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Some researchers using traditional taphonomic criteria (groove shape and presence/absence of microstri-
ations) have cast some doubts about the potential equifinality presented by crocodile tooth marks and
stone tool butchery cut marks. Other researchers have argued that multivariate methods can efficiently
separate both types of marks. Differentiating both taphonomic agents is crucial for determining the ear-
liest evidence of carcass processing by hominins. Here, we use an updated machine learning approach
(discarding artificially bootstrapping the original imbalanced samples) to show that microscopic features
shaped as categorical variables, corresponding to intrinsic properties of mark structure, can accurately
discriminate both types of bone modifications. We also implement new deep-learning methods that
objectively achieve the highest accuracy in differentiating cut marks from crocodile tooth scores (99%
of testing sets). The present study shows that there are precise ways of differentiating both taphonomic
agents, and this invites taphonomists to apply them to controversial paleontological and archaeological
specimens.

� 2022 Elsevier Masson SAS. All rights reserved.
1. Introduction

Identifying cut marks in the fossil record is essential for the
interpretation of early hominin lifestyles. Recently, it has been
argued that microstriated tooth marks imparted by crocodile teeth
could mimic cut marks to a point in which secure differentiation
was compromised (Sahle et al., 2017; McPherron et al., 2021). This
was based on metric data from three-dimensional analysis of both
types of marks. Nevertheless, an alternative analysis based on a
much larger sample of bone surface modifications (BSM), including
crocodile tooth marks, cut marks made with simple and retouched
flakes and trampling marks, using mostly categorical variables fac-
torized according to microscopic structural mark features, yielded
an opposite result through the use of machine learning (ML)
algorithms, with 96%–100% of BSM correctly identified
(Domínguez-Rodrigo and Baquedano, 2018). Metric and categori-
cal variables should not yield such divergent results, unless BSM
can only be differentiated by the expression of microscopic fea-
tures and not by their dimensions. A subsequent reanalysis of the
metric data showed that experimentally-derived crocodile tooth
marks and butchery cut marks could be separated in Euclidean
space when applying several multivariate methods (hierarchical
clustering on factor map, K-means partitioning, and ML random
forest; Domínguez-Rodrigo and Baquedano, 2018).

It could be argued that the high accuracy in the classification of
these types of BSM by Domínguez-Rodrigo and Baquedano (2018)
may result from having artificially expanded the samples through
bootstrapping prior to analysis (McPherron et al., 2022). Bootstrap-
ping can generate label-specific large samples that artificially sep-
arate classes. This would be a potential bias when dealing with
small samples or samples unrepresentative of the population from
which they derive (Chernick and LaBudde, 2014). In order to avoid
this potential bias, it would be necessary to reassess the efficiency
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of ML algorithms without the use of such a statistical procedure.
For this reason, here we intend to reanalyze the same dataset used
by Domínguez-Rodrigo and Baquedano (2018) in order to evaluate
the impact of bootstrapping and the classification of BSM without
it.

Another second potential bias that we will address is the sub-
jective assessment by the analyst of variable factors when using
categorical variables. It has been shown how divergent categoriza-
tion of variables could be when the same BSM were analyzed by
different researchers (Domínguez-Rodrigo et al., 2017, 2019). This
underscores the important bias introduced by the researcher and
portrays the traditional approach to BSM identification as a subjec-
tive endeavor.

Fortunately, Deep Learning (DL) methods, through the use of
deep convolutional neural networks (DCNN), has enabled auto-
matic classification of BSM through an objective process. DCNNs
operate through different DL architectures to generate a mathe-
matical understanding of the micro-features found on taphonomic
images of BSM, which are used to discriminate among labels. This
supervised computer vision (CV) method is even more effective
than human experts. A pioneer application of this method to a lim-
ited set of BSM showed that the machine could classify >50% better
than human experts (Byeon et al., 2019). Subsequent applications
to various taphonomic problems showed the enormous potential
of DL methods for implementing objective approaches to BSM
identification in modern experiments and in the archaeological
record. Cut marks generated with or without flesh on the bone
showed distinctive micro-features that enabled the discrimination
of the resulting cut marks in both experimental scenarios with
>90% of accuracy (Cifuentes-Alcobendas and Domínguez-Rodrigo,
2019). These involved a higher degree of micro-flaking inside the
groove, and disruptions of the trajectory of microstriations. The
dynamic morphing of cut marks through abrasive processes could
also be identified with high accuracy by CV methods (Pizarro-
Monzo and Domínguez-Rodrigo, 2020). Even the extreme similar-
ity (to the human eye) of tooth marks generated by diverse carni-
vores could be discriminated to specific agent by these methods
(Abellán et al., 2021); to the point of even differentiating tooth
marks from similar carnivore types, like lions or jaguars
(Jiménez-García et al., 2020a, 2020b). The application of DL to
the most commonly found BSM in the archaeological record (cut
marks, trampling marks and carnivore tooth marks) has led to
the successful identification of these BSM in more than 92% of
cases (Domínguez-Rodrigo et al., 2020). Given that these CV meth-
ods have overcome traditional BSM identification approaches,
based on the widely variable experience and subjectivity of human
experts, their application to this kind of taphonomic problems is
more than warranted.

