (R, G, B) No. of tree = 100 1x10°2 1.0811x0~2 0.91
This work (ANN) 3 (R, G, B) 3:10:10:1 1.616 x 107° 1.004 x 10~° 1

NIR: Near-Infrared; NDVI: Normalized Difference Vegetative Index; EVI: Enhanced Vegetation Index; VHI: Vegetation Health Index; FC: Field Capacity *: RMSE; #: MSE;

gebellmf: gebell membership functions.

Future work will attempt to close the loop between sensing and irri-
gation of the ground by using a pump, an appropriate weatherproof
camera and considering a larger range of soils. Once the network has
been trained it should be possible to achieve controlled irrigation by
maintaining the appearance of the soil at the desired state, we are
planning to design a cost-effective, a non-contact vision system based on
the proposed algorithm using a microcontroller, USB camera and water
pump that can work with different types of soils, not only with loam soil,
such as sandy soil, clay soil, silt soil and peat soil.

5. Results comparison

To validate the proposed system introduced in this study, a compar-
ison was accompanied with results presented in [43, 44, 45, 46, 47, 48,
49, 50], where ANN and Convolutional Neural Network (CNN) was
adopted to identify the soil types or soil properties as shown in Table 2.
The MSE/root MSE (RMSE), coefficient of determination, ANN inputs
related to soil property such as Red, Blue, and Green colors, and ANN
structure were considered for comparative purpose, where the values in
these parameters were obtained from the computations in previous
works and introduced in their results.

The testing and training of the dataset in the present research employ
a method that is similar to the earlier works but is not a hundred percent
identical owing to it is hard to obtain a matching dataset in previous
works. However, some factors of previous articles differ from our study,
such as the number of ANN inputs and the ANN structure. Table 1 il-
lustrates that most of these factors existing in previous research had
higher values than our proposed system. Nevertheless, our present work
outperformed the aforementioned articles in terms of MSE and coeffi-
cient of determination. Based on the evaluation presented in Table 2, it is
clear that the adopted ANN technique with an MSE of the predictable soil
type of 1.616 x 10°° (training), 1.004 x 107° (testing), and coefficient of
determination of 1 has surpassed other methods or techniques presented
in recent works.

The proposed ANN method was compared with other implemented
methods. The same dataset adopted in ANN was trained and tested using
an adaptive network-based fuzzy inference system (ANFIS) and Random
Forest (RF) techniques. The ANFIS technique was trained and tested for
gebell membership function (gebellmf) with 3, 5, and 7 mfs as presented in
Table 2. The gebellmf was selected because it gives a minimum error and
better performance than other mfs types as recommended in [51]. The
MSE and coefficient of determination were obtained and recorded for
training and testing data for all mfs, where it was found that the ANN
outperformed the ANFIS technique for training and testing data. The RF
technique was also compared with our proposed ANN method. It was

noted that the ANN overcome the RF techniques in terms of training and
testing data and coefficient of determination as shown in Table 1.

6. Conclusion

With the rapid development of advanced irrigation technologies
based on modern techniques, vision systems based on digital image
processing have emerged as promising technologies for achieving op-
timum water-utilization in agriculture. In this study, we have proposed
a non-contact vision system based on an RGB camera to predict the
irrigation requirements for loam soil using a feed-forward back prop-
agation neural network. The raw data for loam soil were provided by
an RGB camera at different distances (1-5 m), times (2 h after sunrise
and again for 2 h before sunset) and illumination levels (sunny and
cloudy weather). The performance of the proposed system was very
accurate and achieved a MSE of 1.616 x 107°° (training), 1.004 x
1073 (testing) and 1.809 x 107> (validation). In addition, the error
values for sunny-dry, sunny-wet, shadow-dry, and shadow-wet sce-
narios were less than 1.808 x 10’3, 2.774 x 10’3, 1.428 x 10’3, and
2.78 x 1073, respectively. Therefore, the proposed vision system holds
promise as a tool for improved irrigation technologies in agriculture in
terms of cost, availability and accuracy under changing climatic
conditions.
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