Here, we will apply several DL architectures also to differentiate
crocodile tooth marks from human-imparted butchery marks in
the form of cut marks. We will show that the accuracy in the clas-
sification of these types of marks by DL exceeds those reported in
previous studies, granting more confidence to the visual identifica-
tion of these two types of BSM in the archaeological record through
the analysis of high-quality images. This provides the basis for a
confident identification of agency in prehistoric BSM.
2. Material and methods

2.1. Machine learning analysis

Table 1 shows the set of variables used for the present study.
The BSM sample consists of 105 cut marks made with retouched
flakes, 246 cut marks made with simple flakes, 224 trampling
marks and 58 tooth marks (scores) made by crocodiles. These
13
BSM samples were already published in several studies, and the
protocols applied for the performance of the experiments, the
cleaning of bones and the identification of marks can be found in
the original publications (Domínguez-Rodrigo et al., 2009;
Baquedano et al., 2012; Domínguez-Rodrigo and Baquedano,
2018). All the experiments followed the same protocol in the appli-
cation of these and other variables. A summary of all these exper-
iments can be found in Appendix A. A total of 70% of the original
BSM sample was used for generating the training models on the
raw data. Testing was carried out on the remaining 30% of the sam-
ple. This is a standard procedure in predictive models in order to
deal with the bias/variance tradeoff. To minimize the impact of
heterocedasticity, data were centered and scaled prior to analysis.

Several ML algorithms were compared for efficiency and accu-
racy. Model evaluation took place through resampling techniques
that estimate performance by selecting subsamples of the original
data and fitting them in multiple submodels. The results of these
submodels were aggregated and averaged. Several techniques
can be used for this subsampling and submodelling: generalized
cross-validation, k-fold cross-validation, leave-one-out cross vali-
dation or bootstrapping. Here, we selected a 5-fold cross-
validation approach.

Once all models are completed, model selection takes place.
This is usually done combining indicators of error or accuracy. Cost
values of bias-variance were evaluated vis-à-vis accuracy with the
caret function ‘‘tuneLength” up to 10 (i.e., 22. . .27). This makes the
system tunes the algorithm automatically, enabling specifying the
number of tuning values for each parameter. The parameter
selected for measuring model performance was the ‘kappa’ indica-
tor. For class prediction, these can come in two forms: a discrete
category (showing the factor classification) and a probability of
membership to any specific category. This latter can be continuous
(as in random forests or discriminant analyses, for example) or bin-
ary when using sigmoid classifiers (as in logistic regression or clas-
sical support vector machines). The Kappa statistic (which
evaluates the amount of accuracy generated by chance) range from
�1 to 1 (as in correlation). Coheńs kappa value is a more robust
measure of prediction and classification than accuracy, because it
does not quantify the level of agreement between different data-
sets, but it represents the degree of similarity of datasets corrected
by chance. Additionally, we paid special attention to balanced
accuracy, sensitivity and specificity, given the unbalanced nature
of the original samples.

The original analysis was previously carried out using the com-
plete set of variables, which included intrinsic as well as extrinsic
variables (Domínguez-Rodrigo and Baquedano, 2018). Intrinsic
variables are those that define the structural features of the mark,
such as shape and microscopic characteristics on the edge and
inside the groove. Extrinsic variables are those that refer to the
configurational properties of BSM and their surrounding areas on
the bone surface (Domínguez-Rodrigo et al., 2010). Making assess-
ments about the efficiency of ML methods using the complete set
of variables would be prone to error if considering archaeological
BSM. The reason is that the experimental BSM samples were
derived in absence of interference of other taphonomic signals;
that is, all BSM assemblages occur on clean bone surfaces not
impacted by posterior biostratinomic or diagenetic processes. Most
archaeological BSM are not preserved as pristinely as these exper-
imental marks. Several authors have emphasized the need to
model BSM under more dynamic processes which consider the
impact of additional modifications on bone surfaces, such as carni-
vore modification, or natural processes such as abrasion and diage-
nesis (Gaudzinski-Windheuser et al., 2010; Pineda et al., 2014,
2019; Pizarro-Monzo and Domínguez-Rodrigo, 2020). For this rea-
son, the most reliable ML results in the interpretation of archaeo-
logical BSM will be obtained when using intrinsic (i.e., structural)



Table 1
Definition of each of the variables used for the ML analysis in the present study.

1. Trajectory of the groove. Marks can show a straight trajectory (1a), a curved one (1b), a sinuous one (1c) and a variable one (1d). The latter involves changes in the
trajectory direction more than twice. This categorization applies to most of the outline of the mark, excluding the presence of barbs at the end of the mark. Butchery
marks are commonly straight grooves. In some cases, the abrasive marks created by sediment grains show a somewhat sinuous trajectory in part of the groove due
to the rolling of the grain and the use of different edges of the grain for abrading the bone surface. Some apparently straight trampling marks, when observed under
magnification, show trajectories that are not perfectly straight but are rather somewhat wavy. The movement of bones during the tight grasping by the jaw makes
some crocodile tooth scores change direction.

2. Presence (2a) or absence (2b) of a barb. In some butchery marks, a barb can be observed at the end of the straight groove, defined as a shallower end of the groove
slightly curved to the side in the form of an open hook. Testing how frequent this feature is in cut marks and in trampling marks can be potentially important, since
it has also been observed in the latter.

3. Orientation of the mark, relative to the axis of the bone. The orientation can be parallel (3a), perpendicular (3b) or oblique (3c) to the axis of the bone. Trampling
marks, in theory, should show no preference in orientation, whereas butchery marks should be more frequently oriented obliquely or perpendicularly to the axis of
the bone.

4. Shape of the groove. The shapes used are: narrow V-shape (4a), wide V-shape (\_/) (4b) and U-shaped (4c). The wide V-shaped section is understood as either V- or
\_/-shaped but either almost as deep as it is wide, or deeper than it is wide; the latter is understood as an open groove with a broader horizontal base and, therefore,
substantially wider (by an order of magnitude >�2) than deeper.

5. Symmetry of the groove: the section and both sides of the groove can be symmetrical (5a) or asymmetrical (5b). The tilting of a stone tool during use can create
asymmetrical grooves, and so can certain sediment particles during bone abrasion.

6. Shoulder effect and associated shallower striae. Here we define the term as the striae occurring in association with the main groove in a distance not farther than
0.2 mm from the edge of the groove. For this type of analysis, a binocular lens with measuring capability is preferred. These striae frequently are shallow striations
occurring parallel to or intersecting with the sides of the groove. They can be present (6a) or absent (6b) and have been documented in trampling marks, cut marks
and crocodile bite marks

7. Presence of flaking on the shoulders of the groove. The presence (over more [7a] or less [7b] than one-third of the trajectory of one or two shoulders of the groove)
or absence (7c) of flaking on the shoulders of the groove can be related to the morphology of the abrasive agent: the bigger and less straight the edge of this agent
the bigger the chance that such flaking would appear. Flaking here is defined as not random occurrence of a flaking dent such as those produced in isolated Hertzian
cones, but as a continuous series of exfoliation of the shoulder edge, which can occur on part of the trajectory of the shoulder or on most of it.

8. Extent of the flaking of the shoulder. The extent of the flaking could also be indicative of the abrasive agent. The category of the flaking can be defined as long (8a)
when it occurs over a minimum of one-third of the trajectory of the groove, and short (8b) when it is shorter than one-third. Approximate estimates can be made
with hand lenses.

9. Internal microstriations. Defined as present (9a) or absent (9b) and observable under �40.

10. Microstriation trajectory. Defined as continuous (10a) when it extends along all the trajectory of the groove or discontinuous (10b) when the microstriations are
interrupted at more than one instance inside the groove. A tool is more likely to create continuous microstriations given that it creates uniform friction in its con-
tact with bone. A trampling mark is more likely to created discontinuous microstriations if friction forces the sediment particle to move inside the groove. This is
also documented in crocodile bite marks given the movements of teeth during the grasping of the bone.

11. Location of microstriations. On the walls of the groove (11a), on the bottom (11b) or on both (11c).
12. Length of the main groove (in mm).
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variables, which reproduce BSM properties under moderate to
good preservation, and which can be preserved even after substan-
tial impact of other biostratinomic processes (Pizarro-Monzo and
Domínguez-Rodrigo, 2020). For this reason, here we will use only
the intrinsic variables of the original dataset (Table 1). We do so
knowing that this will lower the accuracy threshold of the tests
with respect to previous analyses of the complete set of variables,
since extrinsic variables contribute to widening variance, and
increasing discrimination (Domínguez-Rodrigo and Baquedano,
2018).

We used the ML algorithms with their default parameter values.
After testing the performance of all algorithms over the complete
set of variables, we selected the best three models for the second
analytical phase. This phase involved reducing the number of vari-
ables by selecting the most influential ones; however, each algo-
rithm had its own particular selection of variables, since the most
influential ones differed among models. The function ‘‘varImp”
from the R ‘caret’ library was selected for this purpose. For classifi-
cation, the Gini index is used, although it has been recognized that it
can lead to false interpretations (Strobl et al., 2007). Conditional
forests consider the number of splits per variable through subsam-
pling, instead of the number of features per split (as in random for-
ests). It has been argued that this approach provides better
estimates of variable importance, since it is not as biased by cardi-
nality (i.e., the number of factors per variable) as is the Gini index
derived from bootstrapping instead of subsampling (Strobl et al.,
2007). The higher the cardinality of categorical variables, the artifi-
cially higher the Gini index can be. For these reasons, although the
cardinality in the dataset is low in general, some exceptions war-
rant the comparison of variable importance (selection) derived
from traditionally-derived Gini indices to those subsampled from
14
conditional forests/trees. No hyper-parameter tuning was applied
in order to minimize distance between ML algorithms and more
‘‘traditional” tests; however, for some algorithms, tuning was car-
ried out (although not used in the present study) to stress the
potential improvement in accuracy when doing so.

The third and final phase consisted of using the same three
best-performing algorithms and the linear discriminant analysis
(LDA) over a variable set composed of the least influential variables
after the removal of the four most relevant variables from Phase 2.
The goal of doing this is to show that all variables contain impor-
tant discriminatory information and that highly-accurate BSM
classifications can be made when using them to the exclusion of
the most influential ones. This also realistically models dynamic
modification of some of the influential variables through biostrati-
nomy or diagenesis. For example, groove shape and size can be
modified through diagenetic impact of soil pH (Pineda et al., 2014).

The present work builds upon Domínguez-Rodrigo and
Baquedano (2018) initial analysis of the same dataset, and expands
the number ofML algorithms used. In order to address any potential
skepticism about the preferred use of ML methods over more tradi-
tional multivariate methods, we have also added some of the most
commonly used traditional tests for comparison. In order to boost
their potential, we have implemented these tests with penalization
methods. The ML algorithms used include: support vector machi-
nes (SVM), K-nearest neighbor (KNN), weighted K-nearest neighbor
(wKNN), random forests (RF), decision trees (C5.0), naïve Bayes
(NB), partial least square analysis (PLSA), mixture discriminant
analysis (MDA), gradient boosting machines (GBM), neural net-
works (NN), conditional trees (CT), and conditional inference forest
(CIT). The traditional multivariate methods used were: linear dis-
criminant analysis (LDA), shrinkage discriminant analysis (SDA),
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penalized multinomial regression (PMR), and general linear model
with penalized maximum likelihood (pGLM).

2.2. Deep learning analysis

The sample used for the DL analysis consists of 488 cut marks
and 45 crocodile tooth marks (the same ones used for the ML anal-
ysis above) already published by Domínguez-Rodrigo et al. (2020)
and Abellán et al. (2020), respectively. For the cut mark experi-
ment, a set of cow long bones (humerus, femur, radius and tibia)
was used along with 22 non-retouched flint flakes. Stone tools
were used on fully-fleshed elements. Each stone tool was used only
20 times to keep control of edge sharpness, to make sure that edge
blunting did not play any significant role in possible cut-mark vari-
ability. For additional details of the experiment, see Domínguez-
Rodrigo et al. (2020) and Appendix A.

Crocodile tooth marks were obtained from an experiment made
in the Faunia zoo in Madrid (Baquedano et al., 2012). This sample is
the same as used for the ML analysis (see Appendix A). All the cro-
codiles used in the experiment were female. They were fed once a
week over four complete months with 19 partial carcasses. Car-
casses were collected after 15 h of exposure to crocodiles, even
though most part of the feeding took place during the first hour.
The feeding process was monitored for the first 1.5 h, to be able
to relate carcass part consumption to individual crocodiles. The
carcass parts were composed of fully fleshed articulated limbs of
suids (pig and boar) and bovids (sheep and cow). A total of 198
bone elements were retrieved, counting every end and shaft of
unfused bones from juvenile individuals as one. For more details
of the sample and experiment, see Baquedano et al. (2012) and
Appendix A.

Each BSMwas captured with a binocular microscope (Optika) at
�30 and images were taken in this magnification using the same
light intensity and angle. Then, images were cropped to a point
where only the mark and their shoulders, including a minimal sur-
rounding area, were visible, to avoid any bias potentially produced
by the cortical surface of the bone. All images were transformed
into black and white during image processing in the Keras plat-
form, by using bidimensional matrices for standardization and cen-
tering, and they were reshaped to the same dimensions (80 � 400
pixels). Images were pre-processed using the specific pre-
processing functions for each model used.

The DL architectures selected are among the most successful in
the Imagenet Large Scale Visual Recognition Challenge (LSVRC), the
largest competition of image classification. Given that these mod-
els have been trained on millions of images, their feature identifi-
Table 2
Accuracy (including confidence interval), Kappa, sensitivity, specificity and balanced accur

Algorithm Accuracy 95%c.i. Kappa Sens

SVM radial 94.6 0.90–0.97 0.92 (0.8
SVM linear 94.6 0.90–0.97 0.92 (1,0
KNN 89.3 0.84–0.93 0.82 (0.7
RF 95.8 0.91–0.98 0.94 (0.8
C5.0 96.8 0.93–0.98 0.95 (0.8
NB 90.9 0.85–0.94 0.86 (0.5
PLS 87.7 82–92 0.81 (0.6
MDA 92.5 88–96 0.89 (0.8
LDA 86.1 80–90 0.79 (0.6
wKNN 95.7 91–98 0.93 (0.8
PMR 90.9 85–94 0.86 (0.7
SDA 86.1 80–90 0.79 (0.6
GBM 96.8 93–98 0.94 (0.8
pGLM 87.7 0.84–0.93 0.82 (0.7
NN 95.2 0.92–0.98 0.93 (1,0
cTree 94.6 0.90–0.97 0.92 (0.7

* (croc,rf,sf,tramp). Key: croc, crocodile tooth marks; rf, retouched flakes; sf, simple fl
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cation is proficient. For this reason, it has been shown that these
models, when imported through transfer learning, can outperform
native architectures trained for taphonomic problems from zero
(Domínguez-Rodrigo et al., 2020). For this reason, we will use four
transfer learning models and only one trained from zero. These
pre-trained models were used as standalone feature extractors
and classifiers. The layers of the pre-trained models with their
weights were integrated within the new model containing a top
frozen layer and an output dense layer containing 128 neurons.
The DL architectures selected are: VGG16, ResNet50, Densenet
201, EfficientNet B7 (transfer learning) and Jason (a modular ver-
sion of the VGG architectures). A summary of the description of
these architectures can be found in several previous publications
where they were used for BSM analysis (Tan and Le, 2019;
Domínguez-Rodrigo et al., 2020; Jiménez-García et al., 2020b;
Abellán et al., 2021). The DCNN models used here were elaborated
using the Keras platform with a Tensorflow backend. Computation
was carried out on a GPU HP Z6 Workstation. The DCNN models
were processed with the sequential and functional Keras API. All
code was made using Python 3.7.

The only model trained from zero was Jason. The architecture
represents a variant of the VGG16 block and repeated layer struc-
ture. The model consists of a series of three blocks, each of them
containing 3 � 3 kernel double layers of 32, 64, and 128 neurons,
respectively. In between each block, there are max-pooling
(2 � 2 kernel) layers. Batch normalization has been applied to all
the blocks. Additionally, Dropout has been implemented with
increasing proportion (0.2, 0.3, and 0.4). At the end of the network,
flattening was performed and a dense layer (128 filters) has been
added. This was followed by a 0.5 Dropout layer and topped by a
dense layer with ‘softmax’ activation. Each CNN has been tuned
with a ‘He uniform’ initializer and padding.

For all models used, the activation function for each layer was a
rectified linear unit (ReLU). The last fully connected layer of the
network used a ‘sigmoid’ activation for the binary modeling. The
loss function selected was ‘binary cross-entropy’. The optimizer
used was Stochastic Gradient Descend (SGD) with a learning rate
of 0.001 and a momentum of 0.9. Accuracy was the metric selected
for the training process. F1 score values were also obtained to
assess balanced accuracy, given the highly imbalanced nature of
the original dataset.

Data Augmentation (DA) is commonly used to artificially
increase the sample size of the training dataset and enhance the
training process by exposing the algorithm to a higher diversity
of positions and features of each independent item in the dataset
(Chollet, 2017). It does so by creating hundreds of modified
acy of the models according to BSM type, including all the intrinsic variable dataset.

itivity* Specificity* Balanced accuracy*

2,0.87,1,0.95) (1,0.98,1,0.94) (0.91,0.92,1,0.94)
.87,0.97,0.94) (0.98,0.99,1,0.95) (0.99,0.93,0.98,0.94)
,0.87,1,0.83) (80.99,0.96,0.92,0.96) (0.85,0.91,0.96,0.9)
2,0.93,1,0.95) (1,0.98,1,0.95) (0.91,0.95,1,0.95)
2,0.93,1,0.98) (1,0.99,1,0.95) (0.91,0.96,1,0.97)
8,0.83,0.97,0.95) (1,0.98,0.95,0.91) (0.79,0.91,0.96,0.93)
4,0.87,0.97,0.83) (0.98,0.99,0.89,0.94) (0.81,0.93,0.93,0.88)
2,0.83,1,0.92) (1,0.97,0.96,0.95) (0.91,0.9,0.98,0.94)
4,0.87,0.97,0.79) (0.93,0.99,0.93,0.94) (0.79,0.93,0.95,0.86)
2,1,1,0.92) (1,0.96,0.97,1) (0.91,0.98,0.98,0.96)
6,0.87,0.97,0.89) (0.97,0.98,0.95,0.95) (0.87,0.92,0.96,0.92)
4,0.87,0.97,0.79) (0.93,0.99,0.93,0.94) (0.79,0.93,0.95,0.86)
2,0.93,1,0.98) (1,0.99,1,0.95) (0.91,0.96,1,0.97)
6,0.87,0.97,0.86) (0.96,0.98,0.95,0.95) (0.86,0.92,0.96,0.9)
.93,1,0.92) (0.98,0.98,1,0.98) (0.99,0.95,1,0.95)
6,0.96,0.98,0.94) (1,0.97,0.95,0.99) (0.88,0.97,0.97,0.96)

akes; tramp, trampling.
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versions of the original images. DA does this by changing the orien-
tation of the images (using random angles in a specified rotation
range), and by creating new images derived from those in the
training dataset. This process is achieved by modifying the ranges
in which images are shifted (vertically and horizontally), by zoom-
ing in and out and by randomly applying shearing transformations
that distort the original images. In the present study, the original
images were augmented through random transformations, involv-
ing shifts in width and height (20%), in shear and zoom range
(20%), and also including horizontal flipping.

Following standard protocols for ML, the architectures of the
models used were trained on 70% of the original image set. Models
were subsequently tested against the 30% remaining sample,
which was not used during the training. Training was performed
through mini-batch kernels (size = 64). Testing was made using
mini-batch kernels of size = 32. Weight update was made using a
backpropagation process for 100 epochs.
Fig. 1. Variable importance according to the Gini index as generated in different mode
penalized multinomial regression (PMR). Note the divergence of the latter with the other
regarding number of impacting variables and others were more aggregative.
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3. Results

3.1. Machine learning analysis

All ML algorithms successfully classified the four BSM types
with an accuracy >90% (Table 2). In contrast, the more ‘‘traditional”
multivariate tests displayed substantially lower accurate classifica-
tion rates on the testing sets. The most successful ML algorithms
were the C5.0, NN, RF and GBM; all of them with accuracy in the
classification >95%. There is a difference of more than 10 points
between discriminant analyses and the most accurate ML algo-
rithms; all this without having used any hyper-parameter tuning
in the later (Table 2).

When looking at the most influential variables (Fig. 1), it must
be stressed that there was a wide variability according to the
model. The most influential variables were not necessarily so for
all models. Likewise, there was wide variability in how models
ls: C5.0 decision tree, gradient boosting machine (GBM), random forest (RF), and
s and the contrast in the three tree-based models, where some were highly selective
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interpreted variables; for some of them, the most influential vari-
ables were substantially so over the others, whereas for other mod-
els, most variables had similar importance (Fig. 1). This shows that
the use of traditional methods over ML methods, targeting the
understanding of the underlying factors of the classification (e.g.,
McPherron et al., 2022) is at best naïve, given that variable impor-
tance will change according to the test used. Therefore, a selection
of the four most commonly influential variables was made based
on the three most successful models. These involved: groove
shape, location of microstriations, length and groove trajectory.
These are not the most prominent variables in other models,
namely in more traditional tests (Fig. 1). The only variable that
was not included in the contrasting conditional inference forest
was ‘length’, probably because of its high range of values (Fig. 2).

The performance of the selected ML algorithms on the reduced
variable set was similarly successful, although to a lower degree
(Table 3). The C5.0 model yielded an accuracy of 91.4% – when
the same tuned model used with the complete intrinsic variable
set yielded an accuracy of 98.4%. The GBM and NNmodels correctly
classified 94.6% and 93.1% of the testing set, respectively. Both ML
algorithms (when tuning their hyper-parameters) used on the
complete set of intrinsic variables also yielded an accuracy >98%.
In contrast, as an example, a classical LDA yielded a lower accuracy
(84.5%) on the reduced dataset; however, the sharpest contrast
was found in the Kappa values, with a difference of up to 12 points
of the values produced by the three ML algorithms and the LDA
Fig. 2. Variable importance according to BSM type as detected through conditional trees
Both methods were using subsampling instead of bootstrapping. sf, cut marks made with
retouched flakes.

Table 3
Accuracy (including confidence interval), Kappa, sensitivity, specificity and balanced accur
variables) dataset.

Algorithm Accuracy 95%c.i. Kappa Sens

C5.0 91.49 0.86–0.95 0.88 (0.8
GBM 94.68 0.90–0.97 0.92 (0.7
NN 93.1 0.88–0.96 0.89 (0.8
LDA 84.5 0.78–0.89 0.77 (0.7

* (croc,rf,sf,tramp). Key: croc, crocodile tooth marks; rf, retouched flakes; sf, simple fl
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(Table 3). This difference is even bigger when using the complete
set of variables (up to 15 points) (Table 2). LDA was used as a con-
trasting example over PMR and pGLM because these classifiers
yielded even lower accuracy and Kappa values. This indicates that
traditional discriminant tests are not only substantially less accu-
rate, but they also show poorer performance in real accuracy when
sample imbalance is considered (as through the Kappa indicator).
This also indicates that reducing the dimensionality of the dataset
results in reduced accuracy.

In Phase 3, the use of the least influential variables yielded
lower accuracy and Kappa estimates than the influential variable
set (Table 4). Despite this, all tests showed an accuracy >72% of cor-
rect classification of all BSM. This shows that even low-influential
variables can be efficiently used for discrimination when they are
handled in a multivariate format. The synergy created by the lim-
ited variance of each variable separately expands when using all
variables simultaneously. It should be emphasized that whereas
LDA showed a difference in accuracy of 13 points between using
the complete intrinsic variable ensemble and the reduced least-
influential variable set, the ML algorithms showed substantially
wider differences (20–25 points).

3.2. Deep learning analysis

All the models showed a steady training without large oscilla-
tions (Fig. 3). This indicates that micro-feature differentiation of
(A) and of the complete dataset as determined by conditional inference forest (B).
single flakes; tramp, trampling; croc, crocodile tooth marks; rf, cut marks made with

acy of the models according to BSM type, based on the reduced (four most influential

itivity* Specificity* Balanced accuracy*

7,0.83,1,0.89) (1,0.96,0.98,0.93) (0.88,0.90,0.99,091)
6, 0.93,0.98,0.95) (1,0.97,0.99,0.95) (0.88,0.95,0.98,0.95)
2,0.87,1,0.92) (1,0.97,0.96,0.96) (0.91,0.92,0.98,0.94)
6,0.87,0.97,0.71) (0.96,0.91,0.93,0.98) (0.86,0.89,0.95,0.84)

akes; tramp, trampling.



Table 4
Accuracy (including confidence interval), Kappa, sensitivity, specificity and balanced accuracy of the models according to BSM type, based on the ensemble of the least influential
variables.

Algorithm Accuracy 95%c.i. Kappa Sensitivity* Specificity* Balanced accuracy*

C5.0 72.81 (0.64–0.78) 0.60 (0.41,0.8,0.64,0.83) (0.96,0.97,0.86,0.77) (0.68,0.89,0.75,0.8)
GBM 75.53 (0.68–0.81) 0.63 (0.35,0.80,0.73,0.85) (1,0.98,0.85,0.77) (0.67,0.89,0.79,0.81)
NN 75.53 (0.68–0.81) 0.63 (0.35,0.80,0.73,0.85) (0.99,0.99,0.85,0.77) (0.67,0.9,0.79,0.81)
LDA 73.8 (0.67–0.80) 0.62 (0.76,0.8,0.69,0.74) (0.94,0.98,0.88,0.79) (0.85,0.89,0.79,0.76)

* (croc,rf,sf,tramp). Key: croc, crocodile tooth marks; rf, retouched flakes; sf, simple flakes; tramp, trampling.

Fig. 3. Example of performance in the accuracy and loss during training for the best model (Jason) and comparison with one of the least efficient models (EfficientNet B7). A,
C. Training and validation accuracy of each model. B, D. Training and validation loss of each model.
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BSM for both classes is unambiguous. All models coincide in show-
ing a high degree of accuracy in classifying the BSM images from
the testing set (96%–99%) (Table 5). The Jason architecture is the
most successful by showing the highest accuracy (99%) and lowest
loss (0.02). It also displays the highest F1-score (0.96), which
shows that despite the highly imbalanced nature of the original
samples, the classification rate is balanced between both types of
Table 5
Accuracy, loss, F1-score and Area under the Curve (AUC) for each DL model.

Model Accuracy Loss F1 AUC

VGG16 0.975 0.15 0.92 0.86
ResNet50 0.987 0.06 0.96 0.93
Densenet 201 0.962 0.109 0.86 0.81
EfficientNet B7 0.962 0.08 0.86 0.81
Jason 0.99 0.02 0.96 0.96
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BSM. ResNet50 is very similar in results, differing only minimally
from Jason. The other transfer models, although with a lower per-
formance, also show high accuracy (>96%), low loss (<0.15) and
high F1-score (>0.86). The DL analysis shows that there is a clear,
objective method to differentiate stone-tool imparted cut marks
from crocodile tooth marks with a high degree of confidence.
4. Discussion

The ML analysis has shown that ML algorithms are more pow-
erful at classification than some robust approaches (i.e., including
penalization) to ‘‘traditional” multivariate classifiers. This is docu-
mented by global accuracy, balanced accuracy and, given the
unbalanced nature of the samples used, by the Kappa indicator.
Multivariate information increases the chances of correct classifi-
cation. ML techniques are also better than traditional classifiers
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at handling multidimensionality. A clear example is found in the
limited variation documented in LDA when using the complete
set of variables or the reduced set of the most commonly influen-
tial variables (Tables 2, 3). In contrast, the most successful ML
models exhibit the highest global/balanced accuracy (and Kappa)
when using all the variables instead of the reduced set. Traditional
statisticians might feel tempted to minimize dimensionality for
classification, but when the number of variables is as limited as
the dataset used here, complete use is preferred over partial one,
especially if the application of ML algorithms is intended. Explora-
tory techniques may be suitable to detect non-influential variables
and if their variance is negligible, then their discard could be better
justified; but as long as variables have any impact on the ML clas-
sifiers it is better to include them instead of dropping them. The
results shown in Phase 3 clearly supports this assertion.

When considering also the sensitivity and specificity of the
models, it can be clearly seen that most marks, especially cut
marks, are well identified and differentiated from the other BSM.
The high sensitivity of BSM (including crocodile tooth marks) indi-
cate that most are correctly classified by all the models. Therefore,
the categorized microscopic features used as variables do have a
discriminatory power and question interpretations about the equi-
finality in the identification of BSM types. The present ML models
can classify correctly as many as 96.8% of BSM of the testing set
using all variables, or 94.6% of BSM using the reduced variable
set. These frequencies can be improved if the ML models are tuned
in their hyperparameters. The three models displaying the highest
accuracy in the present study, when tuned, showed accuracy rates
>98%. This underscores the advantages of ML over other classifica-
tory methods. This also shows that the methodological bias intro-
duced by the use of bootstrapping by Domínguez-Rodrigo and
Baquedano (2018) is negligible and has no impact in classification.

The main objection to the use of this approach, based on the
categorization of microscopic features and their statistical multi-
variate treatment, is not its discriminatory capability, but the
unavoidable impact of subjective assessment of each variable
(Domínguez-Rodrigo et al., 2017, 2019; 2019). For this reason,
the use of DL models is a welcome improvement, since it removes
the subjective human factor of variable categorization. The most
successful DL models used in the present work (on a sample of
more than 500 images) show a degree of accurate discrimination
Fig. 4. Selection of some of the best photographed marks from fossils found in the E
classification by the Resnet50 and Jason DL models. Numbers show probability of classi
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of the testing sets of 99% of all the images. In the case of the Jason
model, 99% of cut marks and 93% of crocodile tooth marks were
correctly classified. An additional advantage of the DL methods is
that they provide confidence probability in the identifications. This
increases the reliance on interpretations of archaeological and
paleontological BSM.

Sahle et al. (2017) argued about the potential crocodile agency
in the modification of some Ethiopian Plio-Pleistocene fossils that
they published. In order to test this interpretation properly
through CV methods, the images should be taken following the
experimental protocol of resolution and magnification described
here. In the absence of such an image dataset, we can only specu-
late about agency. We agree with Sahle et al. (2017) that several of
the damage traces found on some of the Pliocene fossils resemble
tooth marks created by crocodiles. One hominin humeral shaft
bears one mark that is virtually identical (Sahle et al., 2017) to
the Dikika rib specimen (McPherron et al., 2010). For the
4.2 Ma-old ASI-VP-2/420 hominin humerus, the MAK-VP-1-754
ungulate humerus, the AL339 equid tibia, and maybe the BOU-
VP-11-15 bovid tibia, the evidence about crocodile agency seems
compelling. We differ from these authors in asserting that such
modifications could be mistaken with butchery marks. For those
V-shaped crocodile marks, their small size and the absence of sev-
eral other microscopic features that commonly accompany cut
marks (such as microstriations, groove asymmetry, shoulder effect,
flaking on mark shoulder) show that they can be differentiated
from most cut marks that do indeed show some or all of these fea-
tures combined. For those crocodile tooth marks that bear micros-
triations, the groove morphology is broad and not V-shaped when
proper magnification is applied (Baquedano et al., 2012; Sahle
et al., 2017; Domínguez-Rodrigo and Baquedano, 2018). Despite
being unsuitable for analysis, we selected some of the largest mag-
nified images in Sahle et al. (2017) as a preliminary exercise to
show the potential of the CV method. Although the conclusions
of the results should not be considered serious, because the images
used did not follow the same protocols as the experimental mark
images, it is worth noting that the two best CV models derived
from the experimental dataset seem to potentially interpret the
Pliocene fossil traces as crocodile-made (against the multivariate
testing of the metric data; Domínguez-Rodrigo and Baquedano,
2018) (Fig. 4).
thiopian Pliocene and early Pleistocene areas from Sahle et al. (2017) and their
fication per category (cut mark, crocodile tooth score).



Table 6
Accuracy rates of different ML algorithms applied to the complete dataset (i.e., intrinsic and extrinsic variables) in two studies before and after the use of bootstrapping.
Underlined values show higher or equally high accuracy in algorithms that did not use bootstrapping. NN, neural networks; SVM, support vector machines; KNN, K-nearest
neighbor; RF, random forests; MDA, mixture discriminant analysis; NB, naive Bayes; PLSDA, partial least square discriminant analysis.

Domínguez-Rodrigo & Baquedano (2018) Moclán et al. (2019)

Raw data accuracy Bootstrapped data accuracy Raw data accuracy Bootstrapped data accuracy

NN 0.99 1.00 0.89 0.93
SVM 0.98 0.99 0.88 0.92
KNN 0.95 0.99 0.82 0.87
RF 0.98 0.99 0.89 0.94
MDA 0.97 0.98 0.84 0.84

NB 0.97 0.96 0.82 0.78

PLSDA 0.96 0.96 - -

C5.0 0.98 0.99 - -
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The present study also shows that bootstrapping did not bias
the accuracy of the ML classifiers in Domínguez-Rodrigo and
Baquedano (2018) (Table 6). Recently, this has been suggested by
McPherron et al.’s (2022) purported replication of the analysis
using artificially-derived variables. McPherron et al. (2022) have
suggested that our use of bootstrap overfitted the data, resulting
in high accuracy estimates. They re-modelled the process by using
artificial variables, which have no discriminatory power in their
raw state, but which reach perfect classification after they are
bootstrapped 10.000 times. We argue that their method did not
reproduce our original analysis. These authors also argue that tra-
ditional statistical methods have similar accuracy as ML methods.
All these claims are carefully scrutinized in Appendix A and proven
inaccurate.

5. Conclusions

Multivariate analysis of structural microscopic features (i.e.,
intrinsic variables) of BSM can effectively be used to discriminate
different types of marks and, more specifically, crocodile tooth
marks from butchery cut marks. One does not need to use complex
statistics and traditional multivariate discriminant methods could
potentially be used (Domínguez-Rodrigo et al., 2009; Harris et al.,
2017); however, these have shown to be less accurate than ML
algorithms, especially when using variables that are predomi-
nantly categorical (Domínguez-Rodrigo, 2018). Machine learning
may be seen by some as a black box set of methods; but the truth
is quite different. If one knows the way each algorithm mathemat-
ically addresses problems, the computational procedure can be
fully understood. There are now tools to make the mathematical
process more understandable. White-box methods are being
implemented even within the realm of DL (Landecker, 2000;
Yang et al., 2019; Ayyar et al., 2021; Molnar, 2020).

Likewise, the intricate depth of DL methods can be fully under-
stood by pulling out each layeŕs feature target (Brownlee, 2017).
DCNN have revolutionized the way image-based science is done.
Its preliminary application to taphonomic research is providing
an objective and highly-confident platform fromwhich assessment
of BSM can be made with more reliance than in the past. The CV
results shown in the present work regarding discrimination of cro-
codile tooth marks and butchery cut marks are enlightening and
are a good example of its potential. They should encourage tapho-
nomists to adopt them to address interpretation of BSM in the past.
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